An Archaeometric Investigation of Gems and Glass Beads Decorating the Double-Arm Reliquary Cross from Liège, Belgium
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Visual Description of Stones and Pearls
3.2. Raman Spectroscopy
3.3. Chemical Characterization by Portable X-ray Fluorescence Spectrometry
4. Discussion
4.1. Composition and Dating of Glass Beads
4.2. Colouring Agents Used in Glass Beads
4.3. Geographic Origin of Gemstones
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- George, P. Du prieuré d’Oignies au musée de Namur: Le binôme “reliques” et “arts précieux”. A propos d’une croix inédite du trésor de la Cathédrale de Liège. Trésor D’Oignies 2013, 23, 136–153. [Google Scholar]
- Demaude, M. Etude Gemmologique de Pièces D’orfèvrerie du Trésor de la Cathédrale Saint-Paul de Liège. Master’s Thesis, University of Liège, Liège, Belgium, 2016; 81p. [Google Scholar]
- Demaude, M.; Bruni, Y.; Hatert, F.; Strivay, D. Etude gemmologique de la croix-reliquaire à double traverse du Trésor de la Cathédrale de Liège. Trésor Liège 2017, 50, 9–15. [Google Scholar]
- Bruni, Y.; Hatert, F.; George, P.; Strivay, D. An archaeometric investigation of glass beads decorating the reliquary of Saint Simètre from Lierneux, Belgium. J. Archaeol. Sci. Rep. 2020, 32, 102451. [Google Scholar] [CrossRef]
- Bruni, Y.; Hatert, F.; George, P.; Cambier, H.; Strivay, D. A gemmological study of the reliquary crown of Namur, Belgium. Eur. J. Miner. 2021, 33, 221–232. [Google Scholar] [CrossRef]
- Bruni, Y.; Hatert, F.; George, P.; Strivay, D. The Reliquary Bust of Saint Lambert from the Liège Cathedral, Belgium: Gemstones and Glass Beads Analysis by pXRF and Raman Spectroscopy. Archaeometry 2019, 62, 297–313. [Google Scholar] [CrossRef]
- Govindaraju, K. 1994 compilation of working values and sample description for 383 geostandards. Geostand. Newslett. 1994, 18, 1–158. [Google Scholar] [CrossRef]
- Robinet, L.; Bouquillon, A.; Hartwig, J. Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses. J. Raman Spectrosc. 2008, 39, 618–626. [Google Scholar] [CrossRef]
- RRUFF, 2021. An Integrated Database of Raman Spectra, X-Ray Diffraction and Chemistry Data for Minerals. Available online: https://rruff.info/ (accessed on 4 January 2021).
- Culka, A.; Jehlička, J. A database of Raman spectra of precious gemstones and minerals used as cut gems obtained using portable sequentially shifted excitation Raman spectrometer. J. Raman Spectrosc. 2019, 50, 262–280. [Google Scholar] [CrossRef]
- Wehrmeister, U.; Jacob, D.; Soldati, A.; Häger, T.; Hofmeister, W. Vaterite in freshwater cultured pearls from China and Japan. J. Gemmol. 2007, 30, 399–412. [Google Scholar] [CrossRef]
- Karampelas, S.; Fritsch, E.; Makhlooq, F.; Mohamed, F.; Al-Alawi, A. Raman spectroscopy of natural and cultured pearls and pearl producing mollusc shells. J. Raman Spectrosc. 2020, 51, 1813–1821. [Google Scholar] [CrossRef]
- Athavale, S.A.; Hambarde, M.S. Raman scattering: Fingersprint for identification of nature and color origin of pearls. Intern. Res. J. Engeineer. Technol. 2020, 7, 2065–2078. [Google Scholar]
- Fritsch, E.; Rossman, G. An Update on Color in Gems. Part 2: Colors Involving Multiple Atoms and Color Centers. Gems Gemol. 1988, 24, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Gaillou, E.; Delaunay, A.; Rondeau, B.; Bouhnik-Le-Coz, M.; Fritsch, E.; Cornen, G.; Monnier, C. The geochemistry of gem opals as evidence of their origin. Ore Geol. Rev. 2008, 34, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Khorassani, A.; Abedini, M. A new study of turquoise from Iran. Miner. Mag. 1976, 40, 640–642. [Google Scholar] [CrossRef] [Green Version]
- Klein, G. Faceting History: Cutting Diamonds & Colored Stones; Xlibris Corporation: Bloomington, IN, USA, 2005; 242p. [Google Scholar]
- Schalm, O.; Janssens, K.; Wouters, H.; Caluwé, D. Composition of 12–18th century window glass in Belgium: Non-figurative windows in secular buildings and stained-glass windows in religious buildings. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 663–668. [Google Scholar] [CrossRef]
- Tournié, A. Analyse Raman Sur Site de Verres et Vitraux Anciens: Modélisation, Procédure, Lixiviation et Caractérisation. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2009; 162p. [Google Scholar]
- Verità, M.; Renier, A.; Zecchin, S. Chemical analyses of ancient glass findings excavated in the Venetian lagoon. J. Cult. Heritage 2002, 3, 261–271. [Google Scholar] [CrossRef]
- Cannella, A.-M. Gemmes, Verre Coloré, Fausses Pierres Précieuses au Moyen Age. Le Quatrième Livre du Trésorier de Philosophie Naturelle des Pierres Précieuses de Jean d’Outremeuse; Librairie Doz: Genève, Switzerland, 2006; 480p. [Google Scholar]
- Tite, M.; Shortland, A.; Maniatis, Y.; Kavoussanaki, D.; Harris, S. The composition of the soda-rich and mixed alkali plant ashes used in the production of glass. J. Archaeol. Sci. 2006, 33, 1284–1292. [Google Scholar] [CrossRef]
- Rasmussen, S.C. How Glass Changed the World: The History and Chemistry of Glass from Antiquity to the 13th Century; Springer: New York, NY, USA, 2016; 85p. [Google Scholar]
- Verità, M. Secrets and innovations of Venetian glass between the 15th and 17th centuries: Raw materials, glass melting and artefacts. Study Days Venetian Glass Approx. 2014, 172, 53–68. [Google Scholar]
- Neri, E.; Verità, M.; Biron, I.; Guerra, M.F. Glass and gold: Analyses of 4th–12th centuries Levantine mosaic tesserae. A contribution to technological and chronological knowledge. J. Archaeol. Sci. 2016, 70, 158–171. [Google Scholar] [CrossRef]
- Phelps, M.; Freestone, I.C.; Gorin-Rosen, Y.; Gratuze, B. Natron glass production and supply in the late antique and early medieval Near East: The effect of the Byzantine-Islamic transition. J. Archaeol. Sci. 2016, 75, 57–71. [Google Scholar] [CrossRef]
- Mecking, O. Medieval Lead Glass in Central Europe. Archaeometry 2013, 55, 640–662. [Google Scholar] [CrossRef]
- Ares, J.D.J.; Schibille, N. Glass import and production in Hispania during the early medieval period: The glass from Ciudad de Vascos (Toledo). PLoS ONE 2017, 12, e0182129. [Google Scholar] [CrossRef] [Green Version]
- Bariand, P.; Poirot, J.-P. Larousse des Pierres Précieuses; Larousse-Bordas: Paris, France, 1998; 288p. [Google Scholar]
- Van Wersch, L.; Biron, I.; Neuray, B.; Mathis, F.; Chêne, G.; Strivay, D.; Sapin, C. Les vitraux alto-médiévaux de Stavelot (Belgique). Archeo Sci. 2014, 38, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P.; Tournie, A.; Bellot-Gurlet, L. Raman identification of glassy silicates used in ceramics, glass and jewellery: A tentative differentiation guide. J. Raman Spectrosc. 2006, 37, 841–852. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Barrulas, P.; Dias, L.; Lopes, M.D.C.; Barreira, J.; Clist, B.; Karklins, K.; Jesus, M.D.P.D.; Domingos, S.D.S.; Vandenabeele, P.; et al. Multi-analytical approach to the study of the European glass beads found in the tombs of Kulumbimbi (Mbanza Kongo, Angola). Microchem. J. 2019, 149, 103990. [Google Scholar] [CrossRef]
- Jackson, C.M.; Paynter, S.; Nenna, M.-D.; Degryse, P. Glassmaking using natron from el-Barnugi (Egypt); Pliny and the Roman glass industry. Archaeol. Anthr. Sci. 2018, 10, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Bidegaray, A.-I.; Pollard, A.M. Tesserae Recycling in the Production of Medieval Blue Window Glass. Archaeometry 2018, 60, 784–796. [Google Scholar] [CrossRef]
- Dungworth, D.; Brain, C. Late 17th Century Crystal Glass: An Analytical Investigation. J. Glass Stud. 2009, 51, 111–137. [Google Scholar]
- Wedepohl, K.H.; Krueger, I.; Hartmann, G. Medieval lead glass from northwestern Europe. J. Glass Stud. 1995, 37, 65–82. [Google Scholar]
- Van Wersch, L.; Loisel, C.; Mathis, F.; Strivay, D.; Bully, S. Analyses of early Medieval stained window glass from the Mon-astery of Baume-Les-Messieurs (Jura, France). Archaeometry 2016, 58, 930–946. [Google Scholar] [CrossRef] [Green Version]
- Biron, I.; Dandridge, P.; Wypyski, M.-T. Techniques and Materials in Limoges Enamels, in Enamels of Limoges 1100–1350; The Met-ropolitan Museum of Art: New York, NY, USA, 1996; pp. 48–62. [Google Scholar]
- Gratuze, B.; Soulier, I.; Blet-Lemarquand, M.; Lucy, V. De l’origine du cobalt: Du verre à la céramique. Rev. D’archéométrie 1996, 20, 77–94. [Google Scholar] [CrossRef]
- Colomban, P.; Kırmızı, B.; Franci, G.S. Cobalt and Associated Impurities in Blue (and Green) Glass, Glaze and Enamel: Relationships between Raw Materials, Processing, Composition, Phases and International Trade. Minerals 2021, 11, 633. [Google Scholar] [CrossRef]
- Calligaro, T.; Périn, P.; Vallet, F.; Poirot, J.-P. Contribution à l’étude des grenats mérovingiens (Basilique de Saint-Denis et autres collections du musée d’Archéologie nationale, diverses collections publiques et objets de fouilles récents). Antiq. Natl. 2007, 38, 111–144. [Google Scholar]
- Aurisicchio, C.; Conte, A.M.; Medeghini, L.; Ottolini, L.; De Vito, C. Major and trace element geochemistry of emerald from several deposits: Implications for genetic models and classification schemes. Ore Geol. Rev. 2018, 94, 351–366. [Google Scholar] [CrossRef]
- Gilg, H.A.; Gast, N.; Calligaro, T. Vom Karfunkelstein. Archäologische Staatssamml. 2010, 37, 87–100. [Google Scholar]
- Greiff, S. Naturwissenschaftliche Untersuchungen zur Frage der Rohsteinquellen für frühmittelalterlichen Alman-dingranatschmuck rheinfränkischer Provenienz. Jahrb. Römisch-Ger. Zent. Mus. Mainz 1999, 45, 599–645. [Google Scholar]
- Abu-Lughod, J.L. Before European hegemony: The World System AD 1250–1350. Bus. Hist. Rev. 1990, 64, 362–364. [Google Scholar]
- Calligaro, T.; Périn, P. Le commerce des grenats à l’époque mérovingienne. Archéopages 2019, HS5, 109–120. [Google Scholar]
- Carò, F.; Schorsch, D.; Santarelli, B. Proveniencing Turquoise Artifacts from Ancient Egyptian Contexts: A Non-invasive XRF Approach. In Proceedings of the Sciences of Ancient Egyptian Materials and Technologies (SAEMT) Conference, Cairo, Egypt, 4 November 2017. [Google Scholar]
- Ovissi, M.; Yazdi, M.; Ghorbani, M. Turquoise grading in Persian historical and modern times; a comparative study. In Proceedings of the 35th National Geosciences Conference of Geological Survey of Iran, Teheran, Iran, 18–19 February 2017; pp. 1–6. [Google Scholar]
- Chen, Q.; Yin, Z.; Qi, L.; Xiong, Y. Turquoise from Zhushan County, Hubei Province, China. Gems Gemol. 2012, 48, 198–204. [Google Scholar] [CrossRef]
- Pogue, J.E. The Turquoise: A Study of Its History, Mineralogy, Geology, Ethnology, Archaeology, Mythology, Folklore and Technology; Memoirs of the National Academy of Sciences, Cornell University Library: New York, NY, USA, 1915; 642p. [Google Scholar]
- Amar, Z.; Lev, E. Most-Cherished Gemstones in the Medieval Arab World. J. R. Asiat. Soc. 2017, 27, 377–401. [Google Scholar] [CrossRef]
- Shaw, I. The evidence for amethyst mining in Nubia and Egypt. Stud. Afr. Archaeol. 2000, 7, 219–227. [Google Scholar]
- Van Roy, S. Considérations sur les pierres précieuses du XIIIe siècle au travers des œuvres d’Hugo D’Oignies conservées à Namur. Actes Journée D’étude Hugo D’oignies Contexte Perspect. TreMa 2011, 205–223. [Google Scholar]
- Howard, M.C. Transnationalism in Ancient and Medieval Societies: The Role of Cross-Border Trade and Travel; McFarland & Company: Jefferson, NC, USA, 2012; 289p. [Google Scholar]
- Schumann, W. Guides des Pierres Précieuses, Fines et Ornementales, 3rd ed.; Delachaux et Niestlé: Paris, France, 2014; 319p. [Google Scholar]
- Delvaux, C. L’intaille en Améthyste de Hesbaye: Étude Minéralogique et Gemmologique. Master’s Thesis, University of Liège, Liège, Belgium, 2018; 60p. [Google Scholar]
- Caucia, F.; Marinoni, L.; Leone, A.; Adamo, I. Investigation on the gemological, physical and compositional properties of some opals from Slovakia (“Hugarian” opals). Period. Mineral. 2013, 82, 251–261. [Google Scholar]
- Rondeau, B.; Fritsch, E.; Guiraud, M.; Renac, C. Opals from Slovakia (“Hungarian” opals): A re-assessment of the conditions of formation. Eur. J. Miner. 2004, 16, 789–799. [Google Scholar] [CrossRef]
Sample ID | Phase | Colour | Raman Peaks (cm−1) |
---|---|---|---|
1 | Turquoise | Turquoise | 1046 |
9 | Turquoise | Turquoise | 1036 |
10 | Turquoise | Turquoise | 1042 |
3 | Quartz | Purple | 120; 194; 372; 464; 792 |
4 | Quartz | Purple | 124; 192; 374; 460; 790 |
13 | Quartz | Purple | 122; 198; 376; 462; 794 |
11 | Quartz | Red | 126; 194; 336; 380; 460; 676; 780; 1148 |
18 | Quartz | Green | 124; 196; 330; 382; 460; 670; 778; 1136 |
20 | Pearl | White | 696; 1084 |
21 | Pearl | White | 690; 1082 |
22 | Pearl | White | 694; 1086 |
Mav3 | Glass | Blue | 324; 402; 514; 716; 866; 1050 |
15 | Garnet | Red | 340; 540; 842; 908; 1028 |
Sample ID | Phase | Colour | H2O 1 | Na2O 2 | MgO 3 | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | MnO | FeO | NiO | CuO | CoO | PbO | TiO2 | SnO2 | Sb2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Quartz | Purple | - | - | - | - | 100.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | Quartz | Purple | - | - | - | - | 100.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13 | Quartz | Purple | - | - | - | - | 100.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2 | Glass | Green | - | - | - | 1.59 | 44.50 | 3.17 | 1.45 | 0.76 | 5.73 | 0.30 | 0.16 | 0.54 | 0.11 | 1.71 | - | 39.93 | 0.02 | - | 0.03 |
5 | Glass | Green | - | - | - | 1.71 | 35.06 | 2.31 | 1.82 | 0.73 | 6.46 | 0.57 | 0.18 | 0.74 | 0.08 | 1.96 | - | 48.31 | 0.03 | 0.04 | - |
6 | Glass | Green | - | - | - | 1.28 | 30.85 | 1.44 | 0.72 | 0.34 | 5.76 | 0.83 | 0.17 | 0.86 | 0.12 | 2.26 | - | 55.32 | 0.04 | - | - |
14 | Glass | Green | - | - | - | 1.48 | 42.27 | 2.37 | 0.66 | 0.67 | 4.92 | 0.55 | 0.09 | 0.55 | 0.10 | 1.88 | - | 44.44 | 0.03 | - | - |
18 | Quartz/glass | Green | - | - | - | 0.25 | 98.73 | 0.59 | 0.15 | - | - | - | - | - | - | 0.27 | - | - | 0.02 | - | - |
1 | Turquoise | Turquoise | 17 | - | - | 36.82 | 1.08 | 32.48 | 0.90 | - | 0.08 | 0.23 | - | 0.58 | - | 10.79 | - | - | - | 0.02 | - |
9 | Turquoise | Turquoise | 17 | - | - | 38.12 | 0.64 | 32.69 | 1.28 | - | 0.12 | 0.21 | - | 0.63 | - | 9.16 | - | - | - | 0.11 | - |
10 | Turquoise | Turquoise | 17 | - | - | 34.16 | 0.54 | 32.79 | 1.02 | - | 0.07 | 0.21 | - | 1.23 | - | 12.94 | - | - | - | 0.04 | - |
7 | Glass | Blue | - | - | - | 1.22 | 49.71 | 1.15 | 1.88 | 0.52 | 5.88 | - | 0.25 | - | 0.09 | 0.20 | 0.05 | 38.83 | 0.03 | - | 0.19 |
17 | Glass | Blue | - | 17 | - | 1.75 | 72.88 | 0.12 | 0.56 | - | 0.25 | 6.32 | 0.13 | 0.09 | 0.06 | 0.35 | 0.04 | 0.31 | 0.02 | 0.03 | 0.08 |
11 | Quartz/glass | Red | - | - | - | - | 100.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12 | Glass | Amber | - | 17 | - | 1.47 | 70.42 | 0.12 | 0.87 | 0.04 | 0.77 | 8.84 | - | 0.34 | - | 0.02 | - | 0.01 | 0.05 | 0.02 | - |
16 | Opal | White | 31 | - | - | 0.59 | 68.15 | - | - | - | 0.03 | 0.19 | - | 0.04 | - | - | - | - | - | - | - |
8 | Quartz | Grey | - | - | - | - | 100.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15 | Garnet | Red | - | - | 5 | 20.59 | 37.60 | - | - | - | - | 3.79 | 0.79 | 32.41 | - | - | - | - | 0.04 | - | - |
Sample ID | Ag | Au | Pb | As | Cu | Fe | Ni | Co |
---|---|---|---|---|---|---|---|---|
M1 | 26.14 | 68.38 | - | - | 5.47 | - | - | - |
M2 | 92.07 | - | - | - | 7.93 | - | - | - |
M3 | 43.59 | 50.23 | - | - | 6.18 | - | - | - |
M4 | 92.44 | - | - | - | 7.56 | - | - | - |
M5 | 39.52 | 57.58 | - | - | 2.90 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruni, Y.; Hatert, F.; Demaude, M.; Delmelle, N.; George, P.; Maquet, J. An Archaeometric Investigation of Gems and Glass Beads Decorating the Double-Arm Reliquary Cross from Liège, Belgium. Heritage 2021, 4, 4542-4557. https://doi.org/10.3390/heritage4040250
Bruni Y, Hatert F, Demaude M, Delmelle N, George P, Maquet J. An Archaeometric Investigation of Gems and Glass Beads Decorating the Double-Arm Reliquary Cross from Liège, Belgium. Heritage. 2021; 4(4):4542-4557. https://doi.org/10.3390/heritage4040250
Chicago/Turabian StyleBruni, Yannick, Frédéric Hatert, Merry Demaude, Nicolas Delmelle, Philippe George, and Julien Maquet. 2021. "An Archaeometric Investigation of Gems and Glass Beads Decorating the Double-Arm Reliquary Cross from Liège, Belgium" Heritage 4, no. 4: 4542-4557. https://doi.org/10.3390/heritage4040250
APA StyleBruni, Y., Hatert, F., Demaude, M., Delmelle, N., George, P., & Maquet, J. (2021). An Archaeometric Investigation of Gems and Glass Beads Decorating the Double-Arm Reliquary Cross from Liège, Belgium. Heritage, 4(4), 4542-4557. https://doi.org/10.3390/heritage4040250