Intestinal Flora of Captive Animals Provides Insights for Comprehensive Conservation

A special issue of Journal of Zoological and Botanical Gardens (ISSN 2673-5636).

Deadline for manuscript submissions: 31 October 2026 | Viewed by 96

Special Issue Editors


E-Mail Website
Guest Editor
College of Life Sciences, Tianjin Normal University, Tianjin, China
Interests: animal conservation; animal physiology; animal behavior; nutritional ecology

E-Mail Website
Guest Editor
College of Life Sciences, Tianjin Normal University, Tianjin, China
Interests: animal health; animal well-being; birds

Special Issue Information

Dear Colleagues,

Zoos and aquariums serve as key institutions for the ex situ conservation and relocation of some wildlife, particularly endangered species. The health status of animals under ex situ conservation is of critical importance, and monitoring such health conditions requires reliable biological indicators. The intestinal microbiota shares a close symbiotic relationship with its host and can, to a significant extent, serve as an effective indicator of host physiological health. Numerous factors influence the composition of animal gut microbiota, including diet, age, sex, and environmental conditions. Given these influences, gut microbiota analysis presents a valuable tool for assessing the health and well-being of captive animals across diverse environments. This Special Issue aims to highlight recent scientific advances in the study of gut microbiota of captive species living at zoos and aquariums. Topics of interest include, but are not limited to, the impact of natural and anthropogenic environmental factors on gut microbial communities, seasonal variations on gut microbiota, diet–microbiota interactions, behavior–microbiota relationships, and the identification of unique or specialized microbial taxa in captive animals. Furthermore, submissions presenting novel methodologies or innovative applications in the field of animal gut microbiome research are also strongly encouraged. All contributions within this Special Issue will support the overarching goal of enhancing the holistic management and conservation of captive animal populations in the future.

Prof. Dr. Dapeng Zhao
Dr. Hong Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Zoological and Botanical Gardens is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal health
  • diversity of gut microbiota
  • behaviour–physiology interactions
  • diet-health relationships
  • environmental effects
  • ex situ conservation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 6458 KB  
Article
Effects of Different Feed Types on Intestinal Microbial Community Diversity and Intestinal Development of Newborn Siamese Crocodiles
by Xinxin Zhang, Jie Wu, Chong Wang, Fuyong You, Peng Liu, Yuan Zhang, Shaofan Li, Yongkang Zhou, Yingchao Wang, Xiaobing Wu and Haitao Nie
J. Zool. Bot. Gard. 2026, 7(1), 1; https://doi.org/10.3390/jzbg7010001 - 23 Dec 2025
Abstract
Conventional alligator farming, characterized by reliance on chilled fish meat, faces significant challenges, including risks of bacterial contamination and nutritional imbalances. These issues heighten increasing disease susceptibility and threaten industry sustainability, underscoring the critical need for developing nutrient-dense, low-pathogenicity compound feeds. This study [...] Read more.
Conventional alligator farming, characterized by reliance on chilled fish meat, faces significant challenges, including risks of bacterial contamination and nutritional imbalances. These issues heighten increasing disease susceptibility and threaten industry sustainability, underscoring the critical need for developing nutrient-dense, low-pathogenicity compound feeds. This study conducted a comparative analysis of newborn Siamese crocodiles fed either chilled fish meat or compound feed formulation. Intestinal microbial samples from both cohorts underwent 16S rRNA gene high-throughput sequencing to evaluate differences in microbial composition, diversity, and predicted functionality. The compound feed, specifically formulated for this investigation, possessed the following nutritional composition: crude protein 52.42%; digestible crude protein/digestible energy 16 mg/kcal; crude fat 12.31%; ash 17.42%; crude fiber 0.45%; starch 7.69%; digestible energy 3450 kcal/kg; lysine 3.66%; threonine 1.92%; methionine 1.27%; arginine 3.07%; total essential amino acids 22.97%; calcium 2.51%; total phosphorus 1.8%; available phosphorus 0.98%. Bioinformatics analysis revealed that the compound feed group exhibited numerically higher richness and alpha diversity indices within the intestinal microbiota compared to the chilled fish group. The microbial communities in both groups were dominated by the phyla Proteobacteria, Bacteroidetes, Fusobacteriota, and Firmicutes, collectively representing over 50% of the relative abundance. Functional prediction indicated that the compound feed group possessed the highest relative abundance in metabolic pathways associated with cofactor and vitamin metabolism, carbohydrate metabolism, amino acid metabolism, terpenoid and polyketide metabolism, lipid metabolism, and replication and repair. In contrast, the chilled fish group exhibited significant functional alterations in glycan biosynthesis and metabolism, translation, nucleotide metabolism, transcription, and biosynthesis of other secondary metabolites. Histomorphological analysis demonstrated greater villus height and crypt depth in the compound diet group compared to chilled fish group, although no significant differences were observed in crypt depth or the villus-to-crypt depth ratio. Collectively, these findings indicate that the compound feed enhances intestinal microbial diversity and optimizes its functional structure. Furthermore, while no statistically significant difference in small intestinal villus height was detected, the results suggest a potential positive influence on intestinal development. This investigation provides a scientific foundation for compound feed development, supporting sustainable breeding practices for Siamese crocodiles. Full article
Show Figures

Figure 1

Back to TopTop