Next Article in Journal
On Convergence Analysis and Analytical Solutions of the Conformable Fractional Fitzhugh–Nagumo Model Using the Conformable Sumudu Decomposition Method
Previous Article in Journal
Synchronized Oscillations in Double-Helix B-DNA Molecules with Mirror-Symmetric Codons
Previous Article in Special Issue
Positive Solutions for a Class of Nonlinear Singular Fractional Differential Systems with Riemann–Stieltjes Coupled Integral Boundary Value Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalizations of Hardy’s Type Inequalities via Conformable Calculus

1
Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 105862, Riyadh 11656, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
3
ASRT, 101 Kasr Al-Aini ST, Academy of Scientific Research & Technology, Cairo 11334, Egypt
4
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
6
Section of Mathematics, Università Telematica Internazionale Uninettuno, 00186 Rome, Italy
7
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(2), 242; https://doi.org/10.3390/sym13020242
Submission received: 12 December 2020 / Revised: 16 January 2021 / Accepted: 21 January 2021 / Published: 1 February 2021
(This article belongs to the Special Issue Ordinary and Partial Differential Equations: Theory and Applications)

Abstract

:
In this paper, we derive some new fractional extensions of Hardy’s type inequalities. The corresponding reverse relations are also obtained by using the conformable fractional calculus from which the classical integral inequalities are deduced as special cases at α = 1 .

1. Introduction

In 1925 Hardy [1] employed the calculus of variations and proved the inequality
0 ( 1 ϑ 0 ϑ h ( s ) d s ) μ d ϑ ( μ μ 1 ) μ 0 h μ ( ϑ ) d ϑ ,
where h 0 and integrable over any finite interval ( 0 , ϑ ) and h μ is integrable and convergent over ( 0 , ) and μ > 1 . The constant ( μ / ( μ 1 ) ) μ is the best possible.
In 1928 Hardy [2] generalized the inequality (1) and proved that if μ > 1 and h is non-negative for ϑ 0 , then:
0 ϑ r ( 0 ϑ h ( s ) d s ) μ d ϑ ( μ r 1 ) μ 0 ϑ μ r h μ ( ϑ ) d ϑ ,   for   r > 1 .
Moreover,
0 ϑ r ( 0 h ( s ) d s ) μ d ϑ ( μ 1 r ) μ 0 ϑ μ r h μ ( ϑ ) d ϑ ,   for   r < 1 .
The constants ( μ / ( r 1 ) ) μ and ( μ / ( 1 r ) ) μ are the best possible.
In recent years, several scholars have examined fractional inequalities by using the fractional derivative of Caputo and Riemann–Liouville; we refer to the papers [3,4,5,6,7] for these results.
In [8,9], the authors expanded the calculus of fractional order to conformable calculus. Lately, some scholars have expanded classical inequalities by applying conformable fractional formulas such as Opial’s inequality [10,11,12], Hermite–Hadamard’s inequality [13,14,15], Chebyshev’s inequality [16] and Steffensen’s inequality [17].
The original motivation for this paper is obtaining the fractional forms of some extensions of Hardy’s type inequalities and their reverses using conformable fractional calculus, and as a special case, we put α = 1 to get the generalized ones.
The paper is structured as follows: In Section 2, we will present some concepts for the conformable fractional calculus and also the Hölder’s inequality for α -fractional differentiable functions that will represent our key outcomes. In Section 3, we shall set out generalizations of Hardy’s type inequalities and revers relations in each case for α -fractional differentiable functions.

2. Key Concepts and Lemmas

In this section, we present some basic definitions concerning the conformable fractional calculus that will be used throughout the paper. For the latest findings on conformable derivatives and integrals, we refer to [8,9].
Definition 1.
Let h : [ 0 , ) . Then the conformable fractional derivative of order α of h is defined as:
D α h ( s ) = lim 0 h ( s + s 1 α ) h ( s )
for all s > 0 and 0 < α 1 .
For 0 < α 1 and h , k be α -differentiable at a point s, then:
D α ( h k ) = h D α k + k D α h
Further, for 0 < α 1 and h , k be α -differentiable at a point s with k ( s ) 0 , then:
D α ( h k ) = k D α h h D α k k 2
Remark 1.
If h is a differentiable function, then:
D α h ( s ) = s 1 α d h ( s ) d s
Definition 2.
Let h : [ 0 , s ] . Then the conformable fractional integral order α of h is defined as
I α h ( s ) = 0 s h ( ϑ ) d α ϑ = 0 s ϑ α 1 h ( ϑ ) d ϑ ,
for all s and 0 < α 1 .
Now, we state some lemmas which play important roles in our proofs of the main results. First, the integration by parts formula is given in the following lemma:
Lemma 1.
Suppose that ϕ , ψ : [ 0 , s ] be two functions such that ϕ ψ is α -differentiable and 0 < α 1 then:
0 s ϕ ( ϑ ) D α ψ ( ϑ ) d α ϑ = ϕ ( ϑ ) ψ ( ϑ ) | 0 s 0 s ψ ( ϑ ) D α ϕ ( ϑ ) d α ϑ ,
Next, we state Hölder’s and reversed Hölder’s inequality for α -conformable functions, which will mainly be used to prove the results of this paper.
Lemma 2.
Let h , k : [ 0 , s ] be a continuous function and 0 < α 1 . Then:
0 s | h ( ϑ ) k ( ϑ ) | d α ϑ ( 0 s | h ( ϑ ) | μ d α ϑ ) 1 μ ( 0 s | k ( ϑ ) | m d α ϑ ) 1 m ,
where μ > 1   a n d   1 / μ + 1 / m = 1 . This inequality is reversed if 0 < μ < 1 and if μ < 0 or m < 0 .

3. Hardy’s Type Inequalities of a Fractional Order

In this section, we state and prove the main outcomes of this paper and we begin with the following theorem:
Theorem 1.
Let h 0 be a non-decreasing function and Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s . If Ψ 0 is non-decreasing and 0 < b , then:
0 b Ψ ( Λ ( ϑ ) ϑ ) d α ϑ 0 b Ψ ( h ( ϑ ) ) d α ϑ
When Ψ ( ϑ ) = ϑ μ ,   μ 1 , we have
0 b ( Λ ( ϑ ) ϑ ) μ d α ϑ 0 b h μ ( ϑ ) d α ϑ .
Proof. 
We start with the following identity:
0 b Ψ ( Λ ( ϑ ) ϑ ) d α ϑ = 0 b Ψ ( ϑ 1 Λ ( ϑ ) ) d α ϑ = 0 b Ψ ( ϑ 1 0 ϑ s 1 α h ( s ) d α s ) d α ϑ .
Since h is non-decreasing, then we have:
0 b Ψ ( Λ ( ϑ ) ϑ ) d α ϑ 0 b Ψ ( ϑ 1 h ( ϑ ) 0 ϑ s 1 α d α s ) d α ϑ = 0 b Ψ ( ϑ 1 h ( ϑ ) ϑ ) d α ϑ = 0 b Ψ ( h ( ϑ ) ) d α ϑ ,
which is (8). For Ψ ( ϑ ) = ϑ μ , μ 1 , we have (9). The proof is complete. □
The theorem below is the generalization of Hardy’s inequality (1) on conformable calculus.
Theorem 2.
Let h be a non-negative α -integrable function on ( 0 , ) , k > 0 ,   ϑ / k ( ϑ ) is non-increasing and
Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s ,
where 0 < α 1 ,   0 < a < 1   a n d   μ > a / ( 1 + a α ) . Then
  0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 1 ( α a ) μ 1 ( ( α a ) ( 1 μ ) + μ α ) 0 ( ϑ h ( ϑ ) k ( ϑ ) ) μ d α ϑ .
Proof. 
Since
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ = 0 k μ ( ϑ ) ( 0 ϑ s 1 α s a ( μ 1 μ ) s a ( μ 1 μ ) h ( s ) d α s ) μ d α ϑ ,
applying Hölder’s inequality with index μ and μ / ( μ 1 ) , we get
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 0 k μ ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) 1 μ × ( 0 ϑ s a d α s ) μ 1 μ ) μ d α ϑ = 0 k μ ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) × ( ϑ α a α a ) μ 1 ) d α ϑ = 1 ( α a ) μ 1 ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) × ( s ϑ ϑ ( α a ) + ( μ 1 ) k μ ( ϑ ) d α ϑ ) ) .
Now, since ( ϑ / k ( ϑ ) ) μ is non-increasing, we have:
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) ( s k ( s ) ) μ × ( s ϑ ( α a ) ( μ 1 ) μ d α ϑ ) d α s )       1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) ( s k ( s ) ) μ × s ( α a ) ( μ 1 ) μ + α ( α a ) ( μ 1 ) μ + α d α s ) = 1 ( α a ) μ 1 ( ( α a ) ( 1 μ ) + μ α ) ( 0 s μ ( 1 α ) + a ( μ 1 ) + ( α a ) ( μ 1 ) μ + α × ( s h ( s ) k ( s ) ) μ d α s ) ,
Then
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 1 ( α a ) μ 1 ( ( α a ) ( 1 μ ) + μ α ) 0 ( ϑ h ( ϑ ) k ( ϑ ) ) μ d α ϑ .
The proof is complete. □
Corollary 1.
[In Theorem 2] For α = 1 , then we have
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d ϑ 1 a ( 1 a ) μ 1 ( μ 1 ) 0 ( ϑ h ( ϑ ) k ( ϑ ) ) μ d ϑ ,
which is [[18], Theorem 2.2].
Proof. 
The proof follows from Theorem 2 for α = 1 . □
Corollary 2.
[In Theorem 2] For α = 1 ,   a = 1 μ   a n d   k ( ϑ ) = ϑ , then we have the classical Hardy inequality:
0 ( 0 ϑ h ( s ) d s ϑ ) μ d ϑ ( μ μ 1 ) μ 0 h μ ( ϑ ) d ϑ .
Proof. 
The proof follows from Theorem 2 for α = 1 ,   a =   1 μ   and   k ( ϑ ) = ϑ .  □
The following finding concerns the converse of Hardy’s inequality.
Theorem 3.
Let h be a non-negative α -integrable function on ( 0 , ) , k > 0 ,   ϑ / k ( ϑ ) is non-decreasing and
Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s ,
where 0 < α 1 ,   a > 0   a n d   0 < μ < a / ( a + α 1 ) . Then
0 ϑ ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + μ α ) 0 ϑ ( ϑ h ( ϑ ) k ( ϑ ) ) μ d α ϑ .
Proof. 
Since
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ = 0 ( k ( ϑ ) ) μ ( 0 ϑ s 1 α s a ( μ 1 μ ) s a ( μ 1 μ ) h ( s ) d α s ) μ d α ϑ ,
applying reverse Hölder’s inequality with index μ and μ / ( μ 1 ) , we get
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 0 k μ ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s ) 1 μ × ( 0 ϑ s a d α s ) μ 1 μ ) μ d α ϑ       = 0 k μ ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s ) × ( ϑ α + a α + a ) μ 1 ) d α ϑ       = 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s × s ϑ ( α + a ) ( μ 1 ) k μ ( ϑ ) d α ϑ ) .
Now, since ( ϑ / k ( ϑ ) ) μ is non-decreasing, we have:
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) ( s k ( s ) ) μ × ( s ϑ ( α + a ) ( μ 1 ) μ   d α ϑ )   d α s )       1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) ( s k ( s ) ) μ × s ( α + a ) ( μ 1 ) + α μ ( α + a ) ( μ 1 ) μ + α d α s ) 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + μ α ) ( 0 s μ ( 1 α ) + a ( 1 μ ) + ( α + a ) ( μ 1 ) + α μ × ( s h ( s ) k ( s ) ) μ d α s ) ,
then:
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d α ϑ 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + μ α ) 0 ( ϑ h ( ϑ ) k ( ϑ ) ) μ d α ϑ .
The proof is complete. □
Corollary 3.
[In Theorem 3] For α = 1 , then we have
0 ( Λ ( ϑ ) k ( ϑ ) ) μ d ϑ 1 a ( 1 + a ) μ 1 ( 1 μ ) 0 ( ϑ h ( ϑ ) k ( ϑ ) ) μ d ϑ ,  
which is [[18], Theorem 2.3].
Proof. 
The proof follows from Theorem 3 for α = 1 . □
Theorem 4.
Let h be a non-negative α -integrable function on ( 0 , ) , k > 0 ,   ϑ / k ( ϑ ) is non-increasing and
Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s ,
where 0 < α 1 ,   0 < a < 1 ,   m > α μ α ( μ 1 )   a n d   μ > 1 . Then
  0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 1 ( α a ) μ 1 ( ( a α ) ( μ 1 ) + m α )
Proof. 
Since
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ = 0 k m ( ϑ ) ( 0 ϑ s 1 α s a ( μ 1 μ ) s a ( μ 1 μ ) h ( s ) d α s ) μ d α ϑ ,
applying Hölder’s inequality with index μ and μ / ( μ 1 ) , we get
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 0 k m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) 1 μ × ( 0 ϑ s a d α s ) μ 1 μ ) μ d α ϑ       = 0 k m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) × ( ϑ α a α a ) μ 1 ) d α ϑ       = 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s × s ϑ ( α a ) ( μ 1 ) k m ( ϑ ) d α ϑ ) .
Now, since ( ϑ / k ( ϑ ) ) m is non-decreasing, we have:
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) ( s k ( s ) ) m × ( s ϑ ( α a ) ( μ 1 ) m   d α ϑ )   d α s )       = 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) ( s k ( s ) ) m × s ( α a ) ( μ 1 ) m + α ( α a ) ( μ 1 ) m + α d α s )       1 ( α a ) μ 1 ( ( a α ) ( μ 1 ) + m α ) ( 0 s μ ( 1 α ) + a ( μ 1 ) + ( α a ) ( μ 1 ) μ + α × ( s h ( s ) ) μ k m ( s ) d α s )
Then
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 1 ( α a ) μ 1 ( ( a α ) ( μ 1 ) + m α ) 0 ( ϑ h ( ϑ ) ) μ k m ( ϑ ) d α ϑ .
The proof is complete. □
Corollary 4.
[In Theorem 4] For   α = 1 , then we have
  0 Λ μ ( ϑ ) k m ( ϑ ) d ϑ 1 ( 1 a ) μ 1 ( ( a 1 ) ( μ 1 ) + m 1 ) 0 ( ϑ h ( ϑ ) ) μ k m ( ϑ ) d ϑ ,  
which is [[19], Theorem 2.1].
Proof. 
The proof follows from Theorem 4 for α = 1 . □
Corollary 5.
[In Theorem 4] For   α = 1 ,   a = 1 μ ,   μ = m   a n d   k ( ϑ ) = ϑ , then we have the classical Hardy inequality.
0 ( 0 ϑ h ( s ) d s ϑ ) μ d ϑ ( μ μ 1 ) μ 0 h μ ( ϑ ) d ϑ .  
Proof. 
The proof follows from Theorem 4 for α = 1 ,   a = 1 μ ,   μ = m   and   k ( ϑ ) = ϑ .  □
Theorem 5.
Let h be a non-negative α -integrable function on ( 0 , ) ,   k > 0 ,   ϑ / k ( ϑ ) is non-decreasing and:
  Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s ,  
where 0 < α 1 ,   a > 0   ,     m > α μ + a ( μ 1 )   a n d   0 < μ < 1 . Then:
  0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + m α ) 0 ( ϑ h ( ϑ ) ) μ k m ( ϑ ) d α ϑ .  
Proof. 
Since
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ = 0 k m ( ϑ ) ( 0 ϑ s 1 α s a ( μ 1 μ ) s a ( μ 1 μ ) h ( s ) d α s ) μ d α ϑ ,
applying reverse Hölder’s inequality with index μ and μ / ( μ 1 ) , we get:
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 0 k m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s ) 1 μ × ( 0 ϑ s a d α s ) μ 1 μ ) d α ϑ = 0 k m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s ) × ( ϑ α + a α + a ) μ 1   ) d α ϑ = 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s × s ϑ ( α + a ) ( μ 1 )   k m ( ϑ )   d α ϑ ) .
Now, since ( ϑ / k ( ϑ ) ) m is non-decreasing, we have:
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) ( s k ( s ) ) m × ( s ϑ ( α + a ) ( μ 1 ) m   d α ϑ )   d α s ) = 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) ( s k ( s ) ) m × s ( α + a ) ( μ 1 ) + α m ( α + a ) ( μ 1 ) m + α d α s ) = 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + m α ) ( 0 s μ ( 1 α ) + a ( 1 μ ) + ( α + a ) ( μ 1 ) + α μ × ( s h ( s ) ) μ k m ( s ) d α s )
Then:
0 Λ μ ( ϑ ) k m ( ϑ ) d α ϑ 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + m α ) 0 ( ϑ h ( ϑ ) ) μ k m ( ϑ ) d α ϑ .
The proof is complete. □
Corollary 6.
[In Theorem 5] For α = 1 , then we have:
0 Λ μ ( ϑ ) k m ( ϑ ) d ϑ 1 ( 1 + a ) μ 1 ( ( 1 + α ) ( 1 μ ) + m 1 ) 0 ( ϑ h ( ϑ ) ) μ k m ( ϑ ) d ϑ ,  
which is [[19], Theorem 2.2].
Proof. 
The proof follows from Theorem 5 for α = 1 . □
Theorem 6.
Let h be a non-negative α -integrable function on ( 0 , ) ,   k > 0 ,   ϑ / k ( ϑ ) is non-decreasing and
Ω ( ϑ ) = 0 ϑ s 1 α k ( s ) d α s ,    Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s ,
where 0 < α 1 ,   0 < a < 1   ,   m > ( α μ a ( μ 1 ) / 2 )   a n d   μ > 1 . Then
  0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 1 ( α a ) μ 1 ( ( α a ) ( 1 μ ) + 2 m α ) 0 ( ϑ h ( ϑ ) ) μ Ω m ( ϑ ) d α ϑ .  
Proof. 
Since
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ = 0 Ω m ( ϑ ) ( 0 ϑ s 1 α s a ( μ 1 μ ) s a ( μ 1 μ ) h ( s ) d α s ) μ d α ϑ ,
applying Hölder’s inequality with index μ and μ / ( μ 1 ) , we get
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 0 Ω m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) 1 μ × ( 0 ϑ s a d α s ) μ 1 μ ) d α ϑ = 0 Ω m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s ) × ( ϑ α a α a ) μ 1   ) d α ϑ = 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) d α s × s ϑ ( α a ) ( μ 1 )   Ω m ( ϑ )   d α ϑ ) .
Now, since ( ϑ 2 / Ω ( ϑ ) ) m is non-decreasing, we have:
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) ( s 2 Ω ( s ) ) m × ( s ϑ ( α a ) ( μ 1 ) 2 m   d α ϑ )   d α s ) = 1 ( α a ) μ 1 ( 0 s μ ( 1 α ) + a ( μ 1 ) h μ ( s ) ( s 2 Ω ( s ) ) m × s ( α a ) ( μ 1 ) 2 m + α ( α a ) ( μ 1 ) 2 m + α d α s ) = 1 ( α a ) μ 1 ( ( a α ) ( μ 1 ) + 2 m α ) ( 0 s μ ( 1 α ) + a ( μ 1 ) + ( α a ) ( μ 1 ) μ + α × ( s h ( s ) ) μ Ω m ( s ) d α s ) ,
Then
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 1 ( α a ) μ 1 ( ( a α ) ( μ 1 ) + 2 m α ) 0 ( ϑ h ( ϑ ) ) μ Ω m ( ϑ ) d α ϑ .
The proof is complete. □
Corollary 7.
[In Theorem 6] For α = 1 , we have
0 Λ μ ( ϑ ) Ω m ( ϑ ) d ϑ 1 ( 1 a ) μ 1 ( ( a 1 ) ( μ 1 ) + 2 m 1 ) 0 ( ϑ h ( ϑ ) ) μ Ω m ( ϑ ) d ϑ ,  
which is [[20], Theorem 1].
Proof. 
The proof follows from Theorem 6 for α = 1 . □
Corollary 8.
[In Theorem 6] For α = 1 , a = 1 μ ,   m = μ 2   a n d   Ω ( ϑ ) = ϑ 2 , then we have the classical Hardy inequality
0 ( 0 ϑ h ( s ) d s ϑ ) μ d ϑ ( μ μ 1 ) μ 0 h μ ( ϑ ) d ϑ .
Proof. 
The proof follows from Theorem 6 for α = 1 , a = 1 μ ,   m = μ 2   and   Ω ( ϑ ) = ϑ 2 .  □
Theorem 7.
Let h be a non-negative α -integrable function on ( 0 , ) ,   k > 0 , ϑ / k ( ϑ ) is non-decreasing and:
Ω ( ϑ ) = 0 ϑ s 1 α k ( s ) d α s ,   Λ ( ϑ ) = 0 ϑ s 1 α h ( s ) d α s ,            
where 0 < α 1 ,   a > 0 ,   m > ( α μ + a ( μ 1 ) / 2 )   a n d   0 < μ < 1 . Then:
  0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + 2 m α ) 0 ( ϑ h ( ϑ ) ) μ Ω m ( ϑ ) d α ϑ .
Proof. 
Since
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ = 0 Ω m ( ϑ ) ( 0 ϑ s 1 α s a ( μ 1 μ ) s a ( μ 1 μ ) h ( s ) d α s ) μ d α ϑ ,
applying reverse Hölder’s inequality with index μ and μ / ( μ 1 ) we get:
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 0 Ω m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s ) 1 μ × ( 0 ϑ s a d α s ) μ 1 μ ) μ d α ϑ = 0 Ω m ( ϑ ) ( ( 0 ϑ s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s ) × ( ϑ α + a α + a ) μ 1   ) d α ϑ = 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) d α s × ( s ϑ ( α + a ) ( μ 1 )   Ω m ( ϑ )   ) d α ϑ ) .
Now, since ( ϑ 2 / Ω ( ϑ ) ) m is non-decreasing, we have:
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) ( s 2 Ω ( s ) ) m × ( s ϑ ( α + a ) ( μ 1 ) 2 m   d α ϑ )   d α s ) = 1 ( α + a ) μ 1 ( 0 s μ ( 1 α ) + a ( 1 μ ) h μ ( s ) ( s 2 Ω ( s ) ) m × s ( α + a ) ( μ 1 ) + α 2 m ( α + a ) ( μ 1 ) 2 m + α d α s ) = 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + 2 m α ) ( 0 s μ ( 1 α ) + a ( 1 μ ) + ( α + a ) ( μ 1 ) + α μ × ( s h ( s ) ) μ Ω m ( s ) d α s ) ,
Then
0 Λ μ ( ϑ ) Ω m ( ϑ ) d α ϑ 1 ( α + a ) μ 1 ( ( α + a ) ( 1 μ ) + 2 m α ) 0 ( ϑ h ( ϑ ) ) μ Ω m ( ϑ ) d α ϑ .
The proof is complete. □
Corollary 9.
[In Theorem 7] For α = 1 , then we have
0 Λ μ ( ϑ ) Ω m ( ϑ ) d ϑ 1 ( 1 + a ) μ 1 ( ( 1 + a ) ( 1 μ ) + 2 m 1 ) 0 ( ϑ h ( ϑ ) ) μ Ω m ( ϑ ) d ϑ ,  
which is [[20], Theorem 2].
Proof. 
The proof follows from Theorem 7 for α = 1 . □

4. Applications

Lyapunov’s inequality is an important result in mathematics with many different applications see ([21,22] and the reference therein). The result, as proved by Lyapunov in 1907 [23], asserts that if q ( ϑ ) is real and continuous functions on [a, b], then a necessary condition for the boundary value problem:
x ( ϑ ) + q ( ϑ ) x ( ϑ ) = 0 ,   a < ϑ < b , x ( a ) = x ( b ) = 0 ,
to have nontrivial solutions is given by:
a b q ( ϑ ) d ϑ > 4 b a
In this section, as the application of conformable fractional calculus, we obtain a Lyapunov-type inequality for a conformable fractional Sturm-Liouville equation subject to Dirichlet-type boundary conditions. To this aim, we must prove the following lemma.
Lemma 3.
Let μ 1 be a given real number and Let q ( ϑ ) be a non-negative and continuous function on [a, b]. Further, Let x ( ϑ ) be an absolutely continuous function on [a, b], with x ( a ) = x ( b ) = 0 . Then, the following inequality holds:
  a b q ( ϑ ) | x ( ϑ ) | μ d α ϑ 1 2 ( b α a α 2 α ) μ 1 ( a b q ( ϑ ) d α ϑ ) a b | D α x ( ϑ ) | μ d α ϑ .  
Proof. 
Since x ( ϑ ) = a b D α x ( s ) d α s , then | x ( ϑ ) | a ϑ | D α x ( s ) | d α s and also | x ( ϑ ) | ϑ b | D α x ( s ) | d α s and so
| x ( ϑ ) | 1 2 ( a ϑ | D α x ( s ) | d α s + ϑ b | D α x ( s ) | d α s ) | x ( ϑ ) | μ 1 2 μ ( a b | D α x ( s ) |   d α ϑ ) μ
Applying the Hölder’s inequality with index μ and μ μ 1 , it follows that:
| x ( ϑ ) | μ 1 2 μ ( ( a b | D α x ( ϑ ) | μ d α ϑ ) 1 μ · ( a b d α ϑ ) μ 1 μ ) μ | x ( ϑ ) | μ 1 2 μ ( a b | D α x ( ϑ ) | μ d α ϑ ) · ( b α a α α ) μ 1 | x ( ϑ ) | μ 1 2 ( b α a α 2 α ) μ 1 ( a b | D α x ( ϑ ) | μ d α ϑ ) .
Now, multiplying both sides of the above inequality by q ( ϑ ) and integrating the resulting inequality from a to b, we obtain the inequality (16).  □
Corollary 10.
In (Lemma 3) at μ = 2 , then we have the inequality:
0 h q ( ϑ ) ( x ( ϑ ) ) 2 d α ϑ ( b α a α 4 α ) ( a b q ( ϑ ) d α ϑ ) a b ( D α x ( ϑ ) ) 2 d α ϑ .
Theorem 8.
If the following fractional boundary value problem
D α ( D α x ( ϑ ) ) + q ( ϑ ) x ( ϑ ) = 0 ,   a < ϑ < b , x ( a ) = x ( b ) = 0 ,
has a nontrivial solution x ( ϑ ) , where q ( ϑ ) is real and continuous functions, then:
a b q ( ϑ ) d α ϑ     4 α b α a α  
Proof. 
Multiplying (18) by x ( ϑ ) and integrating by parts from a to b , where:
U ( x ) = x ( ϑ ) , D α V ( x ) = D α ( D α x ( ϑ ) ) D α U ( x ) = D α x ( ϑ ) ,   V ( x ) = D α x ( ϑ )
then:
a b x ( ϑ ) D α ( D α x ( ϑ ) ) d α ϑ + a b q ( ϑ ) ( x ( ϑ ) ) 2 d α ϑ = 0 ( x ( ϑ ) ( D α x ( ϑ ) ) ) | a b a b ( D α x ( ϑ ) · ( D α x ( ϑ ) d α ϑ = a b q ( ϑ ) ( x ( ϑ ) ) 2 d α ϑ a b ( D α x ( ϑ ) ) 2 d α ϑ = a b q ( ϑ ) ( x ( ϑ ) ) 2 d α ϑ
Applying the inequality (17)
a b ( D α x ( ϑ ) ) 2 d α ϑ ( b α a α 4 α ) ( a b q ( ϑ ) d α ϑ ) a b ( D α x ( ϑ ) ) 2 d α ϑ ,
then we have
a b q ( ϑ ) d α ϑ 4 α b α a α .
 □
Corollary 11.
In (Theorem 8) at α = 1 , then we obtain the classical Lyapunov-type inequality for differential equation subject to Dirichlet-type boundary conditions.

Author Contributions

Formal analysis, G.A., M.K., M.Z. and C.C.; conceptualization, H.M.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program. This paper is supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt, under initiatives of Science Up Faculty of Science (Grant No. 6695).

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Hardy, G.H. Notes on some points in the integral calculus, (LXIT). Messenger Math. 1925, 54, 150–156. [Google Scholar]
  2. Hardy, G.H. Notes on some points in the integral calculus LXIV. Further inequalities between integrals. Messenger Math. 1928, 57, 12–16. [Google Scholar]
  3. Bogdan, K.; Dyda, B. The best constant in a fractional Hardy inequality. Math. Nach. 2011, 284, 629–638. [Google Scholar] [CrossRef] [Green Version]
  4. Jleli, M.; Samet, B. Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 2015, 18, 443–541. [Google Scholar] [CrossRef]
  5. Martin-Reyes, F.J.; Sawyer, E. Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater. Proc. Am. Math. Soc. 1989, 106, 727–733. [Google Scholar] [CrossRef]
  6. Usta, F.; Sarikays, M.Z. Some improvements of conformable fractional integral inequalities. Int. J. Anal. Appl. 2017, 14, 162–166. [Google Scholar]
  7. Yildiz, C.; Ozdemir, M.E.; Onelan, H.K. Fractional integral inequalities for different functions. New Trends Math. Sci. 2015, 3, 110–117. [Google Scholar]
  8. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
  9. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  10. Saker, S.; Kenawy, M.; AlNemer, G.; Zakarya, M. Some Fractional Dynamic Inequalities of Hardy’s Type Via Conformable Calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
  11. Sarikays, M.Z.; Budak, H. Opial type inequalities for conformable fractional integral. J. Appl. Anal. 2019, 25, 155–163. [Google Scholar] [CrossRef]
  12. Sarikaya, M.Z.; Budak, H. New inequalities of Opial type for conformable fractional integrals. Turk. J. Math. 2017, 41, 1164–1173. [Google Scholar] [CrossRef]
  13. Chu, Y.M.; Khan, M.A.; Ali, T.; Dragomir, S.S. Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, 1, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2017, 112, 1–16. [Google Scholar] [CrossRef]
  15. Set, E.; Cozpmar, A.; Ekinci, A. Hermit-Hadamard type inequalities via conformable fractional integrals. Acta Math. Univ. Comenian. 2017, 86, 309–320. [Google Scholar]
  16. Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for conformable fractional integrals. Asian J. Math. Comput. Res. 2017, 15, 205–212. [Google Scholar]
  17. Sarikaya, M.Z.; Yaldiz, H.; Budak, H. Steffensen’s integral inequality for conformable fractional integrals. Int. J. Anal. Appl. 2017, 15, 23–30. [Google Scholar]
  18. Sulaiman, W.T. Some Hardy type integral inequalities. Appl. Math. Lett. 2012, 25, 520–525. [Google Scholar] [CrossRef] [Green Version]
  19. Sroysang, B. More on some Hardy type integral inequalities. J. Math. Inequal. 2017, 8, 497–501. [Google Scholar] [CrossRef] [Green Version]
  20. Mehrez, K. Some generalization and refined Hardy type integral inequalities. Afr. Mat. 2016, 28, 451–457. [Google Scholar] [CrossRef]
  21. Hashizume, M. Minimization problem related to a Lyapunov inequality. J. Math. Anal. 2015, 432, 517–530. [Google Scholar] [CrossRef]
  22. Sun, T.; Liu, J. Lyapunov inequality for dynamic equation with order n +1 on time scales. J. Dyn. Syst. Geom. Theor. 2015, 13, 95–101. [Google Scholar]
  23. Liapounoff, A.M. Probleme general de la stabilite du movement. Ann. Fac. Sci. Toulouse 1907, 9, 203–474. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

AlNemer, G.; Kenawy, M.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Generalizations of Hardy’s Type Inequalities via Conformable Calculus. Symmetry 2021, 13, 242. https://doi.org/10.3390/sym13020242

AMA Style

AlNemer G, Kenawy M, Zakarya M, Cesarano C, Rezk HM. Generalizations of Hardy’s Type Inequalities via Conformable Calculus. Symmetry. 2021; 13(2):242. https://doi.org/10.3390/sym13020242

Chicago/Turabian Style

AlNemer, Ghada, Mohammed Kenawy, Mohammed Zakarya, Clemente Cesarano, and Haytham M. Rezk. 2021. "Generalizations of Hardy’s Type Inequalities via Conformable Calculus" Symmetry 13, no. 2: 242. https://doi.org/10.3390/sym13020242

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop