First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Resistance and Virulence Determinants
4.4. Molecular Methods
4.5. Transfer of blaKPC-3 and Plasmid Characterization
4.6. Multilocus Sequence Typing (MLST)
4.7. Ethical Approval
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, C.C. Antibiotics: Responding to a Global Challenge. Antibiotics 2012, 1, 14–16. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2014; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2015. [Google Scholar]
- Perez, F.; Bonomo, R.A. Evidence to improve the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Lancet Infect. Dis. 2018, 18, 358–360. [Google Scholar] [CrossRef]
- Tacconelli, E.; Magrini, N. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Beceiro, A.; Tomas, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep. 2016, 6, 38929. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Lourida, P.; Poulikakos, P.; Rafailidis, P.I.; Tansarli, G.S. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: Systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 2014, 58, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Data from the ECDC Surveillance Atlas—Antimicrobial Resistance. Available online: https://ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc (accessed on 7 September 2018).
- Antimicrobial Consumption Database (ESAC-Net). Available online: https://ecdc.europa.eu/en/antimicrobial-consumption/database/country-overview (accessed on 7 September 2018).
- Pang, F.; Jia, X.Q.; Zhao, Q.G.; Zhang, Y. Factors associated to prevalence and treatment of carbapenem-resistant Enterobacteriaceae infections: A seven years retrospective study in three tertiary care hospitals. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Lemos, E.V.; de la Hoz, F.P.; Einarson, T.R.; McGhan, W.F.; Quevedo, E.; Castaneda, C.; Kawai, K. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2014, 20, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Castaneda-Garcia, A.; Blazquez, J.; Rodriguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Dijkmans, A.C.; Zacarias, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.; Lee, C.R. Antimicrobial agents that inhibit the outer membrane assembly machines of Gram negative bacteria. J. Microbiol. Biotechnol. 2018. [Google Scholar] [CrossRef]
- Hamzaoui, Z.; Ocampo-Sosa, A.; Martinez, M.F.; Landolsi, S.; Ferjani, S.; Maamar, E.; Saidani, M.; Slim, A.; Martinez-Martinez, L.; Boubaker, I.B. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC in conferring carbapenem resistance among non-producing carbapenemase-Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2018. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, A.; Chmelnitsky, I.; Ofek, I.; Carmeli, Y.; Navon-Venezia, S. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J. Antimicrob. Chemother. 2010, 65, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Perilli, M.; Bottoni, C.; Grimaldi, A.; Segatore, B.; Celenza, G.; Mariani, M.; Bellio, P.; Frascaria, P.; Amicosante, G. Carbapenem-resistant Klebsiella pneumoniae harbouring blaKPC-3 and blaVIM-2 from central Italy. Diagn. Microbiol. Infect. Dis. 2013, 75, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.W.; Peirano, G.; Smyth, D.J.; Pitout, J.D. The characteristics of Klebsiella pneumoniae that produce KPC-2 imported from Greece. Diagn. Microbiol. Infect. Dis. 2013, 75, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Kim, H.M.; Yoo, J.I.; Yang, J.W.; Kim, H.S.; Chung, G.T.; Lee, Y.S. Detection of clonal KPC-2-producing Klebsiella pneumoniae ST258 in Korea during nationwide surveillance in 2011. J. Med. Microbiol. 2013, 62, 1338–1342. [Google Scholar] [CrossRef] [PubMed]
- Babouee, B.; Widmer, A.F.; Dubuis, O.; Ciardo, D.; Droz, S.; Betsch, B.Y.; Garzoni, C.; Fuhrer, U.; Battegay, M.; Frei, R.; et al. Emergence of four cases of KPC-2 and KPC-3-carrying Klebsiella pneumoniae introduced to Switzerland, 2009–10. Euro Surveill. 2011, 16, 19817. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Leavitt, A.; Navon-Venezia, S.; Chmelnitsky, I.; Schwaber, M.J.; Carmeli, Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob. Agents Chemother. 2007, 51, 3026–3029. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Castanheira, M.; Burgess, D.S.; McKee, B.; Iqbal, R.; Jones, R.N. Clonal dissemination of Klebsiella pneumoniae carbapenemase KPC-3 in Long Beach, California. J. Clin. Microbiol. 2010, 48, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, A.; Villa, L.; Carta, C.; Venditti, C.; Giordano, A.; Venditti, M.; Mancini, C.; Carattoli, A. Klebsiella pneumoniae ST258 producing KPC-3 identified in italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob. Agents Chemother. 2012, 56, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Robustillo Rodela, A.; Diaz-Agero Perez, C.; Sanchez Sagrado, T.; Ruiz-Garbajosa, P.; Pita Lopez, M.J.; Monge, V. Emergence and outbreak of carbapenemase-producing KPC-3 Klebsiella pneumoniae in Spain, September 2009 to February 2010: Control measures. Euro Surveill. 2012, 17, 20086. [Google Scholar] [PubMed]
- Machado, P.; Silva, A.; Lito, L.; Melo-Cristino, J.; Duarte, A. Emergence of Klebsiella pneumoniae ST-11 producing KPC-3 carbapenemase at a Lisbon hospital. Clin. Microbiol. Infect. 2010, 16, S28. [Google Scholar]
- Caneiras, C.; Calisto, F.; Da Silva, G.; Lito, L.; Melo Cristino, J.; Duarte, A. Enterobacteriaceae isolates and KPC-3 carbapenemase in Portugal: Overview of 2010–2011. In Proceedings of the European Congress of Clinical Microbiology and Infectious Diseases, London, UK, 31 March–2 April 2012. [Google Scholar]
- Pires, D.; Zagalo, A.; Santos, C.; Cota de Medeiros, F.; Duarte, A.; Lito, L.; Melo Cristino, J.; Caldeira, L. Evolving epidemiology of carbapenemase-producing Enterobacteriaceae in Portugal: 2012 retrospective cohort at a tertiary hospital in Lisbon. J. Hosp. Infect. 2016, 92, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Direção-Geral da Saúde. Vigilância Epidemiológica das Resistências Aos Antimicrobianos; Norma No. 004/2013 de 21/02/2013; Direção-Geral da Saúde: Lisboa, Portugal, 2013. [Google Scholar]
- Chen, L.; Chavda, K.D.; Melano, R.G.; Jacobs, M.R.; Levi, M.H.; Bonomo, R.A.; Kreiswirth, B.N. Complete sequence of a bla(KPC-2)-harboring IncFII(K1) plasmid from a Klebsiella pneumoniae sequence type 258 strain. Antimicrob. Agents Chemother. 2013, 57, 1542–1545. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Schroll, C.; Barken, K.B.; Krogfelt, K.A.; Struve, C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.N.; Mortensen, M.S.; Krogfelt, K.A.; Clegg, S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect. Immun. 2013, 81, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.K.; Huang, D.B.; Chiang, T. Plasmid transferability of KPC into a virulent K2 serotype Klebsiella pneumoniae. BMC Infect. Dis. 2014, 14, 176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bielaszewska, M.; Aldick, T.; Bauwens, A.; Karch, H. Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int. J. Med. Microbiol. 2014, 304, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Rafiq, A.; Zhang, Z.; Aslani, F.; Fijak, M.; Lei, T.; Wang, M.; Kumar, S.; Klug, J.; Bergmann, M.; et al. Uropathogenic Escherichia coli virulence factor hemolysin A causes programmed cell necrosis by altering mitochondrial dynamics. FASEB J. 2018, 32, 4107–4120. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.H.; Chuang, Y.C.; Chen, C.C.; Lee, M.F.; Yang, Y.C.; Tang, H.J.; Yu, W.L. Klebsiella pneumoniae Isolates from Meningitis: Epidemiology, Virulence and Antibiotic Resistance. Sci. Rep. 2017, 7, 6634. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Olson, R.; Macdonald, U.; Metzger, D.; Maltese, L.M.; Drake, E.J.; Gulick, A.M. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014, 82, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.F.; Lin, T.L.; Lee, C.Z.; Tsai, S.F.; Wang, J.T. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J. Infect. Dis. 2008, 197, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.L.; Lee, L.M.; Tang, H.J.; Chang, M.C.; Chuang, Y.C. Low prevalence of rmpA and high tendency of rmpA mutation correspond to low virulence of extended spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Virulence 2015, 6, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, L.S.; Miriagou, V.; Kotsakis, S.D.; Spyridopoulou, K.; Athanasiou, E.; Karagouni, E.; Tzelepi, E.; Daikos, G.L. KPC-producing, multidrug-resistant Klebsiella pneumoniae sequence type 258 as a typical opportunistic pathogen. Antimicrob. Agents Chemother. 2013, 57, 5144–5146. [Google Scholar] [CrossRef] [PubMed]
- De Cassia Andrade Melo, R.; de Barros, E.M.; Loureiro, N.G.; de Melo, H.R.; Maciel, M.A.; Souza Lopes, A.C. Presence of fimH, mrkD, and irp2 Virulence Genes in KPC-2-Producing Klebsiella pneumoniae Isolates in Recife-PE, Brazil. Curr. Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Krapp, F.; Morris, A.R.; Ozer, E.A.; Hauser, A.R. Virulence Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Strains from Patients with Necrotizing Skin and Soft Tissue Infections. Sci. Rep. 2017, 7, 13533. [Google Scholar] [CrossRef] [PubMed]
- Delfino, E.; Giacobbe, D.R.; Del Bono, V.; Coppo, E.; Marchese, A.; Manno, G.; Morelli, P.; Minicucci, L.; Viscoli, C. First report of chronic pulmonary infection by KPC-3-producing and colistin-resistant Klebsiella pneumoniae sequence type 258 (ST258) in an adult patient with cystic fibrosis. J. Clin. Microbiol. 2015, 53, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Gartzonika, K.; Rossen, J.W.A.; Sakkas, H.; Rosema, S.; Priavali, E.; Friedrich, A.W.; Levidiotou, S.; Bathoorn, E. Identification of a KPC-9-producing Klebsiella pneumoniae ST258 cluster among KPC-2-producing isolates of an ongoing outbreak in Northwestern Greece: A retrospective study. Clin. Microbiol. Infect. 2018, 24, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.B.; Bonnin, R.A.; Rosinski-Chupin, I.; Girlich, D.; Cuzon, G.; Cabanel, N.; Frech, H.; Farfour, E.; Dortet, L.; Glaser, P.; et al. 4.5 years within-patient evolution of a colistin resistant KPC-producing Klebsiella pneumoniae ST258. Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sorlozano-Puerto, A.; Esteva-Fernandez, D.; Oteo-Iglesias, J.; Navarro-Mari, J.M.; Gutierrez-Fernandez, J. A new case report of urinary tract infection due to KPC-3-producing klebsiella pneumoniae (ST258) in Spain. Arch. Esp. Urol. 2016, 69, 437–440. [Google Scholar] [PubMed]
- Moubareck, C.A.; Mouftah, S.F.; Pal, T.; Ghazawi, A.; Halat, D.H.; Nabi, A.; AlSharhan, M.A.; AlDeesi, Z.O.; Peters, C.C.; Celiloglu, H.; et al. Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates. Int. J. Antimicrob. Agents 2018, 52, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Thomson, K.S.; Hanson, N.D.; Ehrhardt, A.F.; Moland, E.S.; Sanders, C.C. beta-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yan, J.J.; Ko, W.C.; Jung, Y.C.; Chuang, C.L.; Wu, J.J. Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 beta-lactamase in a university hospital in Taiwan. J. Clin. Microbiol. 2002, 40, 3121–3126. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.; Perez-Trallero, E.; Marimon, J.M.; Aliaga, R.; Gomariz, M.; Mirelis, B. CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999–December 2000). J. Antimicrob. Chemother. 2001, 48, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Conceicao, T.; Brizio, A.; Duarte, A.; Lito, L.M.; Cristino, J.M.; Salgado, M.J. First description of CTX-M-15-producing Klebsiella pneumoniae in Portugal. Antimicrob. Agents Chemother. 2005, 49, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Senda, K.; Arakawa, Y.; Ichiyama, S.; Nakashima, K.; Ito, H.; Ohsuka, S.; Shimokata, K.; Kato, N.; Ohta, M. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J. Clin. Microbiol. 1996, 34, 2909–2913. [Google Scholar] [PubMed]
- Lee, K.; Lim, J.B.; Yum, J.H.; Yong, D.; Chong, Y.; Kim, J.M.; Livermore, D.M. bla(VIM-2) cassette-containing novel integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob. Agents Chemother. 2002, 46, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Heritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, L.; Pascual, A.; Jacoby, G.A. Quinolone resistance from a transferable plasmid. Lancet 1998, 351, 797–799. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
Classes of Antibiotics | List of Antibiotics 1 (n = 15 Agents) | K. pneumoniae 69633 | A. baumannii4 86982 |
---|---|---|---|
Penicillins | Ampicillin | R | R |
β-lactam/β-lactamase inhibitor combinations | Amoxicillin-clavulanic acid | R | R |
Piperacillin-tazobactam | R | R | |
Cephalosporins | Cefoxitin-C2G 2 | R | R |
Cefotaxime-C3G 3 | R | R | |
Ceftazidime-C3G 3 | R | R | |
Monobactams | Aztreonam | R | R |
Carbapenems | Imipenem | R | R |
Meropenem | R | R | |
Ertapenem | R | R | |
Aminoglycosides | Gentamicin | R | R |
Fluoroquinolones | Ciprofloxacin | R | R |
Levofloxacin | R | R | |
Polymyxins | Colistin | S | R |
Tetracyclines | Tigecycline | S | R |
Strain | β-Lactamases Identified | PBRT 1 | MLST | Virulence Profile |
---|---|---|---|---|
K. pneumoniae 69633 | KPC-3 + SHV-1 + TEM-1 | IncFrepB | ST-14 | K2 + fimH + mrkDV1 + mrkDV2-4 + khe + iucC |
A. baumannii 86982 | KPC-3 + SHV-1 + TEM-1 | IncFrepB | - | - |
Gene | DNA Sequence (5′ to 3′) | Amplicon Size (bp) | EMBL Accession Number (Genbank) |
---|---|---|---|
blaNDM | F: TATCGCCGTCTAGTTCTGCTG | 871 | AB604954 |
R: ACTGCCCGTTGACGCCCAAT | |||
K2A | F: CAACCATGGTGGTCGATTAG | 531 | EF221827 |
R: TGGTAGCCATATCCCTTTGG | |||
fimH | F: TGTTCACCACCCTGCTGCTG | 512 | NC_012731.1 |
R: CACCACGTCGTTCTTGGCGT | |||
mrkDV1 | F: CGGTGATGCTGGACATGGT | 300 | EU682505.2 |
R: CCTCTAGCGAATAGTTGGTG | |||
mrkDV2–4 | F: CTTAATGGCGMTGGGCACCA | 950 | AY225463.1 |
R: TCATATGCGACTCCACCTCG | AY225464.1 | ||
AY225465.1 | |||
khe | F: TGATTGCATTCGCCACTGG | 428 | NC_012731.1 |
R: GGTCAACCCAACGATCCTGG | |||
iucC | F: GTGCTGTCGATGAGCGATGC | 944 | NC_005249.1 |
R: GTGAGCCAGGTTTCAGCGTC | |||
rmpA | F: ACTGGGCTACCTCTGCTTCA | 516 | NC_012731.1 |
R: CTTGCATGAGCCATCTTTCA | |||
magA | F: TCTGTCATGGCTTAGACCGAT | 1137 | NC_012731.1 |
R: GCAATCGAAGTGAAGAGTGC | |||
ompK35 | F: ATATTCTGGCAGTGGTGATCC | 1012 | AJ303057 |
R:GCTTTGGTGTAATCGTTGTC | |||
ompK36 | F: TAGCAGGCGCAGCAAATGC | 1031 | GU461279 |
R: TGCAACCACGTCGTCGGTA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caneiras, C.; Calisto, F.; Jorge da Silva, G.; Lito, L.; Melo-Cristino, J.; Duarte, A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics 2018, 7, 96. https://doi.org/10.3390/antibiotics7040096
Caneiras C, Calisto F, Jorge da Silva G, Lito L, Melo-Cristino J, Duarte A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics. 2018; 7(4):96. https://doi.org/10.3390/antibiotics7040096
Chicago/Turabian StyleCaneiras, Cátia, Filipa Calisto, Gabriela Jorge da Silva, Luis Lito, José Melo-Cristino, and Aida Duarte. 2018. "First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal" Antibiotics 7, no. 4: 96. https://doi.org/10.3390/antibiotics7040096
APA StyleCaneiras, C., Calisto, F., Jorge da Silva, G., Lito, L., Melo-Cristino, J., & Duarte, A. (2018). First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics, 7(4), 96. https://doi.org/10.3390/antibiotics7040096