Efficacy of Endolysin LysAB1245 Combined with Colistin as Adjunctive Therapy Against Colistin-Resistant Gram-Negative Bacteria
Abstract
1. Introduction
2. Results
2.1. Antibacterial Susceptibility Testing
2.2. Combined Antibacterial Activity of Endolysin LysAB1245 and Colistin
2.3. Time-Kill Kinetics Assay
2.4. Morphological Changes in A. baumannii AB01 and P. aeruginosa PA04 After Exposure to Endolysin LysAB1245 in Combination with Colistin
2.5. Determination of Bacterial Resistance
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions
4.2. Antibiotic Susceptibility
4.3. Checkerboard Synergy Testing
4.4. Time-Kill Curve Assays
4.5. Scanning Electron Micrographs of A. baumannii AB01 and P. aeruginosa PA04
After Exposure to LysAB1245 Combined with Colistin
4.6. Resistance Development Determinations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lepape, A.; Jean, A.; De Waele, J.; Friggeri, A.; Savey, A.; Vanhems, P.; Gustin, M.P.; Monnet, D.L.; Garnacho-Montero, J.; Kohlenberg, A. European intensive care physicians’ experience of infections due to antibiotic-resistant bacteria. Antimicrob. Resist. Infect. Control 2020, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Streit, J.M.; Carvalhaes, C.G.; Castanheira, M. Antimicrobial susceptibility of Gram-negative bacteria from intensive care unit and non-intensive care unit patients from United States hospitals (2018–2020). Diagn. Microbiol. Infect. Dis. 2022, 102, 115557. [Google Scholar] [CrossRef]
- Salam, M.T.; Bari, K.B.; Rahman, M.M.; Gafur, D.M.M.; Faruk, M.O.; Akter, K.; Irin, F.; Ashakin, M.R.; Shaikat, T.A.; Das, A.C.; et al. Emergence of antibiotic-resistant infections in ICU patients. J. Angiother. 2024, 8, 1–9. [Google Scholar]
- Edwardson, S.; Cairns, C. Nosocomial infections in the ICU. Anaesth. Intensive Care Med. 2019, 20, 14–18. [Google Scholar] [CrossRef]
- Lakbar, I.; Medam, S.; Ronflé, R.; Cassir, N.; Delamarre, L.; Hammad, E.; Lopez, A.; Lepape, A.; Machut, A.; Boucekine, M.; et al. Association between mortality and highly antimicrobial-resistant bacteria in intensive care unit-acquired pneumonia. Sci. Rep. 2021, 11, 16497. [Google Scholar] [CrossRef]
- Rosenthal, V.D.; Yin, R.; Lu, Y.; Rodrigues, C.; Myatra, S.N.; Kharbanda, M.; Valderrama-Beltran, S.L.; Mehta, Y.; Daboor, M.A.; Todi, S.K.; et al. The impact of healthcare-associated infections on mortality in ICU: A prospective study in Asia, Africa, Eastern Europe, Latin America, and the Middle East. Am. J. Infect. Control 2023, 51, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Motbainor, H.; Bereded, F.; Mulu, W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. BMC Infect. Dis. 2020, 20, 92. [Google Scholar] [CrossRef]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: An international ID-IRI survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef]
- Kharel, S.; Bist, A.; Mishra, S.K. Ventilator-associated pneumonia among ICU patients in WHO Southeast Asian region: A systematic review. PLoS ONE 2021, 16, e0247832. [Google Scholar] [CrossRef]
- Obaid, N.A.; Abuhussain, S.A.; Mulibari, K.K.; Alshanqiti, F.; Malibari, S.A.; Althobaiti, S.S.; Alansari, M.; Muneef, E.; Almatrafi, L.; Alqarzi, A.; et al. Antimicrobial-resistant pathogens related to catheter-associated urinary tract infections in intensive care units: A multi-center retrospective study in the Western region of Saudi Arabia. Clin. Epidemiol. Glob. Health 2023, 21, 101291. [Google Scholar] [CrossRef]
- Vivo, A.; Fitzpatrick, M.A.; Suda, K.J.; Jones, M.M.; Perencevich, E.N.; Rubin, M.A.; Ramanathan, S.; Wilson, G.M.; Evans, M.E.; Evans, C.T. Epidemiology and outcomes associated with carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa: A retrospective cohort study. BMC Infect. Dis. 2022, 22, 491. [Google Scholar] [CrossRef]
- Kishk, R.; Soliman, N.; Nemr, N.; Eldesouki, R.; Mahrous, N.; Gobouri, A.; Azab, E.; Anani, M. Prevalence of aminoglycoside resistance and aminoglycoside modifying enzymes in Acinetobacter baumannii among intensive care unit patients, Ismailia, Egypt. Infect. Drug. Resist. 2021, 19, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Lamont, I.L. Aminoglycoside-modifying enzymes are sufficient to make Pseudomonas aeruginosa clinically resistant to key antibiotics. Antibiotics 2022, 11, 884. [Google Scholar] [CrossRef]
- del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents 2020, 56, 106196. [Google Scholar] [CrossRef]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-spectrum β-lactamases (ESBL): Challenges and opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Spapen, H.; Jacobs, R.; Van Gorp, V.; Troubleyn, J.; Honoré, P.M. Renal and neurological side effects of colistin in critically ill patients. Ann. Intensive Care 2011, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Ustundag, G.; Oncel, E.K.; Sahin, A.; Keles, Y.E.; Aksay, A.K.; Ciftdogan, D.Y. Colistin treatment for multidrug-resistant Gram-negative infections in children: Caution required for nephrotoxicity. Med. Bull. Sisli. Etfal. Hosp. 2022, 56, 427–434. [Google Scholar] [CrossRef]
- Pormohammad, A.; Mehdinejadiani, K.; Gholizadeh, P.; Nasiri, M.J.; Mohtavinejad, N.; Dadashi, M.; Karimaei, S.; Safari, H.; Azimi, T. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb. Pathog. 2020, 139, 103887. [Google Scholar] [CrossRef] [PubMed]
- Torres, D.A.; Seth-Smith, H.M.; Joosse, N.; Lang, C.; Dubuis, O.; Nüesch-Inderbinen, M.; Hinic, V.; Egli, A. Colistin resistance in Gram-negative bacteria analysed by five phenotypic assays and inference of the underlying genomic mechanisms. BMC Microbiol. 2021, 21, 321. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Poulakou, G.; Tsiakos, K.; Chatzimichail, M.; Papamichalis, P.; Katsiaflaka, A.; Oikonomou, K.; Katsioulis, A.; Palli, E.; Komnos, A. ICU-associated Gram-negative bloodstream infection: Risk factors affecting the outcome following the emergence of colistin-resistant isolates in a regional Greek hospital. Antibiotics 2022, 11, 405. [Google Scholar] [CrossRef]
- Khuntayaporn, P.; Thirapanmethee, K.; Chomnawang, M.T. An update of mobile colistin resistance in non-fermentative Gram-negative bacilli. Front. Cell. Infect. Microbiol. 2022, 12, 882236. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, Ł.; Łepek, K.; Stasiłojć, M.; Kosznik-Kwaśnicka, K.; Zdrojewska, K.; Maciąg-Dorszyńska, M.; Węgrzyn, G.; Węgrzyn, A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol. Res. 2021, 248, 126746. [Google Scholar] [CrossRef]
- Briers, Y.; Lavigne, R. Breaking barriers: Expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol. 2015, 10, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.C.B.; Chen, X.; Ho, M.K.Y.; Xia, J.; Leung, S.S.Y. Bacteriophage-derived endolysins to target Gram-negative bacteria. Int. J. Pharm. 2020, 589, 119833. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, M.T.P.; Jorge, G.P.; Brocchi, M. Current status of endolysin-based treatments against Gram-negative bacteria. Antibiotics 2021, 10, 1143. [Google Scholar] [CrossRef]
- Soontarach, R.; Srimanote, P.; Enright, M.C.; Blundell-Hunter, G.; Dorman, M.J.; Thomson, N.R.; Taylor, P.W.; Voravuthikunchai, S.P. Isolation and characterisation of bacteriophage selective for key Acinetobacter baumannii capsule chemotypes. Pharmaceuticals 2022, 15, 443. [Google Scholar] [CrossRef]
- Soontarach, R.; Srimanote, P.; Arechanajan, B.; Nakkaew, A.; Voravuthikunchai, S.P.; Chusri, S. Characterization of a novel bacteriophage endolysin (LysAB1245) with extended lytic activity against distinct capsular types associated with Acinetobacter baumannii resistance. PLoS ONE 2024, 19, e0296453. [Google Scholar] [CrossRef]
- Soontarach, R.; Srimanote, P.; Voravuthikunchai, S.P.; Chusri, S. Antibacterial and Anti-Biofilm Efficacy of Endolysin LysAB1245 against a Panel of Important Pathogens. Pharmaceuticals 2024, 17, 155. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List. Available online: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1 (accessed on 26 November 2024).
- Yacouba, A.; Olowo-Okere, A. Global trends and current status in colistin resistance research: A bibliometric analysis (1973–2019). F1000Research 2020, 9, 856. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Narimisa, N.; Mirshekar, M.; Dadgar-Zankbar, L.; Taki, E.; Navidifar, T.; Darban-Sarokhalil, D. Prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2024, 13, 24. [Google Scholar] [CrossRef]
- Narimisa, N.; Keshtkar, A.; Dadgar-Zankbar, L.; Bostanghadiri, N.; Far, Y.R.; Shahroodian, S.; Zahedi Bialvaei, A.; Razavi, S. Prevalence of colistin resistance in clinical isolates of Pseudomonas aeruginosa: A systematic review and meta-analysis. Front. Microbiol. 2024, 15, 1477836. [Google Scholar] [CrossRef] [PubMed]
- Carretero-Ledesma, M.; García-Quintanilla, M.; Martín-Peña, R.; Pulido, M.R.; Pachón, J.; McConnell, M.J. Phenotypic changes associated with Colistin resistance due to Lipopolysaccharide loss in Acinetobacter baumannii. Virulence 2019, 9, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Ortiz, J.; Ponce-Alonso, M.; Llanos-González, E.; Barragán-Prada, H.; Barbero-Herranz, R.; Lozano-Rodríguez, R.; Márquez-Garrido, F.J.; Hernández-Pérez, J.M.; Morosini, M.I.; Cantón, R.; et al. The impact of colistin resistance on the activation of innate immunity by lipopolysaccharide modification. Infect. Immun. 2023, 91, e00012-23. [Google Scholar] [CrossRef]
- Abd El-Baky, R.M.; Masoud, S.M.; Mohamed, D.S.; Waly, N.G.; Shafik, E.A.; Mohareb, D.A.; Elkady, A.; Elbadr, M.M.; Hetta, H.F. Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Novović, K.; Jovčić, B. Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics 2023, 12, 516. [Google Scholar] [CrossRef]
- Dai, C.; Li, M.; Sun, T.; Zhang, Y.; Wang, Y.; Shen, Z.; Velkov, T.; Tang, S.; Shen, J. Colistin-induced pulmonary toxicity involves the activation of NOX4/TGF-β/mtROS pathway and the inhibition of Akt/mTOR pathway. Food Chem. Toxicol. 2022, 163, 112966. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Mirzaei, E.; Vazin, A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur. J. Med. Res. 2022, 27, 64. [Google Scholar] [CrossRef] [PubMed]
- Drulis-Kawa, Z.; Majkowska-Skrobek, G.; Maciejewska, B. Bacteriophages and phage-derived proteins–application approaches. Curr. Med. Chem. 2015, 22, 1757–1773. [Google Scholar] [CrossRef]
- Oliveira, H.; São-José, C.; Azeredo, J. Phage-derived peptidoglycan degrading enzymes: Challenges and future prospects for in vivo therapy. Viruses 2018, 10, 292. [Google Scholar] [CrossRef]
- Liu, B.; Guo, Q.; Li, Z.; Guo, X.; Liu, X. Bacteriophage endolysin: A powerful weapon to control bacterial biofilms. Protein J. 2023, 42, 463–476. [Google Scholar] [CrossRef]
- Sitthisak, S.; Manrueang, S.; Khongfak, S.; Leungtongkam, U.; Thummeepak, R.; Thanwisai, A.; Burton, N.; Dhanoa, G.K.; Tsapras, P.; Sagona, A.P. Antibacterial activity of vB_AbaM_PhT2 phage hydrophobic amino acid fusion endolysin, combined with colistin against Acinetobacter baumannii. Sci. Rep. 2023, 13, 7470. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, J.L.; Gupta, P.; Ghate, M.M.; Kumar, D.; Poluri, K.M. Assessing the synergistic potential of bacteriophage endolysins and antimicrobial peptides for eradicating bacterial biofilms. Arch. Microbiol. 2024, 206, 272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zeng, P.; Lai, C.K.; Ip, M.; To, K.K.; Zuo, Z.; Xia, J.; Leung, S.S. Synergism of colistin and globular endolysins against multidrug-resistant Gram-negative bacteria. Int. J. Biol. Macromol. 2024, 278, 134670. [Google Scholar] [CrossRef]
- Aslan, A.T.; Akova, M. The role of colistin in the era of new β-lactam/β-lactamase inhibitor combinations. Antibiotics 2022, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, D.; Ruas-Madiedo, P.; Martinez, B.; Rodríguez, A.; Garcia, P. Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS ONE 2014, 9, e107307. [Google Scholar] [CrossRef]
- Liu, H.; Wei, X.; Wang, Z.; Huang, X.; Li, M.; Hu, Z.; Zhang, K.; Hu, Q.; Peng, H.; Shang, W.; et al. LysSYL: A broad-spectrum phage endolysin targeting Staphylococcus species and eradicating S. aureus biofilms. Microb. Cell Fact. 2024, 23, 89. [Google Scholar] [CrossRef]
- Blasco, L.; Ambroa, A.; Trastoy, R.; Bleriot, I.; Moscoso, M.; Fernández-Garcia, L.; Perez-Nadales, E.; Fernández-Cuenca, F.; Torre-Cisneros, J.; Oteo-Iglesias, J.; et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug-resistant pathogens. Sci. Rep. 2020, 10, 7163. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; approved standard M100; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2023. [Google Scholar]
- Pillai, S.K.; Moellering, R.C., Jr.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 365–440. [Google Scholar]
- Díez-Aguilar, M.; Morosini, M.I.; Tedim, A.P.; Rodríguez, I.; Aktaş, Z.; Cantón, R. Antimicrobial activity of fosfomycin-tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob. Agents Chemother. 2015, 59, 6039–6045. [Google Scholar] [CrossRef]
- Rodríguez-Rubio, L.; Martínez, B.; Rodríguez, A.; Donovan, D.M.; Götz, F.; García, P. The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS ONE 2013, 8, e64671. [Google Scholar] [CrossRef]
Tested Organisms | Values of MIC/MBC (µg/mL) | Interpretation | |
---|---|---|---|
LysAB1245 | Colistin | ||
A. baumannii | |||
AB01 | 4.21/4.21 | 4/4 | Resistant |
AB02 | 4.21/4.21 | 2/4 | Intermediate |
AB03 | 8.42/8.42 | 4/8 | Resistant |
AB04 | 4.21/4.21 | 4/4 | Resistant |
ATCC19606 | 4.21/4.21 | 1/1 | Intermediate |
P. aeruginosa | |||
PA01 | 8.42/8.42 | 4/8 | Resistant |
PA02 | 4.21/4.21 | 2/2 | Intermediate |
PA03 | 8.42/8.42 | 4/4 | Resistant |
PA04 | 4.21/8.42 | 4/4 | Resistant |
ATCC27853 | 4.21/4.21 | 1/1 | Intermediate |
Isolates | MIC (µg/mL) | ΣFIC | Interpretation | |||
---|---|---|---|---|---|---|
LysAB1245 | Colistin | LysAB1245 in Combination | Colistin in Combination | |||
A. baumannii | ||||||
AB01 | 4.21 | 4 | 1.05 | 1 | 0.5 | Synergistic |
AB02 | 4.21 | 2 | 2.10 | 1 | 1 | Additive |
AB03 | 8.42 | 4 | 4.21 | 0.5 | 0.63 | Additive |
AB04 | 4.21 | 4 | 1.05 | 1 | 0.5 | Synergistic |
ATCC19606 | 4.21 | 1 | 4.21 | 1 | 2 | Indifferent |
P. aeruginosa | ||||||
PA01 | 8.42 | 4 | 4.21 | 2 | 1 | Additive |
PA02 | 4.21 | 2 | 4.21 | 2 | 2 | Indifferent |
PA03 | 8.42 | 4 | 1.05 | 2 | 0.62 | Additive |
PA04 | 4.21 | 4 | 1.05 | 1 | 0.5 | Synergistic |
ATCC27853 | 4.21 | 1 | 2.1 | 0.5 | 1 | Additive |
Isolates | Treatments | MIC (µg/mL) | ||
---|---|---|---|---|
Initial | After 10 Rounds of Exposure | After Inoculation into an Agent-Free Medium | ||
A. baumannii | ||||
AB01 | LysAB1245 | 4.21 | 4.21 | 4.21 |
Colistin | 4 | 8 | 8 | |
LysAB1245 in combination | 1.05 | 1.05 | 1.05 | |
Colistin in combination | 1 | 2 | 1 | |
ATCC19606 | LysAB1245 | 4.21 | 4.21 | 4.21 |
Colistin | 1 | 2 | 1 | |
LysAB1245 in combination | 4.21 | 4.21 | 4.21 | |
Colistin in combination | 1 | 1 | 1 | |
P. aeruginosa | ||||
PA04 | LysAB1245 | 4.21 | 4.21 | 4.21 |
Colistin | 4 | 8 | 8 | |
LysAB1245 in combination | 1.05 | 1.05 | 1.05 | |
Colistin in combination | 1 | 2 | 1 | |
ATCC27853 | LysAB1245 | 4.21 | 4.21 | 4.21 |
Colistin | 1 | 2 | 1 | |
LysAB1245 in combination | 2.1 | 2.1 | 2.1 | |
Colistin in combination | 0.5 | 0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soontarach, R.; Voravuthikunchai, S.P.; Srimanote, P.; Chusri, S. Efficacy of Endolysin LysAB1245 Combined with Colistin as Adjunctive Therapy Against Colistin-Resistant Gram-Negative Bacteria. Antibiotics 2025, 14, 538. https://doi.org/10.3390/antibiotics14060538
Soontarach R, Voravuthikunchai SP, Srimanote P, Chusri S. Efficacy of Endolysin LysAB1245 Combined with Colistin as Adjunctive Therapy Against Colistin-Resistant Gram-Negative Bacteria. Antibiotics. 2025; 14(6):538. https://doi.org/10.3390/antibiotics14060538
Chicago/Turabian StyleSoontarach, Rosesathorn, Supayang Piyawan Voravuthikunchai, Potjanee Srimanote, and Sarunyou Chusri. 2025. "Efficacy of Endolysin LysAB1245 Combined with Colistin as Adjunctive Therapy Against Colistin-Resistant Gram-Negative Bacteria" Antibiotics 14, no. 6: 538. https://doi.org/10.3390/antibiotics14060538
APA StyleSoontarach, R., Voravuthikunchai, S. P., Srimanote, P., & Chusri, S. (2025). Efficacy of Endolysin LysAB1245 Combined with Colistin as Adjunctive Therapy Against Colistin-Resistant Gram-Negative Bacteria. Antibiotics, 14(6), 538. https://doi.org/10.3390/antibiotics14060538