Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids
Abstract
1. Introduction
2. Results and Discussion
2.1. Tricyclic Flavonoids
2.2. Antimicrobial Activity of Tricyclic Flavonoids
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for 8-Bromo-6-methyl-2-phenyl-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4a)
3.1.2. 8-Bromo-6-methyl-2-(4-fluorophenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4b)
3.1.3. 8-Bromo-6-methyl-2-(4-chlorophenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4c)
3.1.4. 8-Bromo-6-methyl-2-(4-bromophenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4d)
3.1.5. 8-Bromo-6-methyl-2-(4-methylphenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4e)
3.1.6. 8-Bromo-6-methyl-2-(4-ethylphenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4f)
3.1.7. 8-Bromo-6-methyl-2-(4-methoxyphenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4g)
3.1.8. General Procedure for 2-N,N-Diethylamino-8-bromo-6-methyl-4-phenyl-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5a)
3.1.9. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-fluorophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5b)
3.1.10. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-chlorophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5c)
3.1.11. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-bromophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5d)
3.1.12. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-methylphenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5e)
3.1.13. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-ethylphenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5f)
3.1.14. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-methoxyphenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5g)
3.2. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Bank, T.W. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Zhu, Y.; Huang, W.E.; Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug. Resist. 2022, 15, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Chinemerem, N.D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Hwang, I.Y.; Tan, M.H.; Koh, E.; Ho, C.L.; Poh, C.L.; Chang, M.W. Reprogramming Microbes to Be Pathogen-Seeking Killers. ACS Synth. Biol. 2014, 3, 228–237. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven Ways to Preserve the Miracle of Antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [Google Scholar] [CrossRef]
- World Health Organization. 2023 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.d.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front. Microbiol. 2018, 9, 1351. [Google Scholar] [CrossRef]
- Tobudic, S.; Kratzer, C.; Lassnigg, A.; Presterl, E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses 2012, 55, 199–204. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 62, e1–e50. [Google Scholar] [CrossRef]
- Douglas, L.J. Candida biofilms and their role in infection. Trends. Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef]
- Ngo-Mback, M.N.L.; Babii, C.; Jazet Dongmo, P.M.; Kouipou Toghueo, M.R.; Stefan, M.; Fekam Boyom, F. Anticandidal and synergistic effect of essential oil fractions from three aromatic plants used in Cameroon. J. Mycol. Med. 2020, 30, 100940. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.P.; Grotewold, E. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 2005, 8, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Peer, W.A.; Murphy, A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007, 12, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 2010, 52, 98–111. [Google Scholar] [CrossRef]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F.; Tattini, M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants 2020, 9, 1098. [Google Scholar] [CrossRef]
- Kurepa, J.; Shull, T.E.; Smalle, J.A. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. Plants 2023, 12, 517. [Google Scholar] [CrossRef]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef]
- Narbona, E.; del Valle, J.C.; Arista, M.; Buide, M.L.; Ortiz, P.L. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front. Ecol. Evol. 2021, 9, 743850. [Google Scholar] [CrossRef]
- Ramaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Croft, K.D.; Ward, N.; Considine, M.J.; Hodgson, J.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr. Rev. 2015, 73, 216–235. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective Effects of Citrus Flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020, 12, 2534. [Google Scholar] [CrossRef]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J.; Shi, S.; Liu, X. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics 2022, 11, 1380. [Google Scholar] [CrossRef]
- Jagtap, S.; Meganathan, K.; Wagh, V.; Winkler, J.; Hescheler, J.; Sachinidis, A. Chemoprotective Mechanism of the Natural Compounds, Epigallocatechin- 3-O-Gallate, Quercetin and Curcumin Against Cancer and Cardiovascular Diseases. Curr. Med. Chem. 2009, 16, 1451–1462. [Google Scholar] [CrossRef]
- Norman, B.H.; Dodge, J.A.; Richardson, T.I.; Borromeo, P.S.; Lugar, C.W.; Jones, S.A.; Chen, K.; Wang, Y.; Durst, G.L.; Barr, R.J.; et al. Benzopyrans Are Selective Estrogen Receptor β Agonists with Novel Activity in Models of Benign Prostatic Hyperplasia. J. Med. Chem. 2006, 49, 6155–6157. [Google Scholar] [CrossRef]
- Richardson, T.I.; Norman, B.H.; Lugar, C.W.; Jones, S.A.; Wang, Y.; Durbin, J.D.; Krishnan, V.; Dodge, J.A. Benzopyrans as selective estrogen receptor beta agonists (SERBAs). Part 2: Structure-activity relationship studies on the benzopyran scaffold. Bioorg. Med. Chem. Lett. 2007, 17, 3570–3574. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.I.; Dodge, J.A.; Durst, G.L.; Pfeifer, L.A.; Shah, J.; Wang, Y.; Durbin, J.D.N.; Krishnan, V.; Norman, B.H. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential. Bioorg. Med. Chem. Lett. 2007, 17, 4824–4828. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.I.; Dodge, J.A.; Wang, Y.; Durbin, J.D.; Krishnan, V.; Norman, B.H. Estrogen receptor beta ligand-binding domain complexed to a benzopyran ligand. Bioorg. Med. Chem. Lett. 2007, 17, 5563–5566. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Hopf, H.; Jones, P.G.; Sarbu, L.G.; Babii, C.; Mihai, A.C.; Stefan, M.; Birsa, L.M. Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids. Beilstein J. Org. Chem. 2016, 12, 1065–1071. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Sarbu, L.G.; Jones, P.G.; Birsa, L.M.; Hopf, H. [2.2]Paracyclophane-Bis(triazole) Systems: Synthesis and Photochemical Behavior. Chem. Eur. J. 2017, 23, 12338–12345. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Apostu, M.O.; Birsa, L.M.; Stefan, M. The antibacterial properties of sulfur containing flavonoids. Bioorg. Med. Chem. Lett. 2014, 24, 2315–2318. [Google Scholar] [CrossRef]
- Birsa, M.L. Synthesis of some new substituted flavanones and related 4-chromanones by a novel synthetic method. Synth. Commun. 2002, 32, 115–118. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Asaftei, I.V.; Sandu, I.; Sarbu, L.G. Synthesis of (4-Methylpiperazin-1-yl)carbodithioates and of their 1,3-Dithiolium Derivatives. Rev. Chim. 2014, 65, 1046–1048. [Google Scholar]
- Sarbu, L.G.; Hopf, H.; Gruenenberg, J.; Birsa, M.L. Reduction of pseudo-geminal bis(ethynyl) substituted [2.2]paracyclophanes. Synlett 2015, 26, 87–90. Available online: http://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0034-1378935 (accessed on 20 December 2024).
- Toader, E.; Bahrin, L.G.; Jones, P.G.; Hopf, H.; Sarbu, L.G.; Stoleriu, G. Synthesis of New Morpholine Containing Flavonoids with Potential Biological Applications. Rev. Chim. 2016, 67, 1520–1522. [Google Scholar]
- Seliger, H.; Happ, E.; Cascaval, A.; Birsa, M.L.; Nicolaescu, T.; Poinescu, I.; Cojocariu, C. Synthesis and characterization of new photostabilizers from 2,4-dihydroxybenzophenone. Eur. Polym. J. 1999, 35, 827–833. [Google Scholar] [CrossRef]
- Sarbu, L.G.; Birsa, A.; Hopf, H.; Birsa, M.L. New bridges in [2.2]paracyclophanes: The interaction of chalcogenide halides with pseudo-geminal triple bonds. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1246–1250. [Google Scholar] [CrossRef]
- Birsa, M.L. A new approach to preparation of 1,3-dithiolium salts. Synth. Commun. 2001, 31, 1271–1275. [Google Scholar] [CrossRef]
- Bauer, A.W.; Perry, D.M.; Kirby, W.M.M. Single disc antibiotic sensitivity testing of Staphylococci. A.M.A. Arch. Intern. Med. 1959, 104, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2022; ISSN 978-1-68440-134-5/978-1-68440-135-2. [Google Scholar]
Flavanones 4 | a | b | c | d | e | f | g |
---|---|---|---|---|---|---|---|
3JH2-H3syn (Hz) | 3.9 | 3.8 | 3.7 | 3.8 | 4.2 | 3.9 | 4.2 |
3JH2-H3 anti (Hz) | 6.9 | 7.4 | 7.1 | 7.2 | 7.6 | 7.2 | 7.4 |
syn: anti ratio | 7:93 | 80:20 | 36:64 | 39:61 | 40:60 | 6:94 | 92:8 |
Strains | (a) Samples | |||||||
---|---|---|---|---|---|---|---|---|
5a | 5b | 5c | 5d | 5e | 5f | 5g | ||
S. aureus | 19.96 ± 1.90 | 22.83 ± 1.77 | 22.86 ± 2.05 | 20.30 ± 1.05 | 23.03 ± 1.50 | 20.83 ± 0.90 | 22.20 ± 0.60 | |
E. coli | 0 | 13.03 ± 0.20 | 15.00 ± 0.26 | 14.50 ± 0.60 | 11.46 ± 0.58 | 13.83 ± 0.30 | 10.80 ± 0.40 | |
E. faecalis | 0 | 11.16 ± 0.55 | 11.83 ± 0.11 | 9.56 ± 0.23 | 15.46 ± 0.60 | 8.70 ± 0.20 | 9.16 ± 0.28 | |
K. pneumoniae | 0 | 8.53 ± 0.35 | 9.06 ± 0.15 | 15.33 ± 0.55 | 8.86 ± 0.32 | 16.26 ± 0.56 | 16.53 ± 0.58 | |
S. typhimurium | 0 | 0 | 0 | 9.33 ± 0.15 | 0 | 0 | 0 | |
C. albicans 1 | 0 | 10.26 ± 0.20 | 11.90 ± 0.60 | 11.56 ± 0.92 | 14.53 ± 0.81 | 15.96 ± 0.15 | 10.73 ± 0.86 | |
C. albicans 2 | 0 | 9.43 ± 0.50 | 13.00 ± 0.60 | 11.86 ± 0.81 | 14.06 ± 0.66 | 15.16 ± 0.65 | 10.23 ± 0.45 | |
C. glabrata 3 | 0 | 0 | 8.43 ± 0.41 | 8.53 ± 0.45 | 8.83 ± 0.30 | 10.70 ± 0.85 | 0 | |
C. glabrata 4 | 0 | 0 | 0 | 9.33 ± 0.25 | 0 | 11.13 ± 0.30 | 0 | |
C. parapsilosis | 9.53 ± 0.25 | 13.16 ± 2.40 | 16.46 ± 0.40 | 14.56 ± 0.06 | 17.43 ± 0.20 | 16.26 ± 0.15 | 11.80 ± 0.95 | |
Strains | (b) Controls | |||||||
AMC30 | SXT25 | CN10 | F300 | AP100 | NS100 | KCA10 | FLU10 | |
S. aureus | 31.00 ± 0.86 | 27.73 ± 0.37 | 19.66 ± 1.35 | 18.16 ± 1.15 | - | - | - | - |
E. coli | 19.86 ± 0.80 | 24.03 ± 2.70 | 19.40 ± 0.70 | 19.90 ± 0.10 | - | - | - | - |
E. faecalis | 28.80 ± 0.45 | 26.16 ± 0.40 | 13.33 ± 1.13 | 21.53 ± 1.38 | - | - | - | - |
K. pneumoniae | 16.33 ± 0.25 | 25.96 ± 0.30 | 19.60 ± 1.04 | 18.43 ± 1.15 | - | - | - | - |
S. typhimurium | 23.53 ± 0.80 | 24.03 ± 1.52 | 15.40 ± 1.57 | 12.53 ± 0.75 | - | - | - | - |
C. albicans 1 | - | - | - | - | 11.63 ± 0.96 | 0 | 14.30 ± 1.70 | 0 |
C. albicans 2 | - | - | - | - | 11.80 ± 1.51 | 0 | 0 | 0 |
C. glabrata 3 | - | - | - | - | 12.33 ± 0.75 | 0 | 0 | 0 |
C. glabrata 4 | - | - | - | - | 16.26 ± 0.83 | 0 | 0 | 0 |
C. parapsilosis | - | - | - | - | 12.46 ± 0.47 | 0 | 0 | 14.30 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarbu, L.G.; Rosca, I.; Birsa, M.L. Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids. Antibiotics 2025, 14, 307. https://doi.org/10.3390/antibiotics14030307
Sarbu LG, Rosca I, Birsa ML. Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids. Antibiotics. 2025; 14(3):307. https://doi.org/10.3390/antibiotics14030307
Chicago/Turabian StyleSarbu, Laura Gabriela, Irina Rosca, and Mihail Lucian Birsa. 2025. "Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids" Antibiotics 14, no. 3: 307. https://doi.org/10.3390/antibiotics14030307
APA StyleSarbu, L. G., Rosca, I., & Birsa, M. L. (2025). Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids. Antibiotics, 14(3), 307. https://doi.org/10.3390/antibiotics14030307