Effects of Liposomal Vitamin C, Coenzyme Q10, and Bee Venom Supplementation on Bacterial Communities and Performance in Nile Tilapia (Oreochromis niloticus)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval Statements
2.2. Experimental Setup and Laboratory Conditions
2.3. Supplement Sources, Diet Preparation, and Procedure
2.4. Sampling and Performance Metrics
2.5. Digestive Enzyme and Microbial Determinations
2.6. Hepatointestinal Histology Evaluation
2.7. Innate Immunity and Antioxidant Determinations
2.8. Statistical Analysis
3. Results
3.1. Bee Venom Composition
3.2. Performance Metrics
3.3. Gastrointestinal Digestive Enzymes
3.4. Gut Microbiota
3.5. Histological Assessment
3.6. Immune Function
3.7. Antioxidant Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADG | Average Daily Gain |
AOAC | Association of Official Analytical Chemists |
ATP | Adenosine Triphosphate |
BV | Bee Venom |
CAT | Catalase |
CFU | Colony Forming Units |
CoQ10 | Coenzyme Q10 |
FCR | Feed Conversion Ratio |
GC–MS | Gas Chromatography–Mass Spectrometry |
GPx | Glutathione Peroxidase |
HSI | Hepatosomatic Index |
ISI | Intestinosomatic Index |
K | Fulton’s Condition Factor |
LVC | Liposomal Vitamin C |
MDA | Malondialdehyde |
NBT | Nitroblue Tetrazolium |
PBS | Phosphate-Buffered Saline |
PCA | Principal Component Analysis |
RT | Retention Time |
SGR | Specific Growth Rate |
SOD | Superoxide Dismutase |
SR | Survival Rate |
TBC | Total Bacterial Count |
TYMC | Total Yeast and Mold Count |
VC | Vitamin C |
VSI | Viscerosomatic Index |
WG | Weight Gain |
References
- Khan, S.K.; Dutta, J.; Ahmad, I.; Rather, M.A.; Badroo, I.A.; Taj, S. Fish Protein: A Nutritional Solution for Global Food Security. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies; Sundaray, J.K., Rather, M.A., Ahmad, I., Amin, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 457–491. [Google Scholar]
- Alam, S.; Urva-til-wusqa, Z.I.; Qamar, M.R.; Moeen Afzal, G.M.; Ali, H.M.; Hussain, R. Immunostimulation and Stress Reduction in Farmed Fish Fed Herbal Extracts. In Complementary and Alternative Medicine: Botanicals/Homeopathy/Herbal Medicine; Unique Scientific Publishers: Faisalabad, Pakistan, 2024; pp. 422–430. [Google Scholar] [CrossRef]
- Hossain, M.K.; Naziat, A.; Atikullah, M.; Hasan, M.T.; Ferdous, Z.; Paray, B.A.; Zahangir, M.M.; Shahjahan, M. Probiotics relieve growth retardation and stress by upgrading immunity in Nile tilapia (Oreochromis niloticus) during high temperature events. Anim. Feed Sci. Technol. 2024, 316, 116054. [Google Scholar] [CrossRef]
- Little, D.C.; Young, J.A.; Zhang, W.; Newton, R.W.; Al Mamun, A.; Murray, F.J. Sustainable intensification of aquaculture value chains between Asia and Europe: A framework for understanding impacts and challenges. Aquaculture 2018, 493, 338–354. [Google Scholar] [CrossRef]
- Shinde, S.V.; Sawant, S.; Rathod, S.S.; Patekar, P.; Sheikh, S.; Narsale, S.; Sukhdhane, K. Strategic nutraceutical approaches for enhancing fisheries and aquaculture: A comprehensive review. Int. J. Adv. Biochem. Res. 2024, 8, 104–110. [Google Scholar] [CrossRef]
- Madhulika; Meinam, M.; Deepti, M.; Ngasotter, S.; Gupta, S.S.; Varghese, T. Functional Feed Additives in Aquaculture to Improve Food Security. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies; Sundaray, J.K., Rather, M.A., Ahmad, I., Amin, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 375–396. [Google Scholar]
- Alhawas, B.; Abd El-Hamid, M.I.; Hassan, Z.; Ibrahim, G.A.; Neamat-Allah, A.N.F.; Rizk El-Ghareeb, W.; Alahmad, B.A.-H.Y.; Meligy, A.M.A.; Abdel-Raheem, S.M.; Abdel-Moez Ahmed Ismail, H.; et al. Curcumin loaded liposome formulation: Enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in Nile tilapia (Orechromis niloticus). Fish Shellfish Immunol. 2023, 138, 108776. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Zalat, R.Y.I.; El-Hais, A.M.; Soliman, A.A.; Amer, A.A.; Gewaily, M.; Gabr, S.A.; Zaineldin, A.I.; Dossou, S.; Teiba, I.I.; et al. Bee venom enhances performance and immune function in thinlip mullet: A promising approach for sustainable aquaculture. Fish Shellfish Immunol. 2024, 151, 109713. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Shahin, S.A.; Teiba, I.I.; Zaki, M.A.A.; El-Hais, A.M.; Sewilam, H.; Almeer, R.; Abdelkhalek, N.; Dawood, M.A.O. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 531, 735862. [Google Scholar] [CrossRef]
- Zhu, C.b.; Ren, H.c.; Wu, Y.j.; Yang, S.; Fei, H. Benefits and applications of vitamin C in farmed aquatic animals: An updated review. Aquac. Int. 2024, 32, 1295–1315. [Google Scholar] [CrossRef]
- Sumi, S.; Prasad, G. Combined Effects of Dietary β-Carotene and Vitamin C on the Growth Performance and Survival of Nile Tilapia (Oreochromis niloticus) Fingerlings. J. Aquat. Biol. Fish. 2021, 9, 48–54. [Google Scholar]
- Comunian, T.; Babazadeh, A.; Rehman, A.; Shaddel, R.; Akbari-Alavijeh, S.; Boostani, S.; Jafari, S.M. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit. Rev. Food Sci. Nutr. 2022, 62, 3301–3322. [Google Scholar] [CrossRef]
- Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals. Rev. Aquac. 2018, 10, 334–350. [Google Scholar] [CrossRef]
- Huang, F.; Wu, F.; Zhang, S.; Jiang, M.; Liu, W.; Tian, J.; Yang, C.; Wen, H. Dietary vitamin C requirement of juvenile Chinese sucker (Myxocyprinus asiaticus). Aquac. Res. 2017, 48, 37–46. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.; Wang, H.; Xie, F.; Wang, T. Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum). Fish Shellfish Immunol. 2012, 32, 969–975. [Google Scholar] [CrossRef]
- Liang, X.-P.; Li, Y.; Hou, Y.-M.; Qiu, H.; Zhou, Q.-C. Effect of dietary vitamin C on the growth performance, antioxidant ability and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco Richardson). Aquac. Res. 2017, 48, 149–160. [Google Scholar] [CrossRef]
- Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of coenzyme q10 in health and disease: An update on the last 10 years (2010–2020). Antioxidants 2021, 10, 1325. [Google Scholar] [CrossRef]
- Huang, Y.; Ge, R.; Lou, G.; Jiang, N.; Zhu, X.; Guo, Y.; Liu, H.; Liu, X.; Chen, X. The influence of dietary Coenzyme Q10 on growth performance, antioxidant capacity and resistance against Aeromonas hydrophila of juvenile European eel (Anguilla anguilla). Fish Shellfish Immunol. 2023, 138, 108834. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Abdel Fattah, A.M.; El-Hais, A.M.; Soliman, A.A.; Amer, A.A.; Gewaily, M.; Zaki, M.A.A.; Zaineldin, A.I.; Dossou, S.; Teiba, I.I.; et al. Dietary co-enzyme Q10 boosted the growth performance, antioxidative capacity, immune responses, and intestinal and hepatic histomorphology of grey mullet (Liza ramada). Aquac. Rep. 2024, 36, 102147. [Google Scholar] [CrossRef]
- Khalil, A.A.; Abd-Elhakim, Y.M.; Said, E.N.; Moselhy, A.A.A.; Abu-Elsaoud, A.M.; El-Houseiny, W. Milk thistle and co-enzyme Q10 fortified diets lessen the nickel chloride-induced neurotoxic and neurobehavioral impairments in Oreochromis niloticus via regulating the oxidative stress response, acetylcholinesterase activity, and brain nickel content. Aquaculture 2022, 553, 738102. [Google Scholar] [CrossRef]
- Baqer, L.K.; Yaseen, R.T. The effect of whole honey bee venom (Apismellifera) on reducing skin infection of rabbits caused by methicillin resistant staphylococcus aureus: An in vivo study. J. Pure Appl. Microbiol. 2018, 12, 2111–2116. [Google Scholar] [CrossRef]
- El-Hanoun, A.; El-Komy, A.; El-Sabrout, K.; Abdella, M. Effect of bee venom on reproductive performance and immune response of male rabbits. Physiol. Behav. 2020, 223, 112987. [Google Scholar] [CrossRef]
- Kang, D.-W.; Choi, J.-G.; Kim, J.; Park, J.B.; Lee, J.-H.; Kim, H.-W. Bee venom reduces burn-induced pain via the suppression of peripheral and central substance P expression in mice. J. Vet. Sci. 2021, 22, e9. [Google Scholar] [CrossRef] [PubMed]
- Rabie, A.H.; El-Kaiaty, A.M.; Hassan, M.S.; Stino, F.R. Influence of some honey bee products and a growth promoter supplementation on productive and physiological performance of broiler chickens. Egypt. Poult. Sci. J. 2018, 38, 513–531. [Google Scholar]
- El Basuini, M.F.; Ramadan, H.M.; El-Hais, A.M.; Zaki, M.A.A.; Kamel, N.M.; Teiba, I.I.; El-Bilawy, E.H.; Badr, M.R.; Abdel-Aziz, M.F.; Shehata, A.I. Toxicity and therapeutical impacts of Bee venom (Apis mellifera L.) on Nile tilapia juvenile (Oreochromis niloticus). Aquac. Fish. 2024; in press. [Google Scholar] [CrossRef]
- Prabu, E.; Rajagopalsamy, C.; Ahilan, B.; Jeevagan, I.; Renuhadevi, M. Tilapia–an excellent candidate species for world aquaculture: A review. Annu. Res. Rev. Biol. 2019, 31, 1–14. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Nader, M.M.; Salem, H.M.; El-Tahan, A.M.; Soliman, S.M.; Khafaga, A.F. Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). Int. J. Biometeorol. 2022, 66, 2183–2194. [Google Scholar] [CrossRef]
- Naseer, A.; Mustafa, N.; Iftikhar, S.; Fareed, Z.U.H.; Bashir, W.; Khan, K.; Batool, I.; Zafar, I.; Ali, U.; Ather, N. Advancing Aquaculture Integrating Microbiome Modulation, Immunomodulatory Approaches, and Mitigating Environmental Stressors in Nile Tilapia Farming. Indus J. Biosci. Res. 2024, 2, 1233–1244. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Teiba, I.I.; Zaki, M.A.A.; Alabssawy, A.N.; El-Hais, A.M.; Gabr, A.A.; Dawood, M.A.O.; Zaineldin, A.I.; Mzengereza, K.; Shadrack, R.S.; et al. Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative-related genes expression of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 98, 420–428. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Elnagar, E.S.; El-Hais, A.M.; Soliman, A.A.; Teiba, I.I.; Bakry, M.K.; Gewaily, M.S.; Alhoshy, M.; Shehata, A.I. Impacts of different vitamin C delivery systems (liposomal and nano-liposomal) on growth, immunity, antioxidant defense, gut health, and digestive function in grey mullet (Liza ramada). Aquac. Int. 2025, 33, 216. [Google Scholar] [CrossRef]
- Jobling, M. National Research Council (NRC): Nutrient requirements of fish and shrimp. Aquac. Int. 2012, 20, 601–602. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Cupp-Enyard, C. Sigma’s Non-specific Protease Activity Assay-Casein as a Substrate. J. Vis. Exp. 2008, e899. [Google Scholar] [CrossRef]
- Wang, W.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dawood, M.A.O.; Hossain, M.S.; Moss, A.S. Effects of dietary astaxanthin and vitamin E and their interactions on the growth performance, pigmentation, digestive enzyme activity of kuruma shrimp (Marsupenaeus japonicus). Aquac. Res. 2019, 50, 1186–1197. [Google Scholar] [CrossRef]
- Hussein, E.E.; El Basuini, M.F.; Ashry, A.M.; Habiba, M.M.; Teiba, I.I.; El-Rayes, T.K.; Khattab, A.A.A.; El-Hais, A.M.; Shahin, S.A.; El-Ratel, I.T.; et al. Effect of dietary sage (Salvia officinalis L.) on the growth performance, feed efficacy, blood indices, non-specific immunity, and intestinal microbiota of European sea bass (Dicentrarchus labrax). Aquac. Rep. 2023, 28, 101460. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier health sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Demers, N.E.; Bayne, C.J. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 1997, 21, 363–373. [Google Scholar] [CrossRef]
- Anderson, D.P.; Siwicki, A.K. Basic Hematology and Serology for Fish Health Programs; Shariff, M., Arthur, J.R., Subasinghe, J.P., Eds.; Fish Health Section, Asian Fisheries Society: Manila, Phillipines, 1995; p. 18. [Google Scholar]
- Hoseinifar, S.H.; Ashouri, G.; Marisaldi, L.; Candelma, M.; Basili, D.; Zimbelli, A.; Notarstefano, V.; Salvini, L.; Randazzo, B.; Zarantoniello, M.; et al. Reducing the Use of Antibiotics in European Aquaculture with Vaccines, Functional Feed Additives and Optimization of the Gut Microbiota. J. Mar. Sci. Eng. 2024, 12, 204. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Hossain, M.S.; Small, B.C.; Kumar, V.; Hardy, R. Utilization of functional feed additives to produce cost-effective, ecofriendly aquafeeds high in plant-based ingredients. Rev. Aquac. 2024, 16, 121–153. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Shahin, S.A.; Eldenary, M.E.; Elshora, S.M.; Dawood, M.A.O.; Mourad, M.M. Growth variables, feed efficacy, survival rate, and antioxidant capacity of European seabass (Dicentrarchus labrax L.) larvae treated with Coenzyme Q10 or lipoic acid. Aquac. Rep. 2022, 27, 101373. [Google Scholar] [CrossRef]
- López-Lluch, G. Chapter 11—Mitochondria-targeted antioxidants: Coenzyme Q10, mito-Q and beyond. In Molecular Nutrition and Mitochondria; Ostojic, S.M., Ed.; Academic Press: New York, NY, USA, 2023; pp. 255–302. [Google Scholar]
- Han, S.M.; Lee, K.G.; Yeo, J.H.; Oh, B.Y.; Kim, B.S.; Lee, W.; Baek, H.J.; Kim, S.T.; Hwang, S.J.; Pak, S.C. Effects of honeybee venom supplementation in drinking water on growth performance of broiler chickens. Poult. Sci. 2010, 89, 2396–2400. [Google Scholar] [CrossRef]
- Elkomy, A.E.; Sadaka, T.A.; Hassan, S.S.; Shawky, O.; El-Speiy, M.E.; El-Beshkar, M.; Wadaan, M.A.M.; El-Tahan, H.M.; Cho, S.; Kim, I.H.; et al. Improving productive performance, immunity, and health status of growing rabbits by using honey bee venom (Apis mellifera). Front. Vet. Sci. 2023, 10, 1234675. [Google Scholar] [CrossRef]
- Lu, X.; Yang, X.; Cheng, J.; Pei, Y. Progresses in insect antimicrobial peptides. Acta Pharm. Sin. 1999, 34, 156–160. [Google Scholar]
- Yusuf, A.; Huang, X.; Chen, N.; Li, S.; Apraku, A.; Wang, W.; David, M.A. Growth and metabolic responses of juvenile largemouth bass (Micropterus salmoides) to dietary vitamin c supplementation levels. Aquaculture 2021, 534, 736243. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhang, Y.; Gao, J. Effects of different dietary vitamin C supplementations on growth performance, mucus immune responses and antioxidant status of loach (Misgurnus anguillicaudatus Cantor) juveniles. Aquac. Res. 2017, 48, 4112–4123. [Google Scholar] [CrossRef]
- Wu, F.; Huang, F.; Wen, H.; Jiang, M.; Liu, W.; Tian, J.; Yang, C.G. Vitamin C requirement of adult genetically improved farmed tilapia, Oreochromis niloticus. Aquac. Int. 2015, 23, 1203–1215. [Google Scholar] [CrossRef]
- Dawood, M.A.O. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- López Nadal, A.; Ikeda-Ohtsubo, W.; Sipkema, D.; Peggs, D.; McGurk, C.; Forlenza, M.; Wiegertjes, G.F.; Brugman, S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front. Immunol. 2020, 11, 512428. [Google Scholar] [CrossRef]
- Lemieux, H.; Blier, P.; Dutil, J.D. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol. Biochem. 1999, 20, 293–303. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Abd El-Hakim, Y.M.; Metwally, M.M.M.; Abdel Ghfar, S.S.; Khalil, A.A. The single or combined Silybum marianum and co-enzyme Q10 role in alleviating fluoride-induced impaired growth, immune suppression, oxidative stress, histological alterations, and reduced resistance to Aeromonas sobria in African catfish (Clarias gariepinus). Aquaculture 2022, 548, 737693. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Khalil, A.A.; Abd-Elhakim, Y.M.; Arisha, A.H.; Moselhy, A.A.A.; Dahshan, H.; Saber, T.; Saber, T.M.; Ahmed, M.M. Alleviative effects of dietary Silybum marianum and co-enzyme Q10 on waterborne nickel-induced impaired growth, immunosuppression, tissue damage, immune-related genes dysregulation, and reduced resistance to Pseudomonas aeruginosa in Oreochromis niloticus. Aquac. Rep. 2022, 26, 101308. [Google Scholar] [CrossRef]
- Shukla, S.; Dubey, K.K. CoQ10 a super-vitamin: Review on application and biosynthesis. 3 Biotech 2018, 8, 249. [Google Scholar] [CrossRef]
- Aramli, M.S.; Sarvi Moghanlou, K.; Imani, A. Effect of dietary antioxidant supplements (selenium forms, alpha-tocopherol, and coenzyme Q10) on growth performance, immunity, and physiological responses in rainbow trout (Oncorhynchus mykiss) using orthogonal array design. Fish Shellfish Immunol. 2023, 134, 108615. [Google Scholar] [CrossRef] [PubMed]
- Gopi, S.; Balakrishnan, P. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. J. Liposome Res. 2021, 31, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.-Y.; Ding, M.; Zhang, S.; Wang, Y.; Ji, Y.-P.; Xu, S.-L.; Wang, Y.-J.; Wang, D.-L. Dietary effects of vitamin C on antioxidant capacity, intestinal microbiota and the resistance of pathogenic bacteria in cultured Silver pomfret (Pampus argenteus). PLoS ONE 2024, 19, e0300643. [Google Scholar] [CrossRef]
- Liu, H.-P.; Wen, B.; Chen, Z.-Z.; Gao, J.-Z.; Liu, Y.; Zhang, Y.-C.; Wang, Z.-X.; Peng, Y. Effects of dietary vitamin C and vitamin E on the growth, antioxidant defence and digestive enzyme activities of juvenile discus fish (Symphysodon haraldi). Aquac. Nutr. 2019, 25, 176–183. [Google Scholar] [CrossRef]
- Shehata, A.I.; Shahin, S.A.; Elmaghraby, A.M.; Alhoshy, M.; Toutou, M.M.; Soliman, A.A.; Amer, A.A.; Habib, Y.J.; Gewaily, M.S.; Teiba, I.I.; et al. Stevioside mitigates lead toxicity in thinlip mullet juveniles: Impacts on growth, metabolism, and immune function. Aquat. Toxicol. 2024, 271, 106910. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Ye, H.; Zou, C.; Ye, C.; Wang, A. Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. Fish Shellfish Immunol. 2018, 73, 234–244. [Google Scholar] [CrossRef]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.-M.; Fajloun, Z. Bee Venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef]
- Pourahad Anzabi, M.; Sarvi Moghanlou, K.; Imani, A.; Tahmasebi, R. Effects of dietary vitamin E and C co-supplementation on growth performance, hemato-immunological indices, digestive enzymes activity, and intestinal histology of rainbow trout fed diet contained spoiled fish meal and oil. Aquac. Rep. 2023, 33, 101842. [Google Scholar] [CrossRef]
- Alafari, H.A.; Albaqami, N.M.; Abd El-Aziz, Y.M.; Reyad, Y.A.; Eissa, E.-S.H.; Abdul Kari, Z.; Eissa, M.E.H.; Ibrahim, S.; Khan, S.; Munir, M.B.; et al. The effects of nano-selenium and/or vitamin C on the growth performance, blood health, organ histology, molecular alterations, and disease resistance of Nile tilapia (Oreochromis niloticus) against Saprolegnia ferax. Aquac. Int. 2024, 33, 65. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Pourmozaffar, S.; Adeshina, I.; Mahmoudi, R.; Erfanifar, E.; Ajdari, A. Selenium nanoparticle and selenomethionine as feed additives: Effects on growth performance, hepatic enzymes’ activity, mucosal immune parameters, liver histology, and appetite-related gene transcript in goldfish (Carassius auratus). Fish Physiol. Biochem. 2021, 47, 639–652. [Google Scholar] [CrossRef]
- Abdo, S.E.; Gewaily, M.S.; Abo-Al-Ela, H.G.; Almeer, R.; Soliman, A.A.; Elkomy, A.H.; Dawood, M.A.O. Vitamin C rescues inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Environ. Sci. Pollut. Res. 2021, 28, 28750–28763. [Google Scholar] [CrossRef] [PubMed]
- Kiron, V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012, 173, 111–133. [Google Scholar] [CrossRef]
- Kumari, J.; Sahoo, P.K. Effects of cyclophosphamide on the immune system and disease resistance of Asian catfish Clarias batrachus. Fish Shellfish Immunol. 2005, 19, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Choubey, A.K.; Srivastava, P.K. The effects of dietary immunostimulants on the innate immune response of Indian major carp: A review. Fish Shellfish Immunol. 2022, 123, 36–49. [Google Scholar] [CrossRef]
- Er-Rouassi, H.; Bakour, M.; Touzani, S.; Vilas-Boas, M.; Falcão, S.; Vidal, C.; Lyoussi, B. Beneficial effect of bee venom and its major components on facial nerve injury induced in Mice. Biomolecules 2023, 13, 680. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, J.C. Influence of Dietary Ascorbic Acid on the Immune Responses of Juvenile Korean Rockfish Sebastes schlegelii. J. Aquat. Anim. Health 2015, 27, 178–184. [Google Scholar] [CrossRef]
- Mao, G.D.; Thomas, P.D.; Lopaschuk, G.D.; Poznansky, M.J. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J. Biol. Chem. 1993, 268, 416–420. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Flohé, L.; Günzler, W.A. [12] Assays of glutathione peroxidase. In Methods in Enzymology; Academic Press: New York, NY, USA, 1984; Volume 105, pp. 114–120. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Bentinger, M.; Brismar, K.; Dallner, G. The antioxidant role of coenzyme Q. Mitochondrion 2007, 7, S41–S50. [Google Scholar] [CrossRef]
- Mourad, M.M.; Shahin, S.A.; El-Ratel, I.T.; El Basuini, M.F. Effect of treating eggs with coenzyme Q10 (CoQ10) on growth variables, histomorphometry, and antioxidant capacity in red tilapia (Oreochromis aureus× Oreochromis mossambicus) larvae. Animals 2022, 12, 2219. [Google Scholar] [CrossRef]
- Xie, Z.; Niu, C.; Zhang, Z.; Bao, L. Dietary ascorbic acid may be necessary for enhancing the immune response in Siberian sturgeon (Acipenser baerii), a species capable of ascorbic acid biosynthesis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 145, 152–157. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Y.; Wen, H.; Huan, Z.; Zhong, L.; Mao, X.; Li, J.; Xiao, T. Effect of vitamin C on growth, immunity and anti-ammonia-nitrite stress ability in juvenile black carp (Mylopharyngodon piceus). J. Fish. China 2013, 37, 565–573. [Google Scholar] [CrossRef]
Ingredients | % |
---|---|
Soybean meal (44% CP) | 35 |
Yellow corn | 20 |
Fish meal (65% CP) | 15 |
Wheat bran | 7 |
Wheat flour | 6 |
Rice bran | 5 |
Gluten | 5 |
Fish oil | 3 |
Soybean oil | 2 |
Dicalcium phosphate | 1 |
Vitamin and mineral premix 1 | 1 |
Total | 100 |
Nutrient profile | |
Crude protein (%) | 31.24 ± 0.17 |
Crude lipids (%) | 8.22 ± 0.19 |
Fiber (%) | 4.15 ± 0.12 |
Ash (%) | 7.3 ± 0.05 |
Gross energy (MJ/Kg) 2 | 18.16 ± 0.12 |
RT (min) | Compound | Molecular Formula | Mass (m/z) | Area (%) |
---|---|---|---|---|
6.88 | 5-HCyclopropa[3,4]benz[1,2-e]azulen-5-one,4,9,9-atris(acetyloxy)3[(acetyloxy)methyl]1,1a,1b,4,4a,7a,7b,8,9,9a- decahydro-4a,7-bdihydroxy1,1,6,8-tetramethyl | C28H36O11 | 549 | 0.78 |
7.82 | 2,2Bis[4[(4,6dichloro1,3,5triazin2yl)oxy]phenyl]1,1,1,3,3,3hexafluoropropane | C21H8Cl4F6N6O2 | 632 | 0.82 |
9.26 | Hycanthone | C20H24N2O2S | 356 | 0.81 |
10.79 | 4,5,6,7Tetrakis(pchlorophenoxy)1,2diiminoisoindoline | C32H19Cl4N3O4 | 10.79 | 1.11 |
11.11 | Copper tetraphenylporphyrin | C44H28CuN4 | 676 | 0.9 |
11.79 | 3,4,10,11tetrakis(Dimethylamino)7,14bis(trifluoromethyl)7,14epoxydinaphtho[1,8ab:1′,8′ef]cyclooctane | C32H32F6N4O | 603 | 0.78 |
11.95 | Decanoicacid,1,1a,1b,4,4a,5,7a,7b,8,9decahydro4a,7bdihydroxy1,1,6,8tetramethyl5oxo3[[(1oxodecyl)oxy]methyl]9aHc yclopropa[3,4]benz[1,2e]azulene9,9adiylester | C50H82O9 | 827 | 1.05 |
17.83 | 2-Myristynoyl pantetheine | C25H44N2O5S | 484 | 1.2 |
19.76 | 2,4bis(áchloroethyl)6,7bis[ámethoxycarbonylethyl]8formyl1,3,5trimethylporphyrin | C36H38Cl2N4O5 | 677 | 1.03 |
32.66 | Tetraneurin-A-diol | C15H20O5 | 280 | 0.83 |
33.55 | Tristrimethylsilyl ether derivative of 1,25-dihydroxyvitamin D2 | C37H68O3Si3 | 645 | 1.16 |
33.65 | Pregn-4-ene-3,11,20trione,6,17,21-tris[(trimethylsilyl)oxy]-,3,20-bis(O-methyloxime) | C32H58N2O6Si3 | 651 | 0.91 |
35.58 | 16-Oxapentacyclo[13.2.2.0(1,13).0(2,10).0(5,9)]nonadecane | C22H34D2O3 | 346 | 0.74 |
35.88 | Trans-2-phenyl-1,3-dioxolane-4-methyloctadec-9,12,15-trienoate | C28H40O4 | 440 | 0.88 |
38.28 | 2-Cyclohexyl-4a,7-dimethyl-3,4,4a,5,6,8a-hexahydro-2H-benzo[e][1,2]oxazine-3-carbonitrile | C17H26N2O | 274 | 0.81 |
39.03 | Butanoicacid,4-chloro,1,1a,1b,4,4a,5,7a,7b,8,9-decahydro-4a,7b-dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5-oxo-9a-Hcyclopropa[3,4]benz[1,2-e]azulene9,9a-diylester | C28H38Cl2O8 | 573 | 0.76 |
39.16 | 4-(-1-hydroxyethyl)-1,6,7-tris-(2-methoxycarbonylethyl)-2,3,5,8-tetramethylporphyrin | C38H44N4O7 | 668 | 1.23 |
40.96 | 9-Octadecen-1-ol,(Z)-(CAS) | C18H36O | 268 | 28.35 |
42.38 | 6-C-Xylosyl-8-C-glucosylapigenin-permethylated derivative | C33H36O17 | 704 | 1.43 |
43.64 | 5á-Pregnan-20-one,3à,11á,17,21-tetrakis(trimethylsiloxy)-,O-methyloxime | C34H69NO5Si4 | 684 | 1.2 |
44.13 | (22S)-21-Acetoxy-6à-,11ádihydroxy16à,17à-propylmethylenedioxypregna-1,4-diene-3,20-dione | C27H36O8 | 488 | 1.15 |
44.2 | N,N′-Dicyclohexyl-1,7-dipyrrolidinylperylene-3,4:9,10-tetracarboxylicacid bisimide | C44H44N4O4 | 692 | 0.73 |
44.56 | Dotriacontane (CAS) | C32H66 | 450 | 1.55 |
44.81 | Isochiapin B | C19H22O6 | 346 | 1.01 |
45.34 | Benzene, 2(1decyl1undecenyl)1,4dimethyl (CAS) | C29H50 | 399 | 4.45 |
45.65 | (5,10,15,20-tetraphenyl[2-(2)H1]prophyrinato)zinx(II) | C44H27DN4Zn | 677 | 1.14 |
46.64 | 3,5,9-Trioxa-5-phosphaheptacos-18-en-1-aminium,4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-9-octadecenyl)oxy]- | C44H84NO8P | 786 | 1.35 |
46.69 | 3-Hydroxy-1-(4{13-[4-(3-hydroxy-3-phenylacryloyl)phenyl]tridecyl}-phenyl)-3-phenylprop-2-en-1-one | C43H48O4 | 628 | 1.06 |
46.73 | Pregn-4-ene-3,20-dione, 17,21-dihydroxy-,bis(Omethyloxime) | C23H36N2O4 | 404 | 0.88 |
47.09 | Corynan-17-ol,18,19-didehydro-10-methoxy-,acetate (ester) | C22H28N2O3 | 368 | 2.19 |
47.34 | Flavone 4′-oh, 5-oh, 7-di-o-glucoside | C27H30O15 | 594 | 3.43 |
47.58 | 4,25-Secoobscurinervan-21-deoxy-16-methoxy-22-methyl-,(22à)-(CAS) | C23H32N2O2 | 368 | 3.89 |
47.86 | Fucoxanthin | C42H58O6 | 658 | 1.06 |
48.08 | 4H-Cyclopropa[5′,6′]benz[1′,2′:7,8]azuleno[5,6-b]oxiren-4-one,8,8abis(acetyloxy)-2a-[(acetyloxy)methy-l] | C26H34O11 | 522 | 3.07 |
48.23 | Astaxanthin | C40H52O4 | 596 | 1.6 |
48.29 | Benzene,2-(1-decyl-1-undecenyl)-1,4-dimethyl-(CAS) | C29H50 | 398 | 1.72 |
48.35 | 9-Octadecenoicacid,(2-phenyl-1,3-dioxolan-4-yl)methyl ester, cis-(CAS) | C28H44O4 | 444 | 1.77 |
48.53 | (2-hydroxy-5,10,15,20-tetraphenylporphinato)zinc(II) | C44H28N4OZn | 694 | 2.81 |
49.02 | Ethyl iso-allocholate | C26H44O5 | 436 | 1.46 |
49.34 | Tetraphenylporphyrinat odibromotitanium(IV) | C44H28Br2N4Ti | 820 | 2.07 |
49.83 | Stigmast-5-en-3-ol,(3á,24S)-(CAS) | C29H50O | 414 | 1.19 |
49.94 | Aralionine | C34H38N4O5 | 582 | 5.16 |
Parameters | Control | Vitamin C | CoQ10 | Bee Venom |
---|---|---|---|---|
Initial body weight, g | 35.23 ± 0.26 | 35.24 ± 0.11 | 35.20 ± 0.23 | 35.12 ± 0.39 |
Final body weight, g | 94.89 ± 2.31 c | 128.97 ± 3.70 b | 145.26 ± 2.53 a | 145.68 ± 2.26 a |
Weight gain rate (WGR, %) | 169.43 ± 8.53 c | 266.02 ± 11.54 b | 312.67 ± 7.91 a | 315.05 ± 10.82 a |
Specific growth rate (SGR, %/day) | 1.65 ± 0.05 c | 2.10 ± 0.03 b | 2.36 ± 0.03 a | 2.37 ± 0.04 a |
Feed conversion ratio (FCR) | 1.96 ± 0.08 a | 1.56 ± 0.05 b | 1.42 ± 0.04 bc | 1.36 ± 0.01 c |
Survival rate (SR, %) | 97.78 ± 2.22 | 98.89 ± 1.11 | 100.00 ± 0.00 | 100.00 ± 0.00 |
Hepatosomatic index (HSI, %) | 2.10 ± 0.03 | 2.08 ± 0.12 | 2.14 ± 0.12 | 2.13 ± 0.13 |
Intestinosomatic index (ISI, %) | 3.35 ± 0.12 | 3.46 ± 0.22 | 3.40 ± 0.29 | 3.41 ± 0.13 |
Viscerosomatic index (VSI, %) | 6.66 ± 0.14 | 6.60 ± 0.25 | 6.53 ± 0.38 | 6.50 ± 0.23 |
Fulton’s condition factor (K factor) | 2.04 ± 0.12 | 2.04 ± 0.07 | 2.09 ± 0.11 | 2.07 ± 0.01 |
Enzyme Activity (U/mg) | Control | Vitamin C | CoQ10 | Bee Venom |
---|---|---|---|---|
Amylase | 11.35 ± 0.33 c | 13.76 ± 0.25 b | 14.45 ± 0.45 b | 18.08 ± 0.35 a |
Lipase | 12.16 ± 0.17 c | 16.42 ± 0.34 b | 22.14 ± 0.17 a | 22.06 ± 0.53 a |
Protease | 11.77 ± 0.26 c | 13.13 ± 0.10 b | 16.95 ± 0.25 a | 16.30 ± 0.36 a |
Microbiota Count (Log CFU/g) | Control | Vitamin C | CoQ10 | Bee Venom |
---|---|---|---|---|
Total yeast and mold count (TYMC) | 4.33 ± 0.33 a | 2.33 ± 0.33 b | 1.33 ± 0.33 bc | 0.67 ± 0.33 c |
Total bacterial count (TBC) | 52.33 ± 1.76 a | 39.67 ± 1.20 b | 37.67 ± 2.33 b | 31.67 ± 1.76 c |
Acid-fermentative bacteria | 9.33 ± 0.88 b | 15.00 ± 0.58 a | 15.00 ± 1.15 a | 15.33 ± 0.88 a |
Vibrio sp. | 5.67 ± 0.33 a | 3.00 ± 0.58 b | 2.67 ± 0.33 b | 1.33 ± 0.33 c |
Escherichia coli | 4.00 ± 0.58 a | 2.00 ± 0.58 ab | 1.67 ± 0.88 b | 1.00 ± 0.58 b |
Aeromonas sp. | 5.00 ± 0.58 a | 3.33 ± 0.33 b | 2.67 ± 0.67 b | 1.67 ± 0.33 b |
Salmonella sp. | 6.00 ± 0.58 a | 2.33 ± 0.33 b | 2.00 ± 0.58 b | 1.33 ± 0.33 b |
Shigella sp. | 4.67 ± 0.67 a | 2.00 ± 0.58 b | 1.67 ± 0.67 b | 1.00 ± 0.58 b |
Staphylococcus sp. | 6.00 ± 0.58 a | 3.33 ± 0.33 b | 3.00 ± 0.58 bc | 1.67 ± 0.33 c |
Streptococcus sp. | 6.67 ± 0.33 a | 3.00 ± 0.58 b | 2.67 ± 0.88 b | 1.33 ± 0.33 b |
Unidentified sp. | 5.00 ± 0.58 | 5.67 ± 0.88 | 6.33 ± 0.33 | 7.00 ± 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teiba, I.I.; Mazrou, Y.S.A.; Makhlouf, A.H.; Elsheery, N.I.; Hekal, S.H.A.; Abu-Elala, N.M.; Bakry, M.K.; El-Bilawy, E.H.; Shehata, A.I. Effects of Liposomal Vitamin C, Coenzyme Q10, and Bee Venom Supplementation on Bacterial Communities and Performance in Nile Tilapia (Oreochromis niloticus). Biology 2025, 14, 309. https://doi.org/10.3390/biology14030309
Teiba II, Mazrou YSA, Makhlouf AH, Elsheery NI, Hekal SHA, Abu-Elala NM, Bakry MK, El-Bilawy EH, Shehata AI. Effects of Liposomal Vitamin C, Coenzyme Q10, and Bee Venom Supplementation on Bacterial Communities and Performance in Nile Tilapia (Oreochromis niloticus). Biology. 2025; 14(3):309. https://doi.org/10.3390/biology14030309
Chicago/Turabian StyleTeiba, Islam I., Yasser S. A. Mazrou, Abeer H. Makhlouf, Nabil I. Elsheery, Sahar Hussein Abdalla Hekal, Nermeen M. Abu-Elala, Mahmoud Kamel Bakry, Emad H. El-Bilawy, and Akram Ismael Shehata. 2025. "Effects of Liposomal Vitamin C, Coenzyme Q10, and Bee Venom Supplementation on Bacterial Communities and Performance in Nile Tilapia (Oreochromis niloticus)" Biology 14, no. 3: 309. https://doi.org/10.3390/biology14030309
APA StyleTeiba, I. I., Mazrou, Y. S. A., Makhlouf, A. H., Elsheery, N. I., Hekal, S. H. A., Abu-Elala, N. M., Bakry, M. K., El-Bilawy, E. H., & Shehata, A. I. (2025). Effects of Liposomal Vitamin C, Coenzyme Q10, and Bee Venom Supplementation on Bacterial Communities and Performance in Nile Tilapia (Oreochromis niloticus). Biology, 14(3), 309. https://doi.org/10.3390/biology14030309