New Alternative Mixtures of Cryoprotectants for Equine Immature Oocyte Vitrification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Media and Reagents
2.2. Collection of Equine Immature Oocytes
2.3. Oocyte Vitrification and Warming
2.4. In Vitro Maturation and ICSI
2.5. Experimental Design
2.5.1. Experiment 1: Effect of Sucrose, Trehalose, or Galactose as Non-Permeating CPAs in VS and in WS on Maturation, Cleavage, and Blastocyst Rates
2.5.2. Experiment 2: Effect of Three Different Mixtures of Permeating CPAs and Two Different Warming Regimens on Maturation, Cleavage, and Blastocyst Rates
2.6. Statistical Analysis
3. Results
3.1. Experiment 1: Effect of Non-Permeating CPAs on Maturation, Cleavage, and Blastocyst Rates
3.1.1. Comparison among All Vitrified and Non-Vitrified Oocytes
3.1.2. Effect of Sucrose, Trehalose, and Galactose as Non-Permeating CPAs during Vitrification
3.2. Experiment 2: Effect of Three Different Mixtures of Permeating CPAs and Two Different Warming Regimens on Maturation, Cleavage, and Blastocyst Rates
3.2.1. Comparison among All Vitrified and Non-Vitrified Oocytes
3.2.2. Effect of Three Different Mixtures of Permeating CPAs on Maturation, Cleavage, and Blastocyst Rates
3.2.3. Effect of Two Warming Regimens on Maturation, Cleavage, and Blastocyst Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claes, A.; Cuervo-Arango, J.; van den Broek, J.; Galli, C.; Colleoni, S.; Lazzari, G.; Deelen, C.; Beitsma, M.; Stout, T.A. Factors affecting the likelihood of pregnancy and embryonic loss after transfer of cryopreserved in vitro produced equine embryos. Equine Vet. J. 2019, 51, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, G.; Colleoni, S.; Crotti, G.; Turini, P.; Fiorini, G.; Barandalla, M.; Landriscina, L.; Dolci, G.; Benedetti, M.; Duchi, R.; et al. Laboratory Production of Equine Embryos. J. Equine Vet. Sci. 2020, 89, 103097. [Google Scholar] [CrossRef]
- Gambini, A.; Maserati, M. A journey through horse cloning. Reprod. Fertil. Dev. 2018, 30, 8. [Google Scholar] [CrossRef]
- Papas, M.; Govaere, J.; Peere, S.; Gerits, I.; Van de Velde, M.; Angel-Velez, D.; De Coster, T.; Van Soom, A.; Smits, K. Anti-Müllerian Hormone and OPU-ICSI Outcome in the Mare. Animals 2021, 11, 2004. [Google Scholar] [CrossRef] [PubMed]
- De Coster, T.; Angel-Velez, D.; Van Soom, A.; Woelders, H.; Smits, K. Cryopreservation of equine oocytes: Looking into the crystal ball. Reprod. Fertil. Dev. 2020, 32, 453–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinrichs, K. Assisted reproductive techniques in mares. Reprod. Domest. Anim. 2018, 53, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Smits, K.; Hoogewijs, M.; Woelders, H.; Daels, P.; Van Soom, A. Breeding or Assisted Reproduction? Relevance of the Horse Model Applied to the Conservation of Endangered Equids. Reprod. Domest. Anim. 2012, 47, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Arav, A. Cryopreservation of oocytes and embryos. Theriogenology 2014, 81, 96–102. [Google Scholar] [CrossRef]
- Maclellan, L.J.; Carnevale, E.M.; Silva, M.A.C.; Scoggin, C.F.; Bruemmer, J.E.; Squires, E.L. Pregnancies from vitrifed equine oocytes collected from super-stimulated and non-stimulated mares. Theriogenology 2002, 58, 911–919. [Google Scholar] [CrossRef]
- Ortiz-Escribano, N.; Bogado Pascottini, O.; Woelders, H.; Vandenberghe, L.; De Schauwer, C.; Govaere, J.; Van den Abbeel, E.; Vullers, T.; Ververs, C.; Roels, K.; et al. An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet. J. 2018, 50, 391–397. [Google Scholar] [CrossRef]
- Canesin, H.S.; Brom-de-Luna, J.G.; Choi, Y.H.; Ortiz, I.; Diaw, M.; Hinrichs, K. Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology 2017, 75, 52–59. [Google Scholar] [CrossRef]
- Canesin, H.S.; Brom-de-Luna, J.G.; Choi, Y.-H.; Pereira, A.M.; Macedo, G.G.; Hinrichs, K. Vitrification of germinal-vesicle stage equine oocytes: Effect of cryoprotectant exposure time on in-vitro embryo production. Cryobiology 2018, 81, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Angel, D.; Canesin, H.S.; Brom-de-Luna, J.G.; Morado, S.; Dalvit, G.; Gomez, D.; Posada, N.; Pascottini, O.B.; Urrego, R.; Hinrichs, K.; et al. Embryo development after vitrification of immature and in vitro-matured equine oocytes. Cryobiology 2020, 92, 251–254. [Google Scholar] [CrossRef]
- Clérico, G.; Taminelli, G.; Veronesi, J.C.; Polola, J.; Pagura, N.; Pinto, C.; Sansinena, M. Mitochondrial function, blastocyst development and live foals born after ICSI of immature vitrified/warmed equine oocytes matured with or without melatonin. Theriogenology 2021, 160, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Paredes, E.; Mazur, P. The survival of mouse oocytes shows little or no correlation with the vitrification or freezing of the external medium, but the ability of the medium to vitrify is affected by its solute concentration and by the cooling rate. Cryobiology 2013, 67, 386–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahy, G.M.; Levy, D.I.; Ali, S.E. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology 1987, 24, 196–213. [Google Scholar] [CrossRef]
- Shaw, J.M.; Jones, G.M. Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum. Reprod. Update 2003, 9, 583–605. [Google Scholar] [CrossRef] [PubMed]
- Best, B.P. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rall, W.F.; Fahy, G.M. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 1985, 313rall, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Rall, W.F. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 1987, 24, 387–402. [Google Scholar] [CrossRef]
- Szurek, E.A.; Eroglu, A. Comparison and Avoidance of Toxicity of Penetrating Cryoprotectants. PLoS ONE 2011, 6, e27604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somfai, T.; Nakai, M.; Tanihara, F.; Noguchi, J.; Kaneko, H.; Kashiwazaki, N.; Egerszegi, I.; Nagai, T.; Kikuchi, K. Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. J. Reprod. Dev. 2013, 59, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Hurtt, A.; Ladim-Alverenga, F.; Seidel, J.; Squires, E. Vitrification of immature and mature equine and bovine oocytes in an ethylene glycol, ficoll and sucrose solution using open-pulled straws. Theriogenology 2000, 54, 119–128. [Google Scholar] [CrossRef]
- Hunt, C.J. Cryopreservation: Vitrification and Controlled Rate Cooling. Methods Mol. Biol. 2017, 1590, 41–77. [Google Scholar] [CrossRef] [PubMed]
- Kasai, M. Vitrification: Refined Strategy for the Cryopreservation of Mammalian Embryos. J. Mamm. Ova Res. 1997, 14, 17–28. [Google Scholar] [CrossRef]
- Yavin, S.; Arav, A. Measurement of essential physical properties of vitrification solutions. Theriogenology 2007, 67, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Tharasanit, T.; Colenbrander, B.; Stout, T.A.E. Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes. Mol. Reprod. Dev. 2006, 73, 627–637. [Google Scholar] [CrossRef]
- Tharasanit, T.; Colleoni, S.; Lazzari, G.; Colenbrander, B.; Galli, C.; Stout, T.A.E. Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reproduction 2006, 132, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Tharasanit, T.; Colleoni, S.; Galli, C.; Colenbrander, B.; Stout, T.A.E. Protective effects of the cumulus-corona radiata complex during vitrification of horse oocytes. Reproduction 2009, 137, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Maclellan, L.J.; Lane, M.; Sims, M.; Squires, E.L. Effect of sucrose or threalos on vitrification of equine oocytes 12 h or 24 h after the onset of maturation. Theriogenology 2001, 55, 310. [Google Scholar]
- Coello, A.; Campos, P.; Remohí, J.; Meseguer, M.; Cobo, A. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: A retrospective cohort study. J. Assist. Reprod. Genet. 2016, 33, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, T.; Hao, Y.; Panhwar, F.; Chen, Z.; Zou, W.; Ji, D.; Chen, B.; Zhou, P.; Zhao, G.; et al. Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes. Cryobiology 2017, 74, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Lestari, S.W.; Ilato, K.F.; Pratama, M.I.A.; Fitriyah, N.N.; Pangestu, M.; Pratama, G.; Margiana, R. Sucrose ‘Versus’ Trehalose Cryoprotectant Modification in Oocyte Vitrification: A Study of Embryo Development. Biomed. Pharmacol. J. 2018, 11, 97–104. [Google Scholar] [CrossRef]
- McWilliams, R.B.; Gibbons, W.E.; Leibo, S.P. Fertilization and early embryology: Osmotic and physiological responses of mouse zygotes and human oocytes to mono- and disaccharides. Hum. Reprod. 1995, 10, 1163–1171. [Google Scholar] [CrossRef]
- Checura, C.M.; Seidel, G.E. Effect of macromolecules in solutions for vitrification of mature bovine oocytes. Theriogenology 2007, 67, 919–930. [Google Scholar] [CrossRef]
- Herrick, J.R.; Wang, C.; Machaty, Z. The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes. Reprod. Fertil. Dev. 2016, 28, 599–607. [Google Scholar] [CrossRef]
- Campos-Chillòn, L.F.; Suh, T.K.; Barcelo-Fimbres, M.; Seidel, G.E.; Carnevale, E.M. Vitrification of early-stage bovine and equine embryos. Theriogenology 2009, 71, 349–354. [Google Scholar] [CrossRef]
- Kobayashi, S.; Takei, M.; Kano, M.; Tomita, M.; Leibo, S.P. Piglets Produced by Transfer of Vitrified Porcine Embryos after Stepwise Dilution of Cryoprotectants. Cryobiology 1998, 36, 20–31. [Google Scholar] [CrossRef]
- Herrid, M.; Billah, M.; Skidmore, J.A. Successful pregnancies from vitrified embryos in the dromedary camel: Avoidance of a possible toxic effect of sucrose on embryos. Anim. Reprod. Sci. 2017, 187, 116–123. [Google Scholar] [CrossRef]
- Lutz, J.C.; Johnson, S.L.; Duprey, K.J.; Taylor, P.J.; Vivanco-Mackie, H.W.; Ponce-Salazar, D.; Miguel-Gonzales, M.; Youngs, C.R. Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca (Vicugna pacos) Preimplantation Embryo. Front. Vet. Sci. 2020, 7, 581877. [Google Scholar] [CrossRef]
- Choi, Y.H.; Velez, I.C.; Riera, F.L.; Roldán, J.E.; Hartman, D.L.; Bliss, S.B. Successful cryopreservation of expanded equine blastocysts. Theriogenology 2011, 76, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-H.; Hinrichs, K. Vitrification of in vitro-produced and in vivo-recovered equine blastocysts in a clinical program. Theriogenology 2017, 87, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Griveau, J.F.; Lopes, M.; Jouve, G.; Veau, S.; Ravel, C.; Morcel, K. Vitrification: Principles and results. J. Gynecol. Obstet. Biol. Reprod. Paris 2015, 44, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Vajta, V.G.; Nagy, Z.P. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 2006, 12, 779–796. [Google Scholar] [CrossRef]
- Li, W.; Zhou, X.; Wang, H.; Liu, B. Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation. Cryo-Letters 2012, 33, 144–150. [Google Scholar]
- Kasai, M.; Zhu, S.E.; Pedro, P.B.; Nakamura, K.; Sakurai, T.; Edashige, K. Fracture damage of embryos and its prevention during vitrification and warming. Cryobiology 1996, 33, 459–464. [Google Scholar] [CrossRef]
- Chian, R. Oocyte vitrification: Advances, progress and future goals. J. Assist. Reprod. Genet. 2014, 31, 411–420. [Google Scholar] [CrossRef]
- Fuller, B.; Paynter, S. Fundamentals of cryobiology in reproductive medicine. Reprod. Biomed. Online 2004, 9, 680–691. [Google Scholar] [CrossRef]
- Jackowski, S.; Leibo, S.P.; Mazur, P. Glycerol permeabilities of fertilized and infertilized mouse ova. J. Exp. Zool. 1980, 212, 329–341. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Zhao, R.; Li, W.; Han, Z.; Chen, X.; Xiao, B.; Wu, S.; Jiang, Z.; Hu, J.; et al. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. Anim. Reprod. Sci. 2008, 106, 25–35. [Google Scholar] [CrossRef]
- Kuleshova, L.L.; Macfarlane, D.R.; Trounson, A.O.; Shaw, J.M. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology 1999, 38, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Somfai, T.; Men, N.T.; Noguchi, J.; Kaneko, H.; Kashiwazaki, N.; Kikuchi, K. Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosedporcine oocytes: Comparison of sugars, combinations of permeating cryoprotectants and equilibrationregimens. J. Reprod. Dev. 2015, 61, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youm, H.S.; Choi, J.-R.; Oh, D.; Rho, Y.H. Survival Rates in Closed and Open Vitrification for Human Mature Oocyte Cryopreservation: A Meta-Analysis. Gynecol. Obstet. Invest. 2018, 83, 268–274. [Google Scholar] [CrossRef]
- Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology 2007, 67, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Mandawala, A.A.; Harvey, S.C.; Roy, T.K.; Fowler, K.E. Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology 2016, 86, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Kuwayama, M.; Vajta, G.; Kato, O.; Leibo, S.P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 2005, 11, 300–308. [Google Scholar] [CrossRef]
- Rienzi, L.; Gracia, C.; Maggiulli, R.; LaBarbera, A.R.; Kaser, D.J.; Ubaldi, F.M.; Vanderpoel, S.; Racowsky, C. Oocyte, embryo and blastocyst cryopreservation in ART: Systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Update 2017, 23, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Carboni, S.; Rosati, I.; Lj, M.; Ariu, F.; Bogliolo, L.; Mt, Z.; Pau, S.; Em, C.; Ledda, S. Vitrification of gv and ivm horse oocytes with two different equilibration methods. In Proceedings of the 10th congress of Italian Society of Animal Reproduction (SIRA), Tirana, Albania, 23–25 May 2012; pp. 12–13. [Google Scholar]
- De Leon, P.M.M.; Campos, V.F.; Corcini, C.D.; Santos, E.C.S.; Rambo, G.; Lucia, T.; Deschamps, J.C.; Collares, T. Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker. Theriogenology 2012, 77, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Cobo, A.; Diaz, C. Clinical application of oocyte vitrification: A systematic review and meta-analysis of randomized controlled trials. Fertil. Steril. 2011, 96, 277–285. [Google Scholar] [CrossRef]
- Lotz, J.; Içli, S.; Liu, D.; Caliskan, S.; Sieme, H.; Wolkers, W.F.; Oldenhof, H. Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions. Biochim. Biophys. Acta-Gen. Subj. 2021, 1865, 129797. [Google Scholar] [CrossRef] [PubMed]
- Parmegiani, L.; Tatone, C.; Cognigni, G.E.; Bernardi, S.; Troilo, E.; Arnone, A.; Maccarini, A.M.; Di Emidio, G.; Vitti, M.; Filicori, M. Rapid warming increases survival of slow-frozen sibling oocytes: A step towards a single warming procedure irrespective of the freezing protocol? Reprod. Biomed. Online 2014, 28, 614–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, Y.; Aikawa, Y.; Hirai, T.; Hashiyada, Y.; Yamanouchi, T.; Misumi, K.; Ohtake, M.; Somfai, T.; Kobayashi, S.; Saito, N.; et al. In-straw cryoprotectant dilution for bovine embryos vitrified using Cryotop. J. Reprod. Dev. 2011, 57, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Woelders, H.; Guignot, F.; Ortiz-Escribano, N.; van Soom, A.; Smits, K. Simulations of osmotic events in vitrification of equine oocytes and porcine embryos. Cryobiology 2018, 85, 154–155. [Google Scholar] [CrossRef]
Experiment | Group | ES | VS | WS |
---|---|---|---|---|
Experiment 1. | Sucrose | BS + ED 20% | BS + ED 40% + Sucrose 0.5 M | BS + Sucrose 0.5 M |
Trehalose | BS + ED 40% + Trehalose 0.5 M | BS + Trehalose 0.5 M | ||
Galactose | BS + ED 40% + Galactose 0.5 M | BS + Galactose 0.5 M | ||
Experiment 2. | EG − DMSO (ED-0.5) | BS + ED 20% | BS + ED 40% + Galactose 0.5 M | BS + Galactose 0.5 M |
EG − DMSO (ED-0.3) | BS + Galactose 0.3 M | |||
PG − EG (PE-0.5) | BS + PE 20% | BS + PE 40% + Galactose 0.5 M | BS + Galactose 0.5 M | |
PG − EG (PE-0.3) | BS + Galactose 0.3 M | |||
PG − DMSO (PD-0.5) | BS + PD 20% | BS + PD 40% + Galactose 0.5 M | BS + Galactose 0.5 M | |
PG − DMSO (PD-0.3) | BS + Galactose 0.3 M |
Group | Injected Oocytes | Day 7 | Day 8 | Day 9 | Day 10 | Total | Average Day |
---|---|---|---|---|---|---|---|
Control | 80 | 5 | 5 | 7 | 4 | 21 | 8.5 |
Galactose | 64 | 1 | 1 | 3 | 5 | 9.4 | |
Sucrose | 79 | 2 | 2 | 4 | 9.5 | ||
Trehalose | 89 | 1 | 2 | 1 | 4 | 9.0 |
Group | Injected Oocytes | Day 7 | Day 8 | Day 9 | Day 10 | Total | Average Day |
---|---|---|---|---|---|---|---|
Control | 117 | 15 | 5 | 10 | 3 | 33 | 8.0 |
PE | 85 | 2 | 1 | 1 | 4 | 8 | 8.9 |
PD | 73 | 1 | 0 | 1 | 0 | 2 | 8.0 |
ED | 95 | 1 | 2 | 0 | 4 | 7 | 9.0 |
CPA Mixture | Warming Concentration | Injected Oocytes | Day 7 | Day 8 | Day 9 | Day 10 | Total | Average Day |
---|---|---|---|---|---|---|---|---|
PE | 0.5 mol/L | 40 | 2 | 2 | 7.0 | |||
0.3 mol/L | 44 | 1 | 1 | 4 | 6 | 9.5 | ||
PD | 0.5 mol/L | 51 | 1 | 1 | 2 | 8.0 | ||
0.3 mol/L | 35 | 1 | 1 | 9.0 | ||||
ED | 0.5 mol/L | 58 | 1 | 1 | 1 | 3 | 8.3 | |
0.3 mol/L | 38 | 1 | 2 | 3 | 9.5 | |||
Control | 110 | 15 | 5 | 10 | 3 | 33 | 8.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angel-Velez, D.; De Coster, T.; Azari-Dolatabad, N.; Fernandez-Montoro, A.; Benedetti, C.; Bogado Pascottini, O.; Woelders, H.; Van Soom, A.; Smits, K. New Alternative Mixtures of Cryoprotectants for Equine Immature Oocyte Vitrification. Animals 2021, 11, 3077. https://doi.org/10.3390/ani11113077
Angel-Velez D, De Coster T, Azari-Dolatabad N, Fernandez-Montoro A, Benedetti C, Bogado Pascottini O, Woelders H, Van Soom A, Smits K. New Alternative Mixtures of Cryoprotectants for Equine Immature Oocyte Vitrification. Animals. 2021; 11(11):3077. https://doi.org/10.3390/ani11113077
Chicago/Turabian StyleAngel-Velez, Daniel, Tine De Coster, Nima Azari-Dolatabad, Andrea Fernandez-Montoro, Camilla Benedetti, Osvaldo Bogado Pascottini, Henri Woelders, Ann Van Soom, and Katrien Smits. 2021. "New Alternative Mixtures of Cryoprotectants for Equine Immature Oocyte Vitrification" Animals 11, no. 11: 3077. https://doi.org/10.3390/ani11113077
APA StyleAngel-Velez, D., De Coster, T., Azari-Dolatabad, N., Fernandez-Montoro, A., Benedetti, C., Bogado Pascottini, O., Woelders, H., Van Soom, A., & Smits, K. (2021). New Alternative Mixtures of Cryoprotectants for Equine Immature Oocyte Vitrification. Animals, 11(11), 3077. https://doi.org/10.3390/ani11113077