Special Issue "Axioms on Advanced Differential Equations for Mathematical Modeling"

A special issue of Axioms (ISSN 2075-1680).

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Prof. Dr. Ioannis Dassios
Website
Guest Editor
AMPSAS, University College Dublin, D04 Dublin, Ireland
Interests: differential/difference equations; dynamical systems; modelling and stability analysis of electric power systems; mathematics of networks; fractional calculus; mathematical modelling (power systems, materials science, energy, macroeconomics, social media, etc.); optimization for the analysis of large-scale data sets; fluid mechanics; discrete calculus; Bayes control; e-learning
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, many authors have studied problems of a number of different classes of advanced differential equations. The interest in studying advanced differential equations is also caused by the fact that they appear in models of several areas in science.

This Special Issue aims at collecting the latest results on axioms in advanced differential equations and also other areas of Applied Mathematics that are related to them, such as partial differential equations, difference equations, fractional calculus, mathematics of networks, optimization, etc.

These results are expected to be useful for mathematical modeling, and applications in electrical power systems, materials, energy, macroeconomics, etc.

This Special Issue will accept high-quality papers having original research results, and its purpose is to bring together mathematicians with physicists, engineers, as well as other scientists.

Topics covered include but are not limited to:

  • Differential/difference equations
  • Dynamical systems
  • Mathematics of networks
  • Fractional calculus
  • Modelling and stability analysis of power systems
  • Discrete calculus
  • Circuits theory
  • Signal processing
  • Materials science
  • Energy systems
  • Macroeconomics

Prof. Dr. Ioannis Dassios
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Axioms is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • differential equations
  • fractional calculus
  • networks
  • axioms
  • mathematical modeling
  • advanced
  • singular

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
On the Asymptotic Behavior of a Class of Second-Order Non-Linear Neutral Differential Equations with Multiple Delays
Axioms 2020, 9(4), 134; https://doi.org/10.3390/axioms9040134 - 18 Nov 2020
Abstract
In this work, we present some new sufficient conditions for the oscillation of a class of second-order neutral delay differential equation. Our oscillation results, complement, simplify and improve recent results on oscillation theory of this type of non-linear neutral differential equations that appear [...] Read more.
In this work, we present some new sufficient conditions for the oscillation of a class of second-order neutral delay differential equation. Our oscillation results, complement, simplify and improve recent results on oscillation theory of this type of non-linear neutral differential equations that appear in the literature. An example is provided to illustrate the value of the main results. Full article
(This article belongs to the Special Issue Axioms on Advanced Differential Equations for Mathematical Modeling)
Back to TopTop