Next Article in Journal
Effects of Calcium Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake, Nutrient Digestibility, Milk Production, and Milk Composition in Dairy Goats
Previous Article in Journal
Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research
Open AccessArticle

Starch-Rich Diet Induced Rumen Acidosis and Hindgut Dysbiosis in Dairy Cows of Different Lactations

1
Unit of Food Microbiology, Institute of Food Safety, Food Technology, and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
2
FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 3430 Tulln, Austria
3
Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
4
Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria
5
BIOMIN Research Center, BIOMIN Holding GmbH, 3430 Tulln, Austria
6
University Clinic for Ruminants, University of Veterinary Medicine, 1210 Vienna, Austria
*
Author to whom correspondence should be addressed.
Animals 2020, 10(10), 1727; https://doi.org/10.3390/ani10101727
Received: 5 August 2020 / Revised: 17 September 2020 / Accepted: 19 September 2020 / Published: 23 September 2020
(This article belongs to the Section Animal Nutrition)
High-producing dairy cows receive high-energy diets for maintenance and production. This study showed that 60% concentrate in the diet, containing 27.7% starch, changed the fecal-microbial community and lowered its diversity, suggesting hindgut dysbiosis. Both ruminal and fecal pH decreased with high-starch feeding, which suggests further investigations in fecal pH as rumen- and hindgut-acidosis diagnostic tool. Cows in the third lactation spent more time below the threshold for subacute-ruminal acidosis (pH 6.0) than second or fourth-or-below lactation cows. Their higher susceptibility was caused by their high dry matter intake but missing counter-regulation by increased rumination activity. Further, we suggest that body weight and rumen size might play a role in the absorptive capacity of short-chain fatty acids. The study also identified indicator-bacterial phylotypes that changed with starch-rich diet and lactation number. In conclusion, we suggest including lactation number as a factor in practical feeding management for identification of high risk-cows for acidosis, and in dairy cow research.
Starch-rich diets can cause subacute ruminal acidosis (SARA) in dairy cows with potentially different susceptibility according to lactation number. We wanted to evaluate the bacterial community and the fermentation end products in feces to study susceptibility to hindgut acidosis and dysbiosis. Sixteen dairy cows received a medium-concentrate diet (MC, 40% concentrate, 18.8% starch) for one week and a high-concentrate diet (HC, 60% concentrate, 27.7% starch, DM) for four weeks. Milk yield, dry-matter intake, chewing activity, ruminal pH, milk constituents, and fecal samples for short-chain fatty acids (SCFA), pH, and 16S rRNA-gene sequencing were investigated. The HC feeding caused a reduction in fecal pH, bacterial diversity and richness, an increase in total SCFA, and a separate phylogenetic clustering of MC and HC samples. Ruminal and fecal pH had fair correlation (r = 0.5). Cows in the second lactation (2ndL) had lower dry matter intake (DMI) than cows of third or fourth or more lactations (3rdL; ≥4 L), whereas DMI/kg body weight was lower for ≥4 L than for 2ndL and 3rdL cows. The mean ruminal pH was highest in ≥4 L, whereas the time spent below the SARA threshold was highest for 3rdL cows. The latter also had higher total SCFA in the feces. Our results suggest that hindgut dysbiosis is caused by increased substrate flow to the hindgut, but further investigations are needed to define hindgut acidosis. The 3rdL cows were most susceptible to rumen acidosis and hindgut dysbiosis due to high DMI level, but missing counter regulations, as suggested happening in 2ndL and ≥4 L cows. View Full-Text
Keywords: fecal-microbiome; fecal-pH; hindgut-acidosis; subacute-rumen-acidosis; short-chain-fatty-acids; parity; high-concentrate fecal-microbiome; fecal-pH; hindgut-acidosis; subacute-rumen-acidosis; short-chain-fatty-acids; parity; high-concentrate
Show Figures

Figure 1

MDPI and ACS Style

Neubauer, V.; Petri, R.M.; Humer, E.; Kröger, I.; Reisinger, N.; Baumgartner, W.; Wagner, M.; Zebeli, Q. Starch-Rich Diet Induced Rumen Acidosis and Hindgut Dysbiosis in Dairy Cows of Different Lactations. Animals 2020, 10, 1727.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop