# Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Models Formulation and Well-Posedness

- (1)
- all coefficients involved in the model are positive constants;
- (2)
- natural birth and death rate are not factors;
- (3)
- true asymptomatic patients will stay asymptomatic until recovery and do not spread the virus;
- (4)
- patients who are temporarily asymptomatic are included on symptomatic ones;
- (5)
- the second infection is not considered in the model;
- (6)
- the Moroccan health system is not overwhelmed.

**Remark**

**1.**

**Remark**

**2.**

**Remark**

**3.**

**Remark**

**4.**

**Theorem**

**1.**

**Proof.**

## 3. Qualitative Analysis of the Models

**Theorem**

**2.**

**Theorem**

**3.**

**Proof.**

## 4. Assessment of Parameters

## 5. Numerical Simulation of Moroccan COVID-19 Evolution

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Crokidakis, N. Modeling the early evolution of the COVID-19 in Brazil: Results from a susceptible-infectious-quarantined-recovered (SIQR) model, Internat. J. Mod. Phys. C
**2020**, 31, 2050135. [Google Scholar] [CrossRef] - Feng, L.-X.; Jing, S.-L.; Hu, S.-K.; Wang, D.-F.; Huo, H.-F. Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK. Math. Biosci. Eng.
**2020**, 17, 3618–3636. [Google Scholar] [CrossRef] - Moussaoui, A.; Auger, P. Prediction of confinement effects on the number of Covid-19 outbreak in Algeria. Math. Model. Nat. Phenom.
**2020**, 15, 14. [Google Scholar] [CrossRef] - Tanaka, Y.; Yokota, T. Blow-up in a parabolic-elliptic Keller-Segel system with density-dependent sublinear sensitivity and logistic source. Math. Methods Appl. Sci.
**2020**, 43, 7372–7396. [Google Scholar] [CrossRef] - Viglialoro, G.; Murcia, J. A singular elliptic problem related to the membrane equilibrium equations. Int. J. Comput. Math.
**2013**, 90, 2185–2196. [Google Scholar] [CrossRef] - Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys.
**2019**, 70, 18. [Google Scholar] [CrossRef][Green Version] - Li, T.; Viglialoro, G. Analysis and explicit solvability of degenerate tensorial problems. Bound. Value Probl.
**2018**, 2018, 13. [Google Scholar] [CrossRef][Green Version] - Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J. Clin. Med.
**2020**, 9, 462. [Google Scholar] [CrossRef][Green Version] - Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet
**2020**, 395, 689–697. [Google Scholar] [CrossRef][Green Version] - Kuniya, T. Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J. Clin. Med.
**2020**, 9, 789. [Google Scholar] [CrossRef][Green Version] - Fanelli, D.; Piazza, F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals
**2020**, 134, 109761. [Google Scholar] [CrossRef] [PubMed] - Ndaïrou, F.; Area, I.; Nieto, J.J.; Torres, D.F.M. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals
**2020**, 135, 109846. [Google Scholar] [CrossRef] [PubMed] - Simha, A.; Prasad, R.V.; Narayana, S. A simple stochastic SIR model for COVID 19 infection dynamics for Karnataka: Learning from Europe. arXiv
**2020**, arXiv:2003.11920. [Google Scholar] - He, S.; Tang, S.; Rong, L. A discrete stochastic model of the COVID-19 outbreak: Forecast and control. Math. Biosci. Eng.
**2020**, 17, 2792–2804. [Google Scholar] [CrossRef] - Bardina, X.; Ferrante, M.; Rovira, C. A stochastic epidemic model of COVID-19 disease. arXiv
**2020**, arXiv:2005.02859. [Google Scholar] [CrossRef] - Hale, J.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Mahrouf, M.; Hattaf, K.; Yousfi, N. Dynamics of a stochastic viral infection model with immune response. Math. Model. Nat. Phenom.
**2017**, 12, 15–32. [Google Scholar] [CrossRef] - Hattaf, K.; Mahrouf, M.; Adnani, J.; Yousfi, N. Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity. Phys. A Stat. Mech. Appl.
**2018**, 490, 591–600. [Google Scholar] [CrossRef] - Dalal, N.; Greenhalgh, D.; Mao, X. A stochastic model of AIDS and condom use. J. Math. Anal. Appl.
**2007**, 325, 36–53. [Google Scholar] [CrossRef][Green Version] - Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. On the definition and the computation of the basic reproduction ratio R
_{0}in models for infectious diseases in heterogeneous populations. J. Math. Biol.**1990**, 28, 365–382. [Google Scholar] [CrossRef][Green Version] - Driessche, P.V.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci.
**2002**, 180, 29–48. [Google Scholar] [CrossRef] - Grai, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J. A stochastic differential equations SIS epidemic model. SIAM J. Appl. Math.
**2011**, 71, 876–902. [Google Scholar] [CrossRef][Green Version] - Ministry of Health, Morocco. Department of Epidemiology and Disease Control. Available online: http://www.sante.gov.ma/Pages/Accueil.aspx (accessed on 30 May 2020).
- WHO. Coronavirus Disease 2019 (COVID-19); Situation Report 46, 6 March 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill.
**2020**, 25, 2000180. [Google Scholar] [CrossRef] [PubMed][Green Version] - WHO. Coronavirus Disease 2019 (COVID-19); Situation Report 73, 2 April 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Baum, S.G. COVID-19 Incubation Period: An Update. Available online: https://www.jwatch.org/na51083/2020/03/13/covid-19-incubation-period-update (accessed on 13 March 2020).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet
**2020**, 395, 497–506. [Google Scholar] [CrossRef][Green Version] - Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. J. Am. Med. Assoc.
**2020**, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed] - Haut Conseil de la Santé Publique. Avis Relatif aux Recommandations Thérapeutiques dans la Prise en Charge du COVID-19 (Complémentaire à l’avis du 5 mars 2020), 23 Mars 2020. Available online: https://splf.fr/wp-content/uploads/2020/03/HCSP-Avis-relatif-aux-recommandations-therapeutiques-dans-la-prise-en-charge-du-COVID-19-complementaire-a-avis-du-5-mars-2020-le23-03-20.pdf (accessed on 30 May 2020).
- Ministry of Health of Morocco. The Official Portal of Corona Virus in Morocco. Available online: https://www.sante.gov.ma/Pages/Accueil.aspx (accessed on 30 May 2020).
- COVID-19 Coronavirus Pandemic, View by Country. Available online: https://www.worldometers.info/coronavirus/#countries (accessed on 30 May 2020).

**Figure 1.**Comparison of the deterministic and the stochastic dynamical behavior with the daily reported cases of COVID-19 in Morocco.

**Figure 4.**Cumulative diagnosed cases, severe forms, critical forms and deaths 240 days from the start of the COVID-19 pandemic in Morocco.

Parameter | Value | Source | Parameter | Value | Source |
---|---|---|---|---|---|

$\beta $ | $0.4517$ | Estimated | u | [0–1] | Varied |

$\u03f5$ | $0.794$ | [26] | ${\gamma}_{b}$ | $0.8$ | [25] |

${\gamma}_{g}$ | $0.15$ | [25] | ${\gamma}_{c}$ | $0.05$ | [25] |

$\alpha $ | 0.06 | Assumed | ${\eta}_{a}$ | $1/21$ | Calculated |

${\eta}_{s}$ | $0.8/21$ | Calculated | ${\mu}_{s}$ | $0.01/21$ | Calculated |

${\mu}_{b}$ | 0 | Assumed | ${\mu}_{g}$ | 0 | Assumed |

${\mu}_{c}$ | $0.4/13.5$ | Calculated | ${r}_{b}$ | $1/13.5$ | Calculated |

${r}_{g}$ | $1/13.5$ | Calculated | ${r}_{c}$ | $0.6/13.5$ | Calculated |

${\tau}_{1}$ | $5.5$ | [27,28] | ${\tau}_{2}$ | $7.5$ | [29,30,31] |

${\tau}_{3}$ | 21 | Assumed | ${\tau}_{4}$ | $13.5$ | Assumed |

${\sigma}_{1}$ | $1.03$ | Calculated | ${\sigma}_{2}$ | $0.1$ | Assumed |

**Table 2.**Estimated peaks and cumulative of diagnosed cases, severe forms, critical forms and deaths.

Compartments | Peak | Cumulative |
---|---|---|

Diagnosed | Around 190 | 18,890 |

Severe forms | Around 28 | 2233 |

Critical forms | Around 10 | 997 |

Deaths | Around 5 | 468 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mahrouf, M.; Boukhouima, A.; Zine, H.; Lotfi, E.M.; Torres, D.F.M.; Yousfi, N. Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. *Axioms* **2021**, *10*, 18.
https://doi.org/10.3390/axioms10010018

**AMA Style**

Mahrouf M, Boukhouima A, Zine H, Lotfi EM, Torres DFM, Yousfi N. Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. *Axioms*. 2021; 10(1):18.
https://doi.org/10.3390/axioms10010018

**Chicago/Turabian Style**

Mahrouf, Marouane, Adnane Boukhouima, Houssine Zine, El Mehdi Lotfi, Delfim F. M. Torres, and Noura Yousfi. 2021. "Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations" *Axioms* 10, no. 1: 18.
https://doi.org/10.3390/axioms10010018