Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations
Abstract
:1. Introduction
2. Models Formulation and Well-Posedness
- (1)
- all coefficients involved in the model are positive constants;
- (2)
- natural birth and death rate are not factors;
- (3)
- true asymptomatic patients will stay asymptomatic until recovery and do not spread the virus;
- (4)
- patients who are temporarily asymptomatic are included on symptomatic ones;
- (5)
- the second infection is not considered in the model;
- (6)
- the Moroccan health system is not overwhelmed.
3. Qualitative Analysis of the Models
4. Assessment of Parameters
5. Numerical Simulation of Moroccan COVID-19 Evolution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crokidakis, N. Modeling the early evolution of the COVID-19 in Brazil: Results from a susceptible-infectious-quarantined-recovered (SIQR) model, Internat. J. Mod. Phys. C 2020, 31, 2050135. [Google Scholar] [CrossRef]
- Feng, L.-X.; Jing, S.-L.; Hu, S.-K.; Wang, D.-F.; Huo, H.-F. Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK. Math. Biosci. Eng. 2020, 17, 3618–3636. [Google Scholar] [CrossRef]
- Moussaoui, A.; Auger, P. Prediction of confinement effects on the number of Covid-19 outbreak in Algeria. Math. Model. Nat. Phenom. 2020, 15, 14. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yokota, T. Blow-up in a parabolic-elliptic Keller-Segel system with density-dependent sublinear sensitivity and logistic source. Math. Methods Appl. Sci. 2020, 43, 7372–7396. [Google Scholar] [CrossRef]
- Viglialoro, G.; Murcia, J. A singular elliptic problem related to the membrane equilibrium equations. Int. J. Comput. Math. 2013, 90, 2185–2196. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 18. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Viglialoro, G. Analysis and explicit solvability of degenerate tensorial problems. Bound. Value Probl. 2018, 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J. Clin. Med. 2020, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Kuniya, T. Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J. Clin. Med. 2020, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, D.; Piazza, F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 2020, 134, 109761. [Google Scholar] [CrossRef] [PubMed]
- Ndaïrou, F.; Area, I.; Nieto, J.J.; Torres, D.F.M. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 2020, 135, 109846. [Google Scholar] [CrossRef] [PubMed]
- Simha, A.; Prasad, R.V.; Narayana, S. A simple stochastic SIR model for COVID 19 infection dynamics for Karnataka: Learning from Europe. arXiv 2020, arXiv:2003.11920. [Google Scholar]
- He, S.; Tang, S.; Rong, L. A discrete stochastic model of the COVID-19 outbreak: Forecast and control. Math. Biosci. Eng. 2020, 17, 2792–2804. [Google Scholar] [CrossRef]
- Bardina, X.; Ferrante, M.; Rovira, C. A stochastic epidemic model of COVID-19 disease. arXiv 2020, arXiv:2005.02859. [Google Scholar] [CrossRef]
- Hale, J.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Mahrouf, M.; Hattaf, K.; Yousfi, N. Dynamics of a stochastic viral infection model with immune response. Math. Model. Nat. Phenom. 2017, 12, 15–32. [Google Scholar] [CrossRef]
- Hattaf, K.; Mahrouf, M.; Adnani, J.; Yousfi, N. Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity. Phys. A Stat. Mech. Appl. 2018, 490, 591–600. [Google Scholar] [CrossRef]
- Dalal, N.; Greenhalgh, D.; Mao, X. A stochastic model of AIDS and condom use. J. Math. Anal. Appl. 2007, 325, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Driessche, P.V.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Grai, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J. A stochastic differential equations SIS epidemic model. SIAM J. Appl. Math. 2011, 71, 876–902. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Morocco. Department of Epidemiology and Disease Control. Available online: http://www.sante.gov.ma/Pages/Accueil.aspx (accessed on 30 May 2020).
- WHO. Coronavirus Disease 2019 (COVID-19); Situation Report 46, 6 March 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020, 25, 2000180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Coronavirus Disease 2019 (COVID-19); Situation Report 73, 2 April 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Baum, S.G. COVID-19 Incubation Period: An Update. Available online: https://www.jwatch.org/na51083/2020/03/13/covid-19-incubation-period-update (accessed on 13 March 2020).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. J. Am. Med. Assoc. 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Haut Conseil de la Santé Publique. Avis Relatif aux Recommandations Thérapeutiques dans la Prise en Charge du COVID-19 (Complémentaire à l’avis du 5 mars 2020), 23 Mars 2020. Available online: https://splf.fr/wp-content/uploads/2020/03/HCSP-Avis-relatif-aux-recommandations-therapeutiques-dans-la-prise-en-charge-du-COVID-19-complementaire-a-avis-du-5-mars-2020-le23-03-20.pdf (accessed on 30 May 2020).
- Ministry of Health of Morocco. The Official Portal of Corona Virus in Morocco. Available online: https://www.sante.gov.ma/Pages/Accueil.aspx (accessed on 30 May 2020).
- COVID-19 Coronavirus Pandemic, View by Country. Available online: https://www.worldometers.info/coronavirus/#countries (accessed on 30 May 2020).
Parameter | Value | Source | Parameter | Value | Source |
---|---|---|---|---|---|
Estimated | u | [0–1] | Varied | ||
[26] | [25] | ||||
[25] | [25] | ||||
0.06 | Assumed | Calculated | |||
Calculated | Calculated | ||||
0 | Assumed | 0 | Assumed | ||
Calculated | Calculated | ||||
Calculated | Calculated | ||||
[27,28] | [29,30,31] | ||||
21 | Assumed | Assumed | |||
Calculated | Assumed |
Compartments | Peak | Cumulative |
---|---|---|
Diagnosed | Around 190 | 18,890 |
Severe forms | Around 28 | 2233 |
Critical forms | Around 10 | 997 |
Deaths | Around 5 | 468 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahrouf, M.; Boukhouima, A.; Zine, H.; Lotfi, E.M.; Torres, D.F.M.; Yousfi, N. Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. Axioms 2021, 10, 18. https://doi.org/10.3390/axioms10010018
Mahrouf M, Boukhouima A, Zine H, Lotfi EM, Torres DFM, Yousfi N. Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. Axioms. 2021; 10(1):18. https://doi.org/10.3390/axioms10010018
Chicago/Turabian StyleMahrouf, Marouane, Adnane Boukhouima, Houssine Zine, El Mehdi Lotfi, Delfim F. M. Torres, and Noura Yousfi. 2021. "Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations" Axioms 10, no. 1: 18. https://doi.org/10.3390/axioms10010018
APA StyleMahrouf, M., Boukhouima, A., Zine, H., Lotfi, E. M., Torres, D. F. M., & Yousfi, N. (2021). Modeling and Forecasting of COVID-19 Spreading by Delayed Stochastic Differential Equations. Axioms, 10(1), 18. https://doi.org/10.3390/axioms10010018