Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Dissociation and Preparation
2.2. Nuclei Isolation and Library Preparation
2.3. Single Nucleus RNA Sequencing Data Processing and Analysis
2.4. Cell Clustering and Cell Type Identification
2.5. High-Dimensional Weighted Gene Co-Expression Network Analysis
2.6. Pseudotime Analysis
2.7. Cell-Cell Communication Analysis
2.8. Stereo-Seq Tissue Preparation and Sequencing
3. Results
3.1. Identification of Cell Types in Three Tissues of Mongolian Cattle HPO Axis Using Single Nucleus Transcriptomes
3.2. Differentiation Trends of Neuronal Subtypes and Cell–Cell Communication in the Hypothalamus
3.3. Cell–Cell Communication Among Various Cell Types in the Pituitary
3.4. Characteristics of Various Subtypes of Gonadotroph in the Pituitary
3.5. Utilizing hdWGCNA to Identify Module Genes Associated with Pregnancy Maintenance in Luteal Cells
3.6. Cell–Cell Communication Among Various Cell Types in the Ovary
3.7. GC Subtypes Developmental Trajectory and Cell–Cell Communication in the Ovary
3.8. Cell Type Deconvolution of the Spatially Resolved Cattle Ovary Transcriptome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPO | Hypothalamus–pituitary–ovarian |
snRNA-seq | Single-nucleus RNA sequencing |
ST | Spatial transcriptomics |
P4 | Progesterone |
GnRH | Gonadotropin-releasing hormone |
FSH | Follicle-stimulating hormone |
LH | Luteinizing hormone |
scRNA-seq | Single-cell RNA sequencing |
Gona | Gonadotrophs |
GHRH | Growth hormone-releasing hormone |
CRH | Corticotropin-releasing hormone |
TRH | Thyrotropin-releasing hormone |
GCs | Granulosa cells |
LB | Lysis Buffer |
NB | Nuclei Buffer |
NB-RNA | Nuclei Buffer with RNA protection |
BSA | Bovine serum albumin |
GEMs | Gel beads-in-emulsions |
UMIs | Unique molecular identifiers |
DEGs | Differentially expressed genes |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
hdWGCNA | High-dimensional weighted gene co-expression network analysis |
MEs | Module eigengenes |
H&E | Hematoxylin–eosin |
E2 | Estrogen |
TOM | Topological overlap matrix |
ME | Module eigengene |
hME | Harmony module eigengenes |
NMF | Non-negative matrix factorization |
References
- Fedotova, G.V.; Slozhenkina, M.I.; Tsitsige; Natyrov, A.K.; Erendzhenova, M.V. Comparative analysis of economic and biological features of Kalmyk and Mongolian cattle breeds. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 082076. [Google Scholar] [CrossRef]
- Su, R.; Zhou, H.; Yang, W.; Moqir, S.; Ritu, X.; Liu, L.; Shi, Y.; Dong, A.; Bayier, M.; Letu, Y.; et al. Near telomere-to-telomere genome assembly of Mongolian cattle: Implications for population genetic variation and beef quality. Gigascience 2024, 13. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Qi, Y.; Purev, C.; Wang, S.; Wang, H.; Wu, K.; Cao, J.; Liu, C.; Liu, Y.; Li, L.; et al. Structural variants in Mongolian originated ruminant: Role in adaptation of extreme-environment. Res. Artic. 2020. [Google Scholar] [CrossRef]
- Fukaya, S.; Yamazaki, T.; Abe, H.; Nakagawa, S.; Baba, T.; Bai, H.; Takahashi, M.; Kawahara, M. Characterization of conception rate after embryo transfer in comparison with that after artificial insemination in dairy cattle. J. Dairy Sci. 2024, 107, 9516–9526. [Google Scholar] [CrossRef] [PubMed]
- Reese, S.T.; Franco, G.A.; Poole, R.K.; Hood, R.; Fernadez Montero, L.; Oliveira Filho, R.V.; Cooke, R.F.; Pohler, K.G. Pregnancy loss in beef cattle: A meta-analysis. Anim. Reprod. Sci. 2020, 212, 106251. [Google Scholar] [CrossRef]
- Mikhael, S.; Punjala-Patel, A.; Gavrilova-Jordan, L. Hypothalamic-Pituitary-Ovarian Axis Disorders Impacting Female Fertility. Biomedicines 2019, 7, 5. [Google Scholar] [CrossRef]
- Fontes, P.L.P.; Oosthuizen, N.; Cliff Lamb, G. Chapter 4–Reproductive management of beef cattle. In Animal Agriculture; Bazer, F.W., Lamb, G.C., Wu, G., Eds.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 57–73. [Google Scholar]
- Phung, J.; Paul, J.; Smith, R. Chapter 13–Maintenance of Pregnancy and Parturition. In Maternal-Fetal and Neonatal Endocrinology; Kovacs, C.S., Deal, C.L., Eds.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 169–187. [Google Scholar]
- Inserra, P.I.F.; Charif, S.E.; Fidel, V.; Giacchino, M.; Schmidt, A.R.; Villarreal, F.M.; Proietto, S.; Cortasa, S.A.; Corso, M.C.; Gariboldi, M.C.; et al. The key action of estradiol and progesterone enables GnRH delivery during gestation in the South American plains vizcacha, Lagostomus maximus. J. Steroid Biochem. Mol. Biol. 2020, 200, 105627. [Google Scholar] [CrossRef]
- Maggi, R.; Cariboni, A.M.; Marelli, M.M.; Moretti, R.M.; Andrè, V.; Marzagalli, M.; Limonta, P. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum. Reprod. Update 2016, 22, 358–381. [Google Scholar] [CrossRef]
- ŞİRİNoĞLu, H.; ÖZdemİR, S.; GÖKÇEr, O.; GenÇ, S.; Emeklioglu, C.; ÖZkaya, E. Relationship between the amniotic fluid prolactin level at early second trimester and pregnancy outcome. J. Health Sci. Med. 2022, 5, 715–719. [Google Scholar] [CrossRef]
- Binli, F.; İnan, İ.; Büyükbudak, F.; Gram, A.; Kaya, D.; Liman, N.; Aslan, S.; Fındık, M.; Ay, S.S. The Efficacy of a 3β-Hydroxysteroid Dehydrogenase Inhibitor for the Termination of Mid-Term Pregnancies in Dogs. Animals 2022, 12, 2475. [Google Scholar] [CrossRef]
- Ma, S.; Sun, S.; Li, J.; Fan, Y.; Qu, J.; Sun, L.; Wang, S.; Zhang, Y.; Yang, S.; Liu, Z.; et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res. 2021, 31, 415–432. [Google Scholar] [CrossRef]
- Moffitt, J.R.; Bambah-Mukku, D.; Eichhorn, S.W.; Vaughn, E.; Shekhar, K.; Perez, J.D.; Rubinstein, N.D.; Hao, J.; Regev, A.; Dulac, C.; et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018, 362, eaau5324. [Google Scholar] [CrossRef]
- Leng, D.; Zeng, B.; Wang, T.; Chen, B.L.; Li, D.Y.; Li, Z.J. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool. Res. 2024, 45, 1088–1107. [Google Scholar] [CrossRef]
- Ge, T.; Wen, Y.; Li, B.; Huang, X.; Jiang, S.; Zhang, E. Single-cell sequencing reveals the reproductive variations between primiparous and multiparous Hu ewes. J. Anim. Sci. Biotechnol. 2023, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Tian, D.; Li, X.; Liu, S.; Tian, F.; Liu, D.; Wang, S.; Zhao, K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol. Biol. Evol. 2024, 41, msae058. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Niu, Y.L.; Li, Y.K.; Li, L.; Wang, H.; Li, W.W.; Qiao, T.; Feng, Y.N.; Feng, Y.Q.; Liu, J.; et al. Spatiotemporal dynamics of early oogenesis in pigs. Genome Biol. 2025, 26, 2. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.X.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.; Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M.; et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016, 34, 303–311. [Google Scholar] [CrossRef]
- Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.; Couldrey, C.; et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience 2020, 9, giaa021. [Google Scholar] [CrossRef]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef]
- Zappia, L.; Oshlack, A. Clustering trees: A visualization for evaluating clusterings at multiple resolutions. Gigascience 2018, 7. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Ito, K.; Murphy, D. Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e79. [Google Scholar] [CrossRef]
- Morabito, S.; Reese, F.; Rahimzadeh, N.; Miyoshi, E.; Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 2023, 3, 100498. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef] [PubMed]
- Kleshchevnikov, V.; Shmatko, A.; Dann, E.; Aivazidis, A.; King, H.W.; Li, T.; Elmentaite, R.; Lomakin, A.; Kedlian, V.; Gayoso, A.; et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 2022, 40, 661–671. [Google Scholar] [CrossRef]
- Zachut, M. Short communication: Concentrations of the mammalian lignan enterolactone in preovulatory follicles and the correlation with intrafollicular estradiol in dairy cows fed extruded flaxseed. J. Dairy Sci. 2015, 98, 8814–8817. [Google Scholar] [CrossRef]
- Lalitkumar, P.G.L.; Lundström, E.; Byström, B.; Ujvari, D.; Murkes, D.; Tani, E.; Söderqvist, G. Effects of Estradiol/Micronized Progesterone vs. Conjugated Equine Estrogens/Medroxyprogesterone Acetate on Breast Cancer Gene Expression in Healthy Postmenopausal Women. Int. J. Mol. Sci. 2023, 24, 4123. [Google Scholar] [CrossRef]
- Abedel-Majed, M.A.; Romereim, S.M.; Davis, J.S.; Cupp, A.S. Perturbations in Lineage Specification of Granulosa and Theca Cells May Alter Corpus Luteum Formation and Function. Front. Endocrinol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Przygrodzka, E.; Hou, X.; Zhang, P.; Plewes, M.R.; Franco, R.; Davis, J.S. PKA and AMPK Signaling Pathways Differentially Regulate Luteal Steroidogenesis. Endocrinology 2021, 162, bqab015. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Guo, C.; Xu, H.; Li, L.; Fang, M.; Hu, Y.; Zhang, X.; Yao, X.; Tang, M.; et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 2022, 19, 662–670. [Google Scholar] [CrossRef]
- Tadross, J.A.; Steuernagel, L.; Dowsett, G.K.C.; Kentistou, K.A.; Lundh, S.; Porniece, M.; Klemm, P.; Rainbow, K.; Hvid, H.; Kania, K.; et al. A comprehensive spatio-cellular map of the human hypothalamus. Nature 2025, 639, 708–716. [Google Scholar] [CrossRef]
- Lake, B.B.; Ai, R.; Kaeser, G.E.; Salathia, N.S.; Yung, Y.C.; Liu, R.; Wildberg, A.; Gao, D.; Fung, H.L.; Chen, S.; et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016, 352, 1586–1590. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Hiney, J.K.; Dees, W.L. Actions and interactions of alcohol and transforming growth factor β1 on prepubertal hypothalamic gonadotropin-releasing hormone. Alcohol. Clin. Exp. Res. 2014, 38, 1321–1329. [Google Scholar] [CrossRef]
- Sharif, A.; Baroncini, M.; Prevot, V. Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 2013, 98, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Djiane, J.; Durand, P.; Kelly, P.A. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation. Endocrinology 1977, 100, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Luaibi, N.; Lazim, F.; Muhammed, H. Effect of ZnO NPs on Ovarian Histological Structure and Function in Adult Female Rats تأثير جزيئات أوكسيد الزنك النانوي على التركيب النسيجي والوظيفي للمبيض في إناث الجرذان البالغة. Baghdad Sci. J. 2024, 21, 10. [Google Scholar] [CrossRef]
- Pecori, A.; Luppieri, V.; Santin, A.; Spedicati, B.; Zampieri, S.; Cadenaro, M.; Girotto, G.; Concas, M.P. Clenching the Strings of Bruxism Etiopathogenesis: Association Analyses on Genetics and Environmental Risk Factors in a Deeply Characterized Italian Cohort. Biomedicines 2024, 12, 304. [Google Scholar] [CrossRef]
- Chen, J.; Hersmus, N.; Van Duppen, V.; Caesens, P.; Denef, C.; Vankelecom, H. The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 2005, 146, 3985–3998. [Google Scholar] [CrossRef]
- Bilezikjian, L.M.; Vale, W.W. The Local Control of the Pituitary by Activin Signaling and Modulation. Open Neuroendocr. J. 2011, 4, 90–101. [Google Scholar] [CrossRef]
- Trott, J.F.; Schennink, A.; Petrie, W.K.; Manjarin, R.; VanKlompenberg, M.K.; Hovey, R.C. Triennial Lactation Symposium: Prolactin: The multifaceted potentiator of mammary growth and function. J. Anim. Sci. 2012, 90, 1674–1686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lv, C.; Mo, C.; Liu, M.; Wan, Y.; Li, J.; Wang, Y. Single-Cell RNA Sequencing Analysis of Chicken Anterior Pituitary: A Bird’s-Eye View on Vertebrate Pituitary. Front. Physiol. 2021, 12, 562817. [Google Scholar] [CrossRef] [PubMed]
- Le Ciclé, C.; Cohen-Tannoudji, J.; L’Hôte, D. Recent Advances in the Understanding of Gonadotrope Lineage Differentiation in the Developing Pituitary. Neuroendocrinology 2025, 115, 195–210. [Google Scholar] [CrossRef]
- Przygrodzka, E.; Binderwala, F.; Powers, R.; McFee, R.M.; Cupp, A.S.; Wood, J.R.; Davis, J.S. Central Role for Glycolysis and Fatty Acids in LH-responsive Progesterone Synthesis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Crites, B.R.; Carr, S.N.; Matthews, J.C.; Bridges, P.J. Form of dietary selenium affects mRNA encoding cholesterol biosynthesis and immune response elements in the early luteal phase bovine corpus luteum. J. Anim. Sci. 2022, 100. [Google Scholar] [CrossRef]
- Liao, B.; Qi, X.; Yun, C.; Qiao, J.; Pang, Y. Effects of Androgen Excess-Related Metabolic Disturbances on Granulosa Cell Function and Follicular Development. Front. Endocrinol. 2022, 13, 815968. [Google Scholar] [CrossRef]
- Zhai, X.; Shu, M.; Guo, Y.; Yao, S.; Wang, Y.; Han, S.; Song, C.; Chuai, Y.; Wang, Q.; Ma, F.; et al. Efficacy of low-dose hCG on FET cycle in patients with recurrent implantation failure. Front. Endocrinol. 2022, 13, 1053592. [Google Scholar] [CrossRef]
- Vezzoli, V.; Duminuco, P.; Vottero, A.; Kleinau, G.; Schülein, R.; Minari, R.; Bassi, I.; Bernasconi, S.; Persani, L.; Bonomi, M. A new variant in signal peptide of the human luteinizing hormone receptor (LHCGR) affects receptor biogenesis causing leydig cell hypoplasia. Hum. Mol. Genet. 2015, 24, 6003–6012. [Google Scholar] [CrossRef]
- Kumar, T.R. “Been hit twice”: A novel bi-allelic heterozygous mutation in LHCGR. J. Assist. Reprod. Genet. 2014, 31, 783–786. [Google Scholar] [CrossRef]
- Convissar, S.; Winston, N.J.; Fierro, M.A.; Scoccia, H.; Zamah, A.M.; Stocco, C. Sp1 regulates steroidogenic genes and LHCGR expression in primary human luteinized granulosa cells. J. Steroid Biochem. Mol. Biol. 2019, 190, 183–192. [Google Scholar] [CrossRef]
- Geng, T.; Sun, Y.; Cheng, L.; Cao, Y.; Zhang, M.; Hong, Z.; Ma, L.; Zhang, Y. Downregulation of LHCGR Attenuates COX-2 Expression and Induces Luteinized Unruptured Follicle Syndrome in Endometriosis. Front. Endocrinol. 2022, 13, 853563. [Google Scholar] [CrossRef]
- Ramachandran, A.; Vizán, P.; Das, D.; Chakravarty, P.; Vogt, J.; Rogers, K.W.; Müller, P.; Hinck, A.P.; Sapkota, G.P.; Hill, C.S. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. Elife 2018, 7, e31756. [Google Scholar] [CrossRef]
- Fuji, H.; Miller, G.; Nishio, T.; Koyama, Y.; Lam, K.; Zhang, V.; Loomba, R.; Brenner, D.; Kisseleva, T. The role of Mesothelin signaling in Portal Fibroblasts in the pathogenesis of cholestatic liver fibrosis. Front. Mol. Biosci. 2021, 8, 790032. [Google Scholar] [CrossRef]
- Li, S.-Y.; Whiteside, S.; Li, B.; Sun, X.; DeFalco, T. A perivascular niche supports endometrial epithelial regeneration. bioRxiv 2024. [Google Scholar] [CrossRef]
- Taketa, Y. Luteal toxicity evaluation in rats. J. Toxicol. Pathol. 2022, 35, 7–17. [Google Scholar] [CrossRef]
- Min, T.; Lee, S.H.; Lee, S. Angiogenesis and Apoptosis: Data Comparison of Similar Microenvironments in the Corpus Luteum and Tumors. Animals 2024, 14, 1118. [Google Scholar] [CrossRef] [PubMed]
- Biagetti, B.; Simò, R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 11247. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Ehling, M.; März, S.; Seebach, J.; Tarbashevich, K.; Sixta, T.; Pitulescu, M.E.; Werner, A.C.; Flach, B.; Montanez, E.; et al. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat. Commun. 2017, 8, 2210. [Google Scholar] [CrossRef]
- Knight, P.; Glister, C. Theca cells and the regulation of ovarian androgen production. Biosci. Proc. 2019, 3, 295–310. [Google Scholar] [CrossRef]
- Guo, X.; An, H.; Guo, R.; Dai, Z.; Ying, S.; Wu, W. The role of miR-10a-5p in LPS-induced inhibition of progesterone synthesis in goose granulosa cells by down-regulating CYP11A1. Front. Vet. Sci. 2024, 11, 1398728. [Google Scholar] [CrossRef]
- Soderling, S.H.; Bayuga, S.J.; Beavo, J.A. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc. Natl. Acad. Sci. USA 1999, 96, 7071–7076. [Google Scholar] [CrossRef]
- Bonate, R.; Kurek, G.; Hrabak, M.; Patterson, S.; Padovan-Neto, F.; West, A.R.; Steiner, H. Phosphodiesterase 10A (PDE10A): Regulator of Dopamine Agonist-Induced Gene Expression in the Striatum. Cells 2022, 11, 2214. [Google Scholar] [CrossRef]
- Nishi, A.; Kuroiwa, M.; Miller, D.B.; O’Callaghan, J.P.; Bateup, H.S.; Shuto, T.; Sotogaku, N.; Fukuda, T.; Heintz, N.; Greengard, P.; et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J. Neurosci. 2008, 28, 10460–10471. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, L.; Liu, N.; Tang, X.; Guo, S.; Zhang, B.; Jiang, Z. Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells During Follicular Development. Animals 2019, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Matsuda-Minehata, F.; Inoue, N.; Goto, Y.; Manabe, N. The regulation of ovarian granulosa cell death by pro- and anti-apoptotic molecules. J. Reprod. Dev. 2006, 52, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Dadashzadeh, A.; Moghassemi, S.; Shavandi, A.; Amorim, C.A. A review on biomaterials for ovarian tissue engineering. Acta Biomater. 2021, 135, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.M.; Del Collado, M.; Meirelles, F.V.; da Silveira, J.C.; Perecin, F. Intrafollicular barriers and cellular interactions during ovarian follicle development. Anim. Reprod. 2019, 16, 485–496. [Google Scholar] [CrossRef]
- Gershon, E.; Dekel, N. Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int. J. Mol. Sci. 2020, 21, 4565. [Google Scholar] [CrossRef]
- Tamanini, C.; De Ambrogi, M. Angiogenesis in developing follicle and corpus luteum. Reprod. Domest. Anim. 2004, 39, 206–216. [Google Scholar] [CrossRef]
- Woad, K.J.; Robinson, R.S. Luteal angiogenesis and its control. Theriogenology 2016, 86, 221–228. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Redmer, D.A. Growth and development of the corpus luteum. J. Reprod. Fertil. Suppl. 1999, 54, 181–191. [Google Scholar] [CrossRef]
- Duncan, W.C.; Rodger, F.E.; Illingworth, P.J. The human corpus luteum: Reduction in macrophages during simulated maternal recognition of pregnancy. Hum. Reprod. 1998, 13, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Van der Hoek, K.H.; Ryan, N.K.; Norman, R.J.; Robker, R.L. Macrophage contributions to ovarian function. Hum. Reprod. Update 2004, 10, 119–133. [Google Scholar] [CrossRef]
- da Silva, R.F.; Yoshida, A.; Cardozo, D.M.; Jales, R.M.; Paust, S.; Derchain, S.; Guimarães, F. Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients. Int. J. Mol. Sci. 2017, 18, 856. [Google Scholar] [CrossRef] [PubMed]
- Knight, P.G.; Glister, C. TGF-beta superfamily members and ovarian follicle development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.A.-O.; Zhu, C.A.-O.; He, X.A.-O.; Chu, M.A.-O. Hypothalamus Transcriptome Reveals Key lncRNAs and mRNAs Associated with Fecundity in Goats. Animals 2025, 15, 754. [Google Scholar] [CrossRef]
- Li, L.; Fau-Dong, J.; Dong, J.; Fau-Yan, L.; Yan, L.; Fau-Yong, J.; Yong, J.; Fau-Liu, X.; Liu, X.; Fau-Hu, Y.; et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell 2017, 20, 858–873.e4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Ma, F.; Huo, C.; Jia, H.; Li, Y.; Yang, X.; Liu, J.; Gu, P.; Shi, C.; Gu, M.; et al. Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle. Animals 2025, 15, 2277. https://doi.org/10.3390/ani15152277
Bao Y, Ma F, Huo C, Jia H, Li Y, Yang X, Liu J, Gu P, Shi C, Gu M, et al. Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle. Animals. 2025; 15(15):2277. https://doi.org/10.3390/ani15152277
Chicago/Turabian StyleBao, Yanchun, Fengying Ma, Chenxi Huo, Hongxia Jia, Yunhan Li, Xiaoyi Yang, Jiajing Liu, Pengbo Gu, Caixia Shi, Mingjuan Gu, and et al. 2025. "Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle" Animals 15, no. 15: 2277. https://doi.org/10.3390/ani15152277
APA StyleBao, Y., Ma, F., Huo, C., Jia, H., Li, Y., Yang, X., Liu, J., Gu, P., Shi, C., Gu, M., Zhu, L., Wang, Y., Liu, B., Na, R., & Zhang, W. (2025). Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle. Animals, 15(15), 2277. https://doi.org/10.3390/ani15152277