Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research
Simple Summary
Abstract
1. Introduction
1.1. Eligibility Criteria
1.2. Search Strategy
1.3. Pain Faces
1.4. Pain Assessment Requirements
1.5. Confounders to Pain Identification
1.6. Non-Grimace Scale Pain Assessment
| Category | Assessment | Non-Invasive | Easy Training | High Cost | Special Equipment | Time Required >5 min | Spontaneous | Publications |
|---|---|---|---|---|---|---|---|---|
| Behaviour | Ethogram | Y | N | N | N | Y | Y | [4,5,7,15,17,18,21,52,63,66,78,86,87,91,92,93] |
| Nesting | Y | Y | N | N | Y | N | [3,15,18,51,52] | |
| Burrowing | Y | N | N | N | Y | N | [3,15,18,54,55] | |
| Vocalisation | Y | Y | Y | Y/N * | Y | Y | [4,5,8,17,21,45,66,68,81,88,93,94] | |
| Grooming | Y | Y | N | Y | Y | N | [3,4,5,8,15,17,18,21,52,66] | |
| Real-time Grimace Score | Y | Y | N | N | N | Y | [37,54,55,70,85,92,95,96] | |
| Physiological | Heart Rate or Respiratory Rate | N | Y | N | Y | N | Y | [3,4,5,15,17,21,66,93] |
| Biochemical marker | N | N | Y | Y | Y | N | [3,4,15,17,21,93] | |
| Physical | Weight loss or failure to gain weight | Y | N | N | Y | N | N | [3,5,8,15,17,21,64,66] |
| Reduction in production ** | Y | N | N | Y/N *** | Y | N | [21,66,84] | |
| Lameness | Y | Y/N **** | Y | N | N | Y | [3,5,15,17,21,37,66,82,85,93] | |
| Postural change | Y | N | Y | N | N | Y | [3,4,5,9,15,17,58,83,93] |
1.7. Grimace Scales in Animals
2. Advantages and Uses
3. Limitations
4. Application and Summary
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Russell, W.M.S. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised international association for the study of pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Turner, P.V.; Pang, D.S.; Lofgren, J.L. A review of pain assessment methods in laboratory rodents. Comp. Med. 2019, 69, 451–467. [Google Scholar] [CrossRef]
- Carstens, E.; Moberg, G.P. Recognizing pain and distress in laboratory animals. ILAR J. 2000, 41, 62–71. [Google Scholar] [CrossRef]
- National Research Council Committee; Alleviation of Pain in Laboratory Animals. The national academies collection: Reports funded by national institutes of health. In Recognition and Alleviation of Pain in Laboratory Animals; National Academies Press (US): Washington, DC, USA, 2010; National Academy of Sciences: Washington, DC, USA, 2009. [Google Scholar]
- Larson, C.M.; Wilcox, G.L.; Fairbanks, C.A. The study of pain in rats and mice. Comp. Med. 2019, 69, 555–570. [Google Scholar] [CrossRef]
- McLennan, K.M.; Miller, A.L.; Dalla Costa, E.; Stucke, D.; Corke, M.J.; Broom, D.M.; Leach, M.C. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl. Anim. Behav. Sci. 2019, 217, 1–15. [Google Scholar] [CrossRef]
- McLennan, K.J.A. Why pain is still a welfare issue for farm animals, and how facial expression could be the answer. Agriculture 2018, 8, 127. [Google Scholar] [CrossRef]
- Guatteo, R.; Levionnois, O.; Fournier, D.; Guémené, D.; Latouche, K.; Leterrier, C.; Mormède, P.; Prunier, A.; Servière, J.; Terlouw, C.; et al. Minimising pain in farm animals: The 3s approach—‘suppress, substitute, soothe’. Anim. Int. J. Anim. Biosci. 2012, 6, 1261–1274. [Google Scholar] [CrossRef]
- Parliament, E.; Council, E. Directive 2010/63/eu on the protection of animals used for scientific purposes. EU Off. J. 2010, V276. [Google Scholar]
- Olsson, I.A.S.; Silva, S.P.D.; Townend, D.; Sandøe, P. Protecting animals and enabling research in the european union: An overview of development and implementation of directive 2010/63/eu. ILAR J. 2017, 57, 347–357. [Google Scholar] [CrossRef]
- National, Health and Medical Research Council. Australian Code of Practice for the Care and Use of Animals for Scientific Purposes/National Health and Medical Research Council; National Health and Medical Research Council: Canberra, Australia, 2004.
- NC3R. The 3rs. Available online: https://www.nc3rs.org.uk/the-3rs (accessed on 15 July 2020).
- Jennings, M.; Berdoy, M.; Hawkins, P.; Kerton, A.; Law, B.; Reed, B.; Sinnett-Smith, P.; Smith, D.; Farmer, A.M.; Jennings, M. Guiding Principles on Good Practice for Ethical Review Processes; RSPCA: Wales, UK; LASA: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Kohn, D.F.; Martin, T.E.; Foley, P.L.; Morris, T.H.; Swindle, M.M.; Vogler, G.A.; Wixson, S.K. Public statement: Guidelines for the assessment and management of pain in rodents and rabbits. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2007, 46, 97–108. [Google Scholar]
- National Research Council Committee for the Update of the Guide for the, Care and Use of Laboratory Animals. The national academies collection: Reports funded by national institutes of health. In Guide for the Care and Use of Laboratory Animals; National Academies Press (US): Washington, DC, USA, 2011; National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar]
- Hawkins, P.; Morton, D.B.; Burman, O.; Dennison, N.; Honess, P.; Jennings, M.; Lane, S.; Middleton, V.; Roughan, J.V.; Wells, S.; et al. A guide to defining and implementing protocols for the welfare assessment of laboratory animals: Eleventh report of the bvaawf/frame/rspca/ufaw joint working group on refinement. Lab. Anim. 2011, 45, 1–13. [Google Scholar] [CrossRef]
- Flecknell, P. Rodent analgesia: Assessment and therapeutics. Vet. J. 2017, 232, 70–77. [Google Scholar] [CrossRef]
- Peterson, N.C.; Nunamaker, E.A.; Turner, P.V. To treat or not to treat: The effects of pain on experimental parameters. Comp. Med. 2017, 67, 469–482. [Google Scholar]
- Magalhães Sant’Ana, M.; Sandøe, P.; Olsson, A. Painful dilemmas: The ethics of animal-based pain research. Anim. Welf. 2009, 18, 49–63. [Google Scholar]
- Prunier, A.; Mounier, L.; Le Neindre, P.; Leterrier, C.; Mormède, P.; Paulmier, V.; Prunet, P.; Terlouw, C.; Guatteo, R. Identifying and monitoring pain in farm animals: A review. Anim. Int. J. Anim. Biosci. 2013, 7, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Würbel, H. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 2001, 24, 207–211. [Google Scholar] [CrossRef]
- Poole, T. Happy animals make good science. Lab. Anim. 1997, 31, 116–124. [Google Scholar] [CrossRef]
- Graham, D.M.; Hampshire, V. Methods for measuring pain in laboratory animals. Lab. Anim. 2016, 45, 99–101. [Google Scholar] [CrossRef]
- Prkachin, K.M. Assessing Pain by Facial Expression: Facial Expression as Nexus; Pulsus Group: Oakville, ON, Canada, 2009; Volume 14, pp. 53–58. [Google Scholar]
- Williams, A.C. Facial expression of pain: An evolutionary account. Behav. Brain Sci. 2002, 25, 439–455, discussion 455–488. [Google Scholar] [CrossRef]
- Deyo, K.S.; Prkachin, K.M.; Mercer, S.R. Development of sensitivity to facial expression of pain. Pain 2004, 107, 16–21. [Google Scholar] [CrossRef]
- Leach, M.C.; Coulter, C.A.; Richardson, C.A.; Flecknell, P.A. Are we looking in the wrong place? Implications for behavioural-based pain assessment in rabbits (oryctolagus cuniculi) and beyond? PLoS ONE 2011, 6, e13347. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. The Expression of the Emotions in Man and Animals; John Murray: London, UK, 1872; p. 374. [Google Scholar]
- Waller, B.M.; Micheletta, J. Facial expression in nonhuman animals. Emot. Rev. 2013, 5, 54–59. [Google Scholar] [CrossRef]
- Diogo, R.; Wood, B.; Diogo, R.; Wood, B. Origin and evolution of primate and human muscles, anatomical variations and anomalies, and evolutionary developmental biology. In Evolutionary Developmental Anthropology; Boughner, J., Rolian, C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 167–174. [Google Scholar]
- Defensor, E.B.; Corley, M.J.; Blanchard, R.J.; Blanchard, D.C. Facial expressions of mice in aggressive and fearful contexts. Physiol. Behav. 2012, 107, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, E.; Minero, M.; Lebelt, D.; Stucke, D.; Canali, E.; Leach, M.C. Development of the horse grimace scale (hgs) as a pain assessment tool in horses undergoing routine castration. PLoS ONE 2014, 9, e92281. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.T.; Mogil, J.S. Ontogeny and phylogeny of facial expression of pain. Pain 2015, 156, 798–799. [Google Scholar] [CrossRef]
- Dalla Costa, E.; Pascuzzo, R.; Leach, M.C.; Dai, F.; Lebelt, D.; Vantini, S.; Minero, M. Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier. PLoS ONE 2018, 13, e0200339. [Google Scholar] [CrossRef]
- Reid, J.; Scott, M.; Nolan, A.; Wiseman-Orr, L. Pain assessment in animals. Practice 2013, 35, 51. [Google Scholar] [CrossRef]
- Dalla Costa, E.; Stucke, D.; Dai, F.; Minero, M.; Leach, M.C.; Lebelt, D. Using the horse grimace scale (hgs) to assess pain associated with acute laminitis in horses (equus caballus). Animals 2016, 6, 47. [Google Scholar] [CrossRef]
- Zhang, E.Q.; Leung, V.S.Y.; Pang, D.S.J. Influence of rater training on inter- and intrarater reliability when using the rat grimace scale. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 178–183. [Google Scholar] [CrossRef]
- Dalla Costa, E.; Bracci, D.; Dai, F.; Lebelt, D.; Minero, M. Do different emotional states affect the horse grimace scale score? A pilot study. J. Equine Vet. Sci. 2017, 54, 114–117. [Google Scholar] [CrossRef]
- Matsumiya, L.C.; Sorge, R.E.; Sotocinal, S.G.; Tabaka, J.M.; Wieskopf, J.S.; Zaloum, A.; King, O.D.; Mogil, J.S. Using the mouse grimace scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2012, 51, 42–49. [Google Scholar] [PubMed]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [PubMed]
- Saine, L.; Hélie, P.; Vachon, P. Effects of fentanyl on pain and motor behaviors following a collagenase-induced intracerebral hemorrhage in rats. J. Pain Res. 2016, 9, 1039–1048. [Google Scholar] [CrossRef]
- Long, H.; Liao, L.; Gao, M.; Ma, W.; Zhou, Y.; Jian, F.; Wang, Y.; Lai, W. Periodontal cgrp contributes to orofacial pain following experimental tooth movement in rats. Neuropeptides 2015, 52, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Eguchi, S.; Iwata, H.; Yamanaka, D.; Tateiwa, H.; Locatelli, F.M.; Yokoyama, M. Effects and underlying mechanisms of endotoxemia on post-incisional pain in rats. Life Sci. 2016, 148, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.C.J.; Thomas, A.A.; Flecknell, P.A.; Leach, M.C. Evaluation of emla cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PLoS ONE 2012, 7, e44437. [Google Scholar] [CrossRef]
- Leach, M.; Allweiler, S.; Richardson, C.; Roughan, J.; Narbe, R.; Flecknell, P. Behavioural effects of ovariohysterectomy and oral administration of meloxicam in laboratory housed rabbits. Res. Vet. Sci. 2009, 87, 336–347. [Google Scholar] [CrossRef]
- Amit, Z.; Galina, Z.H. Stress induced analgesia plays an adaptive role in the organization of behavioral responding. Brain Res. Bull. 1988, 21, 955–958. [Google Scholar] [CrossRef]
- Jacobson, R. Stress-induced analgesia. Edited by M. D. Tricklebank and G. Curzon. Chichester: John wiley. 1984. Pp. 194. Br. J. Psychiatry 1985, 146, 676–677. [Google Scholar] [CrossRef]
- Watkins, L.R.; Mayer, D.J. Organization of endogenous opiate and nonopiate pain control systems. Science 1982, 216, 1185–1192. [Google Scholar] [CrossRef]
- Stasiak, K.L.; Maul, D.; French, E.; Hellyer, P.W.; VandeWoude, S. Species-specific assessment of pain in laboratory animals. Contemp. Top. Lab. Anim. Sci. 2003, 42, 13–20. [Google Scholar] [PubMed]
- Jirkof, P.; Fleischmann, T.; Cesarovic, N.; Rettich, A.; Vogel, J.; Arras, M. Assessment of postsurgical distress and pain in laboratory mice by nest complexity scoring. Lab. Anim. 2013, 47, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Oliver, V.L.; Thurston, S.E.; Lofgren, J.L. Using cageside measures to evaluate analgesic efficacy in mice (mus musculus) after surgery. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2018, 57, 186–201. [Google Scholar]
- Rock, M.L.; Karas, A.Z.; Rodriguez, K.B.; Gallo, M.S.; Pritchett-Corning, K.; Karas, R.H.; Aronovitz, M.; Gaskill, B.N. The time-to-integrate-to-nest test as an indicator of wellbeing in laboratory mice. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2014, 53, 24–28. [Google Scholar] [PubMed]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods used to evaluate pain behaviors in rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef]
- Leung, V.S.Y.; Benoit-Biancamano, M.O.; Pang, D.S.J. Performance of behavioral assays: The rat grimace scale, burrowing activity and a composite behavior score to identify visceral pain in an acute and chronic colitis model. Pain Rep. 2019, 4, e718. [Google Scholar] [CrossRef]
- Miller, A.L.; Golledge, H.D.; Leach, M.C. The influence of isoflurane anaesthesia on the rat grimace scale. PLoS ONE 2016, 11, e0166652. [Google Scholar] [CrossRef]
- Miller, A.L.; Leach, M.C. Using the mouse grimace scale to assess pain associated with routine ear notching and the effect of analgesia in laboratory mice. Lab. Anim. 2015, 49, 117–120. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Leach, M.C.; Preston, F.L.; Lymn, K.A.; Howarth, G.S. Effects of acute chemotherapy-induced mucositis on spontaneous behaviour and the grimace scale in laboratory rats. Lab. Anim. 2016, 50, 108–118. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Howarth, G.S. Use of spontaneous behaviour measures to assess pain in laboratory rats and mice: How are we progressing? Appl. Anim. Behav. Sci. 2014, 151, 1–12. [Google Scholar] [CrossRef]
- Oliver, V.; De Rantere, D.; Ritchie, R.; Chisholm, J.; Hecker, K.G.; Pang, D.S.J. Psychometric assessment of the rat grimace scale and development of an analgesic intervention score. PLoS ONE 2014, 9, e97882. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C.J.A.B. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef]
- Rutherford, K.M.D. Assessing pain in animals. Anim. Welf. 2002, 11, 31–53. [Google Scholar]
- Dunbar, M.L.; David, E.M.; Aline, M.R.; Lofgren, J.L. Validation of a behavioral ethogram for assessing postoperative pain in guinea pigs (cavia porcellus). J. Am. Assoc. Lab. Anim. Sci. JAALAS 2016, 55, 29–34. [Google Scholar]
- Gleerup, K. Identifying Pain Behaviors in Dairy Cattle. WCDS Adv. Dairy Technol. 2017, 55, 231–239. [Google Scholar]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Goldberg, M.E. Pain recognition and scales for livestock patients. J. Dairy Vet. Anim. Res. 2018, 7, 236–239. [Google Scholar] [CrossRef]
- Miller, A.L.; Leach, M.C. The effect of handling method on the mouse grimace scale in two strains of laboratory mice. Lab. Anim. 2016, 50, 305–307. [Google Scholar] [CrossRef]
- Müller, B.R.; Soriano, V.S.; Bellio, J.C.B.; Molento, C.F.M. Facial expression of pain in nellore and crossbred beef cattle. J. Vet. Behav. 2019, 34, 60–65. [Google Scholar] [CrossRef]
- Roelvink, M.E.; Goossens, L.; Kalsbeek, H.C.; Wensing, T. Analgesic and spasmolytic effects of dipyrone, hyoscine-n-butylbromide and a combination of the two in ponies. Vet. Rec. 1991, 129, 378–380. [Google Scholar] [CrossRef]
- Häger, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Müller, C.W.; Decker, S.; et al. The sheep grimace scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [PubMed]
- Stahlbaum, C.C.; Houpt, K.A.J.P. The role of the flehmen response in the behavioral repertoire of the stallion. Physiol. Behav. 1989, 45, 1207–1214. [Google Scholar] [CrossRef]
- Pritchett, L.; Ulibarri, C.; Roberts, M.; Schneider, R.; Sellon, D. Identification of potential physiological and behavioral indicators of postoperative pain in horses after exploratory celiotomy for colic. Appl. Anim. Behav. Sci. Appl. Anim. Behav. Sci. 2003, 80, 31–43. [Google Scholar] [CrossRef]
- Mogil, J.S.; Crager, S.E. What should we be measuring in behavioral studies of chronic pain in animals? Pain 2004, 112, 12–15. [Google Scholar] [CrossRef]
- Stafford, K. Recognition and assessment of pain in ruminants. Pain Manag. Vet. Pract. 2013, 8, 349–357. [Google Scholar]
- Miller, A.L.; Leach, M.C. The mouse grimace scale: A clinically useful tool? PLoS ONE 2015, 10, e0136000. [Google Scholar] [CrossRef]
- Leach, M.C.; Klaus, K.; Miller, A.L.; Scotto di Perrotolo, M.; Sotocinal, S.G.; Flecknell, P.A. The assessment of post-vasectomy pain in mice using behaviour and the mouse grimace scale. PLoS ONE 2012, 7, e35656. [Google Scholar] [CrossRef]
- Roughan, J.V.; Bertrand, H.G.M.J.; Isles, H.M. Meloxicam prevents cox-2-mediated post-surgical inflammation but not pain following laparotomy in mice. Eur. J. Pain 2016, 20, 231–240. [Google Scholar] [CrossRef]
- Oliver, V.L.; Athavale, S.; Simon, K.E.; Kendall, L.V.; Nemzek, J.A.; Lofgren, J.L. Evaluation of pain assessment techniques and analgesia efficacy in a female guinea pig (cavia porcellus) model of surgical pain. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2017, 56, 425–435. [Google Scholar]
- Earley, B.; Buckham-Sporer, K.; Gupta, S.; Pang, W.Y.; Ting, S. Biologic response of animals to husbandry stress with implications for biomedical models. Open Access Anim. Physiol. 2010, 2, 25–42. [Google Scholar] [CrossRef]
- Nicol, C. The biology of animal stress: Basic principles and implications for animal welfare: G.P. Moberg, J.A. Mench. (eds.), cab international, wallingford, uk, 2000, 377 pp., uk£ 55.00, us$ 100.00, isbn 0-85199-359-1 (hard cover). Appl. Anim. Behav. Sci. 2001, 72, 375–378. [Google Scholar] [CrossRef]
- Descovich, K.A.; Wathan, J.; Leach, M.C.; Buchanan-Smith, H.M.; Flecknell, P.; Farningham, D.; Vick, S.J. Facial expression: An under-utilised tool for the assessment of welfare in mammals. Altex 2017, 34, 409–429. [Google Scholar] [CrossRef] [PubMed]
- McLennan, K.M.; Rebelo, C.J.B.; Corke, M.J.; Holmes, M.A.; Leach, M.C.; Constantino-Casas, F. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 2016, 176, 19–26. [Google Scholar] [CrossRef]
- Mittal, A.; Gupta, M.; Lamarre, Y.; Jahagirdar, B.; Gupta, K. Quantification of pain in sickle mice using facial expressions and body measurements. Blood Cells Mol. Dis. 2016, 57, 58–66. [Google Scholar] [CrossRef]
- Fourichon, C.; Seegers, H.; Bareille, N.; Beaudeau, F. Effects of disease on milk production in the dairy cow: A review. Prev. Vet. Med. 1999, 41, 1–35. [Google Scholar] [CrossRef]
- Gleerup, K.B.; Andersen, P.H.; Munksgaard, L.; Forkman, B. Pain evaluation in dairy cattle. Appl. Anim. Behav. Sci. 2015, 171, 25–32. [Google Scholar] [CrossRef]
- Minero, M.; Dalla Costa, E.; Dai, F.; Murray, L.; Canali, E.; Wemelsfelder, F. Use of qualitative behaviour assessment as an indicator of welfare in donkeys. Appl. Anim. Behav. Sci. 2015, 174, 147–153. [Google Scholar] [CrossRef]
- Van Loon, J.P.A.M.; Van Dierendonck, M.C. Objective pain assessment in horses (2014–2018). Vet. J. 2018, 242, 1–7. [Google Scholar] [CrossRef]
- Gigliuto, C.; De Gregori, M.; Malafoglia, V.; Raffaeli, W.; Compagnone, C.; Visai, L.; Petrini, P.; Avanzini, M.A.; Muscoli, C.; Viganò, J.; et al. Pain assessment in animal models: Do we need further studies? J. Pain Res. 2014, 7, 227–236. [Google Scholar]
- Molony, V.; Kent, J. Assessment of acute pain in farm animals using behavioral and physiological measurements. J. Anim. Sci. 1997, 75, 266–272. [Google Scholar] [CrossRef]
- Ellen, Y.; Flecknell, P.; Leach, M. Evaluation of using behavioural changes to assess post-operative pain in the guinea pig (cavia porcellus). PLoS ONE 2016, 11, e0161941. [Google Scholar] [CrossRef] [PubMed]
- Viscardi, A.V.; Turner, P.V. Use of meloxicam or ketoprofen for piglet pain control following surgical castration. Front. Vet. Sci. 2018, 5, 299. [Google Scholar] [CrossRef] [PubMed]
- van Loon, J.P.; Van Dierendonck, M.C. Monitoring acute equine visceral pain with the equine utrecht university scale for composite pain assessment (equus-compass) and the equine utrecht university scale for facial assessment of pain (equus-fap): A scale-construction study. Vet. J. 2015, 206, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Ison, S.H.; Clutton, R.E.; Di Giminiani, P.; Rutherford, K.M.D. A review of pain assessment in pigs. Front. Vet. Sci. 2016, 3, 108. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, K.; Lampe, J.F.; Hintze, S.; Würbel, H.; Melotti, L. Facial indicators of positive emotions in rats. PLoS ONE 2016, 11, e0166446. [Google Scholar] [CrossRef]
- Schneider, L.E.; Henley, K.Y.; Turner, O.A.; Pat, B.; Niedzielko, T.L.; Floyd, C.L. Application of the rat grimace scale as a marker of supraspinal pain sensation after cervical spinal cord injury. J. Neurotrauma. 2017, 34, 2982–2993. [Google Scholar] [CrossRef]
- Hampshire, V.; Robertson, S. Using the facial grimace scale to evaluate rabbit wellness in post-procedural monitoring. Lab. Anim. 2015, 44, 259–260. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Measuring facial movement. Environ. Psychol. Nonverbal Behav. 1976, 1, 56–75. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. The repertoire of nonverbal behavior: Categories, origins, usage, and coding. Nonverbal Commun. Interact. Gesture 1969, 1, 57–106. [Google Scholar] [CrossRef]
- Ekman, P.A.R.E. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (Facs), 2nd ed.; Oxford University Press: New York, NY, USA, 2005; p. 639. [Google Scholar]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; LaCroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef]
- Evangelista, M.C.; Watanabe, R.; Leung, V.S.Y.; Monteiro, B.P.; O’Toole, E.; Pang, D.S.J.; Steagall, P.V. Facial expressions of pain in cats: The development and validation of a feline grimace scale. Sci. Rep. 2019, 9, 19128. [Google Scholar] [CrossRef] [PubMed]
- Gleerup, K.B.; Forkman, B.; Lindegaard, C.; Andersen, P.H. An equine pain face. Vet. Anaesth. Analg. 2015, 42, 103–114. [Google Scholar] [CrossRef] [PubMed]
- De Rantere, D.; Schuster, C.J.; Reimer, J.N.; Pang, D.S. The relationship between the rat grimace scale and mechanical hypersensitivity testing in three experimental pain models. Eur. J. Pain 2016, 20, 417–426. [Google Scholar] [CrossRef]
- Marcantonio Coneglian, M.; Duarte Borges, T.; Weber, S.H.; Godoi Bertagnon, H.; Michelotto, P.V. Use of the horse grimace scale to identify and quantify pain due to dental disorders in horses. Appl. Anim. Behav. Sci. 2020, 225, 104970. [Google Scholar] [CrossRef]
- van Loon, J.; Dierendonck, M. Monitoring equine head-related pain with the equine utrecht university scale for facial assessment of pain (equus-fap). Vet. J. 2017, 220, 88–90. [Google Scholar] [CrossRef]
- Reijgwart, M.L.; Schoemaker, N.J.; Pascuzzo, R.; Leach, M.C.; Stodel, M.; de Nies, L.; Hendriksen, C.F.M.; van der Meer, M.; Vinke, C.M.; van Zeeland, Y.R.A. The composition and initial evaluation of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 2017, 12, e0187986. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Leach, M.; Minot, E.O.; Stewart, M.; Stafford, K.J. Coding and quantification of a facial expression for pain in lambs. Behav. Process. 2016, 132, 49–56. [Google Scholar] [CrossRef]
- Akintola, T.; Raver, C.; Studlack, P.; Uddin, O.; Masri, R.; Keller, A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol. Pain 2017, 2, 13–17. [Google Scholar] [CrossRef]
- Cho, C.; Michailidis, V.; Lecker, I.; Collymore, C.; Hanwell, D.; Loka, M.; Danesh, M.; Pham, C.; Urban, P.; Bonin, R.P.; et al. Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci. Rep. 2019, 9, 359. [Google Scholar] [CrossRef]
- Faller, K.M.E.; McAndrew, D.J.; Schneider, J.E.; Lygate, C.A. Refinement of analgesia following thoracotomy and experimental myocardial infarction using the mouse grimace scale. Exp. Physiol. 2015, 100, 164–172. [Google Scholar] [CrossRef]
- Miller, A.L.; Kitson, G.L.; Skalkoyannis, B.; Flecknell, P.A.; Leach, M.C. Using the mouse grimace scale and behaviour to assess pain in cba mice following vasectomy. Appl. Anim. Behav. Sci. 2016, 181, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Rossi, H.L.; See, L.P.; Foster, W.; Pitake, S.; Gibbs, J.; Schmidt, B.; Mitchell, C.H.; Abdus-Saboor, I. Evoked and spontaneous pain assessment during tooth pulp injury. Sci. Rep. 2020, 10, 2759. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.N.; Mogil, J.S. The Measurement of Pain in the Laboratory Rodent; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Vullo, C.; Barbieri, S.; Catone, G.; Graïc, J.-M.; Magaletti, M.; Di Rosa, A.; Motta, A.; Tremolada, C.; Canali, E.; Dalla Costa, E. Is the piglet grimace scale (pgs) a useful welfare indicator to assess pain after cryptorchidectomy in growing pigs? Animals 2020, 10, 412. [Google Scholar] [CrossRef]
- Di Giminiani, P.; Brierley, V.L.M.H.; Scollo, A.; Gottardo, F.; Malcolm, E.M.; Edwards, S.A.; Leach, M.C. The assessment of facial expressions in piglets undergoing tail docking and castration: Toward the development of the piglet grimace scale. Front. Vet. Sci. 2016, 3, 100. [Google Scholar] [CrossRef]
- Viscardi, A.V.; Hunniford, M.; Lawlis, P.; Leach, M.; Turner, P.V. Development of a piglet grimace scale to evaluate piglet pain using facial expressions following castration and tail docking: A pilot study. Front. Vet. Sci. 2017, 4, 51. [Google Scholar] [CrossRef]
- Viscardi, A.V.; Turner, P.V.J.B.V.R. Efficacy of buprenorphine for management of surgical castration pain in piglets. BMC Vet. Res. 2018, 14, 318. [Google Scholar] [CrossRef] [PubMed]
- Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of trpa1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience 2015, 310, 206–215. [Google Scholar] [CrossRef]
- Chi, H.; Kawano, T.; Tamura, T.; Iwata, H.; Takahashi, Y.; Eguchi, S.; Yamazaki, F.; Kumagai, N.; Yokoyama, M. Postoperative pain impairs subsequent performance on a spatial memory task via effects on n-methyl-d-aspartate receptor in aged rats. Life Sci. 2013, 93, 986–993. [Google Scholar] [CrossRef]
- Iqbal, S.M.; Leonard, C.; Regmi, S.C.; De Rantere, D.; Tailor, P.; Ren, G.; Ishida, H.; Hsu, C.; Abubacker, S.; Pang, D.S.; et al. Lubricin/proteoglycan 4 binds to and regulates the activity of toll-like receptors in vitro. Sci. Rep. 2016, 6, 18910. [Google Scholar] [CrossRef]
- Jeger, V.; Arrigo, M.; Hildenbrand, F.F.; Müller, D.; Jirkof, P.; Hauffe, T.; Seifert, B.; Arras, M.; Spahn, D.R.; Bettex, D.; et al. Improving animal welfare using continuous nalbuphine infusion in a long-term rat model of sepsis. Intensive. Care Med. Exp. 2017, 5, 23. [Google Scholar] [CrossRef]
- Kawano, T.; Takahashi, T.; Iwata, H.; Morikawa, A.; Imori, S.; Waki, S.; Tamura, T.; Yamazaki, F.; Eguchi, S.; Kumagai, N.; et al. Effects of ketoprofen for prevention of postoperative cognitive dysfunction in aged rats. J. Anesth. 2014, 28, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Khoo, S.Y.; Lay, B.P.P.; Joya, J.; McNally, G.P. Local anaesthetic refinement of pentobarbital euthanasia reduces abdominal writhing without affecting immunohistochemical endpoints in rats. Lab. Anim. 2018, 52, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Long, H.; Ma, W.; Liao, L.; Yang, X.; Zhou, Y.; Shan, D.; Huang, R.; Jian, F.; Wang, Y.; et al. The role of periodontal asic3 in orofacial pain induced by experimental tooth movement in rats. Eur. J. Orthod. 2016, 38, 577–583. [Google Scholar] [CrossRef]
- Gao, Z.; Cui, F.; Cao, X.; Wang, D.; Li, X.; Li, T. Local infiltration of the surgical wounds with levobupivacaine, dexibuprofen, and norepinephrine to reduce postoperative pain: A randomized, vehicle-controlled, and preclinical study. Biomed. Pharm. 2017, 92, 459–467. [Google Scholar] [CrossRef]
- Philips, B.H.; Weisshaar, C.L.; Winkelstein, B.A. Use of the rat grimace scale to evaluate neuropathic pain in a model of cervical radiculopathy. Comp. Med. 2017, 67, 34–42. [Google Scholar] [PubMed]
- Préfontaine, L.; Hélie, P.; Vachon, P. Postoperative pain in sprague dawley rats after liver biopsy by laparotomy versus laparoscopy. Lab. Anim. 2015, 44, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Sperry, M.M.; Yu, Y.-H.; Welch, R.L.; Granquist, E.J.; Winkelstein, B.A. Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model. Sci. Rep. 2018, 8, 13894. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Sperry, M.; Winkelstein, B.; Granquist, E. Using the Rat Grimace Scale to Detect Orofacial Pain in Mechanically-Induced Temporomandibular Joint Pain in Rats. Master’s Thesis, University of Pennsylvania Scholarly Commons, Philadelphia, PA, USA, 2018. [Google Scholar]
- Waite, M.E.; Tomkovich, A.; Quinn, T.L.; Schumann, A.P.; Dewberry, L.S.; Totsch, S.K.; Sorge, R.E. Efficacy of common analgesics for postsurgical pain in rats. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2015, 54, 420–425. [Google Scholar]
- Liao, L.; Long, H.; Zhang, L.; Chen, H.; Zhou, Y.; Ye, N.; Lai, W. Evaluation of pain in rats through facial expression following experimental tooth movement. Eur. J. Oral. Sci. 2014, 122, 121–124. [Google Scholar] [CrossRef]
- Fujita, M.; Fukuda, T.; Sato, Y.; Takasusuki, T.; Tanaka, M. Allopregnanolone suppresses mechanical allodynia and internalization of neurokinin-1 receptors at the spinal dorsal horn in a rat postoperative pain model. Korean J. Pain 2018, 31, 10–15. [Google Scholar] [CrossRef]
- Farrar, J.T.; Young, J.P., Jr.; LaMoreaux, L.; Werth, J.L.; Poole, R.M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef]
- Andresen, N.; Wöllhaf, M.; Hohlbaum, K.; Lewejohann, L.; Hellwich, O.; Thöne-Reineke, C.; Belik, V. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS ONE 2020, 15, e0228059. [Google Scholar] [CrossRef] [PubMed]
- Ernst, L.; Kopaczka, M.; Schulz, M.; Talbot, S.R.; Zieglowski, L.; Meyer, M.; Bruch, S.; Merhof, D.; Tolba, R.H. Improvement of the mouse grimace scale set-up for implementing a semi-automated mouse grimace scale scoring (part 1). Lab. Anim. 2020, 54, 83–91. [Google Scholar] [CrossRef] [PubMed]
| Species | Validated * | Specific To Pain | Dose-Dependent Relationship | Real-Time | Easy To Train | Acute Pain | Chronic Pain | Visceral Pain | Publications |
|---|---|---|---|---|---|---|---|---|---|
| Cattle | Y | Y | Y | Y | Y | Y | Y | N/R | [7,8,64,68,85] |
| Equine | Y | Y | Y | Y | Y | Y | N/R | Y | [33,35,37,39,87,92,102,104,105] |
| Feline | Y | Y | N/R | Y | Y | Y | N/R | N/R | [101] |
| Ferret | N/R | Y | N/R | Y | Y | Y | N/R | N/R | [106] |
| Guinea Pig | N/R | N/R | N/R | N/R | N/R | N/R | N/R | N/R | [63,78,90] |
| Lamb | Y | Y | N/R | Y | Y | Y | N/R | N/R | [107] |
| Mouse | Y | Y | Y | Y | Y | Y | Y | Y | [3,35,40,57,67,76,77,83,100,108,109,110,111,112,113] |
| Pig | Y | Y | N/R | Y | Y | Y | N/R | N/R | [114] |
| Piglet | Y | Y | Y | Y | Y | Y | N/R | N/R | [91,115,116,117] |
| Rabbit | Y | Y | Y | Y | Y | Y | N/R | N/R | [24,28,45,96] |
| Rat | Y | Y | Y | Y | Y | Y | Y | Y | [41,42,43,44,55,60,94,95,103,113,118,119,120,121,122,123,124,125,126,127,128,129,130] |
| Sheep | Y | Y | Y | Y | Y | Y | Y | N/R | [70,82] |
| Facial Action Unit or Indicator | Species |
|---|---|
| Orbital Tightening and/or Change in Orbital Area | Cattle [68,85] Equine [33,102] Feline [101] Ferret [106] Lamb [107] Pig [114] Piglet [116] Mouse [100] Rabbit [45] Rat [41] Sheep [70,82] |
| Cheek Tightening or Flattening | Cattle [68,85] Equine [33] Lamb [107] Pig [114] Piglet [116] Sheep [70,82] Rabbit [45] Rat [41] |
| Cheek Bulge | Ferret [106] Mouse [100] |
| Nose Bulge | Ferret [106] Mouse [100] Pig [114] Piglet [116] Rabbit [45] |
| Nose Flattening | Equine [33] Lamb [107] Rat [41] |
| Lowered Head Carriage | Equine [33,102] Cattle [68,85] Feline [101] Sheep [70] |
| Lip curling | Equine [92] Sheep [70] |
| Abnormal Nostril or Philtrum shape | Cattle [68,85] Equine [33,102] Lamb [107] Rabbit [45] Sheep [70] |
| Eye Rolling | Cattle [68] |
| Ear Position | Cattle [68] Equine [33,102] Feline [101] Ferret [106] Lamb [107] Mouse [100] Pig [114] Piglet [116] Rabbits [45] Sheep [70,82] |
| Whisker Position | Feline [101] Ferret [106] Mouse [100] Rabbit [45] Rat [41] |
| Abnormal Lip or mouth shape | Equine [33,102] Feline [101] Lamb [107] Sheep [70] |
| Open Mouth +/− Tongue Extruded | Cattle [68] |
| Pain or Study Type | Species |
|---|---|
| Visceral | Cattle [85] Equine [92] Mouse [100] Rat [44,55,121,123] |
| Chronic | Mouse [108] Rat [55,120,128,129] |
| Acute | Equine [33,35,37,102,105] Cattle Gleerup [68,85] Ferret [106] Lamb [107] Mouse [35,40,76,77,100,109,110,111] Pig [114] Piglet [91,115,116,117] Rabbit [28,45] Rat [41,43,44,55,60,95,103,118,120,122,123,124,125,126,127,128,129,130,131,132] Sheep [70,82] |
| Neuropathic | Mouse [108] Rats [95,126] |
| Soft Tissues Surgery | Equine [33,35] Ferret [106] Lamb [107] Mouse [40,76,77,111] Pig [114] Piglet [115,116,117] Rabbit [28] Rat [41,44,60,125,127,130,132] |
| Orthopaedic Surgery | Mouse [109,110] Sheep [70] |
| Surgical, Mechanical, Branding, or Hypersensitivity Injury | Equine [102] Cattle [68] Mouse [100,112] Rabbit [45] Rat [41,103] |
| Dental | Equine [104,105] Mouse [112] Rat [43,124,128,129,131] |
| Stifle injury | Mouse [100] Rat [120] |
| Intraplantar CFA | Rat [41,103,118] |
| Intracerebral Haemorrhage | Rat [42] |
| Head and Ocular Pain | Mouse [109] Equine [105] |
| Footrot | Sheep [82] |
| Mastitis | Cattle [85] Sheep [82] |
| Lameness | Cattle [85] Sheep [44,82,118,130,132] |
| Sickle Anaemia | Mouse [83] |
| Cold hypersensitivity | Mouse [83] |
| Myocardial Infarction | Mouse [110] |
| Laminitis | Equine [37] |
| Cystitis | Mouse [100] |
| Sepsis | Rat [121] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, S.; Beths, T. Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals 2020, 10, 1726. https://doi.org/10.3390/ani10101726
Cohen S, Beths T. Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals. 2020; 10(10):1726. https://doi.org/10.3390/ani10101726
Chicago/Turabian StyleCohen, Shari, and Thierry Beths. 2020. "Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research" Animals 10, no. 10: 1726. https://doi.org/10.3390/ani10101726
APA StyleCohen, S., & Beths, T. (2020). Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals, 10(10), 1726. https://doi.org/10.3390/ani10101726

