Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Extracts
2.2. Biological Component Assays
2.2.1. Total Polysaccharide Content
2.2.2. Total Phenolic Content
2.2.3. Total Glucan, α-Glucan and β-Glucan Content
2.3. Biological Activity Assays
2.3.1. DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Radical Scavenging Activity
2.3.2. Ferric-Reducing Antioxidant Potential (FRAP)
2.3.3. Superoxide Anion (SOA) Scavenging Activity
2.3.4. Tyrosinase Inhibition Activity
2.3.5. Hyaluronidase Inhibition Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of Extracts from Fruitbodies of Selected Mushrooms
3.2. Total Phenolic Content, Total Polysaccharide Content and Glucan Content of Mushroom Extracts
3.3. Antioxidant Activity of Mushroom Extracts
3.4. Hyaluronidase and Tyrosinase Inhibition Activity of Mushroom Extracts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soto, M.L.; Falque, E.; Dominguez, H. Relevance of natural phenolics from grape and derivative products in the formulations of cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of Camellia sinensis—Derived ingredients as used in cosmetics. Int. J. Toxicol. 2019, 38 (Suppl. S3), 48S–70S. [Google Scholar] [CrossRef] [PubMed]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients. Int. J. Toxicol. 2011, 30 (Suppl. S1), 5S–16S. [Google Scholar] [CrossRef]
- Emerald, M.; Emerald, A.; Emerald, L.; Kumar, V. Perspective of natural products in skincare. Pharm. Pharmacol. Int. J. 2016, 4, 00072. [Google Scholar]
- Fowler, J.F., Jr.; Woolery-Lloyd, H.; Waldorf, H.; Saini, R. Innovations in natural ingredients and their use in skin care. J. Drugs Dermatol. 2010, 9, 72–81. [Google Scholar]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Derm. Endocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Choi, M.H.; Li, J.; Yang, H.; Shin, H.J. Mushroom cosmetics: The present and future. Cosmetics 2016, 3, 22. [Google Scholar] [CrossRef]
- Hyde, K.D.; Bahkali, A.H.; Moslem, M.A. Fungi—An unusual source for cosmetics. Fungal Divers. 2010, 43, 1–9. [Google Scholar] [CrossRef]
- Taofiq, O.; Gonzáles-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Ind. Crop. Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Hoa, H.T.; Wang, C.L.; Wang, C.H. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Srikram, A.; Supapvanich, S. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agric. Nat. Resour. 2016, 50, 432–436. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Kalogeropoulos, N.; Kaliora, A.C.; Zervakis, G.I. Toward an increased functionality in Oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J. Agric. Food Chem. 2018, 66, 5971–5983. [Google Scholar] [CrossRef] [PubMed]
- Pawar, H.A.; Mello, P.M.D. Spectrophotometric estimation of total polysaccharide in Cassia tora gum. J. Appl. Pharm. Sci. 2011, 1, 93–95. [Google Scholar]
- Okmen, B.; Sigva, H.O.; Mutlu, S.; Doganlar, S.; Yemenicioglu, A.; Frary, A. Total antioxidant activity and total phenolic contents in different Turkish eggplant (Solanum melongena L.) cultivars. Int. J. Food Prop. 2009, 12, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zavallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Alam, N.; Yoon, K.N.; Lee, K.R.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Shim, M.J.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology 2010, 38, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Salvamani, S.; Gunasekaran, B.; Shukor, M.Y.; Shaharuddin, N.A.; Sabullah, M.K.; Ahmad, S.A. Anti-HMG-CoA reductase, antioxidant and anti-inflammatory activities of Amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. J. Evid. Based Complementary Altern. Med. 2016, 2016, 8090841. [Google Scholar]
- Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of extraction conditions on antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz and Pavón) tubers. Sep. Purif. Technol. 2007, 55, 217–225. [Google Scholar] [CrossRef]
- Elbatrawy, E.N.; Ghonimy, E.A.; Alassar, M.M.; Wu, F.S. Medicinal mushroom extracts possess differential antioxidant activity and cytotoxicity to cancer cells. Int. J. Med. Mushrooms 2015, 17, 471–479. [Google Scholar] [CrossRef]
- Chandrawanshi, N.K.; Tandia, D.K.; Jadhav, S.K. Nutraceutical properties evaluation of Scizophyllum commune. Indian J. Sci. Res. 2017, 13, 57–62. [Google Scholar]
- Maisuthisakul, P. Phenolic antioxidants from betel leaf (Piper betel Linn.) extract obtained with different solvents and extraction time. Univ. Thai Chamb. Commer. J. 2008, 28, 52–64. [Google Scholar]
- Chen, P.H.; Weng, Y.M.; Yu, Z.R.; Koo, M.; Wang, B.J. Extraction temperature affects the activities of antioxidation, carbohydrate-digestion enzymes, and angiotensin-converting enzyme of Pleurotus citrinopileatus extract. J. Food Drug Anal. 2016, 24, 548–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of anti-oxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal. 2007, 20, 337–345. [Google Scholar] [CrossRef]
- González-Palma, I.; Escalona-Buendia, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V.K.; Diaz-Godinez, G.; Soriano-Santos, J. Evaluation of antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front. Microbiol. 2016, 7, 1099. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Van Griensven, L.J.L.D. Pro- and antioxidative properties of medicinal mushroom extracts. Int. J. Med. Mushrooms 2008, 10, 315–324. [Google Scholar]
- Teoh, H.L.; Ahmad, I.S.; Johari, N.M.K.; Aminudin, N.; Abdullah, N. Antioxidant properties and yield of wood ear mushroom, Auricularia polytricha (Agaromycetes), cultivated on rubberwood sawdust. Int. J. Med. Mushrooms 2018, 20, 369–380. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Zhang, L. Structure and chain confirmation of beta glucan isolated from Auricularia auricular-judae. Biopolymers 2008, 89, 614–622. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.Y.; Pan, L.; Su, Y.; Wang, Y. Comparing three methods of extraction of Auricularia auricular polysaccharides. Curr. Top. Nutraceutical Res. 2017, 17, 7–10. [Google Scholar]
- Mo, M.; Hu, S.; Xu, X.; Ma, Z.; Ni, Y.; Wei, Y.; Nie, J. Optimization of extraction technology of polysaccharide of Tricholoma giganteum. Pharmacol. Pharm. 2013, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.H. Research on the Optimal Conditions of the Polysaccharide Extraction from Pholiota nameko. In Proceedings of the International Conference on Advanced Information Engineering and Education Science (ICAIEES 2013), Beijing, China, 19–20 December 2013; pp. 71–73. [Google Scholar]
- Yuan, Y.; Liu, Y.; Liu, M.; Chen, Q.; Jiao, Y.; Liu, Y.; Meng, Z. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa. Saudi Pharm. J. 2017, 25, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Rahar, S.; Swami, G.; Nagpal, N.; Nagpal, N.M.; Singh, G.S. Preparation, characterization and biological properties of β-glucans. J. Adv. Pharm. Technol. Res. 2011, 2, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Rieder, A.; Samuelsen, A.B. Do cereal mixed-linked β-glucans possess immune-modulating activities? Mol. Nutr. Food Res. 2012, 56, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Bulam, S.; Üstün, N.S.; Peksen, A. β-Glucans: An Important Bioactive Molecule of Edible and Medicinal Mushrooms. In Proceedings of the International Technological Sciences and Design Symposium, Giresun, Turkey, 27–29 June 2018. [Google Scholar]
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef]
- McCleary, B.V.; Draga, A. Measurement of β-glucan in mushrooms and mycelial products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Khlebnikov, A.I.; Schepetkin, I.A.; Domina, N.G.; Kirpotina, L.N.; Quinn, M.T. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorganic Med. Chem. 2007, 15, 1749–1771. [Google Scholar] [CrossRef] [Green Version]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Poljsak, B.; Dahmane, R.; Godic, A. Skin and antioxidants. J. Cosmet. Laser Ther. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Sonam, K.S.; Guleria, S. Synergistic antioxidant activity of natural products. Ann. Pharmacol. Pharm. 2017, 2, 1086–1091. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 56, 1841–1856. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektasoglu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonsong, S.; Klaypradit, W.; Wilaipun, P. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric. Nat. Resour. 2016, 50, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Mayakrishnan, V.; Abdullah, N.; Abidin, M.H.Z.; Fadzil, N.H.M.; Johari, N.M.K.; Aminudin, N.; Abidin, N.Z. Investigation of the antioxidative potential of various solvent fractions from fruiting bodies of Schizophyllum commune (Fr.) mushrooms and characterization of phytoconstituents. J. Agric. Sci. 2013, 5, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Vara, D.; Pula, G. Reactive oxygen species: Physiological roles in the regulation of vascular cells. Curr. Mol. Med. 2014, 4, 1103–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.C.; Wurlitzer, N.J.; Dionisio, A.P.; Lacerda, S.M.V.; Rocha, B.M.S.; Elesbão, A.R.; Montengero, B.I. Synergistic, additive and antagonistic effects of fruit mixtures on total antioxidant capacities and bioactive compounds in tropical fruit juices. Arch. Latinoam. Nutr. 2015, 65, 119–127. [Google Scholar] [PubMed]
- Olszowy, M.; Dawidowicz, A.L.; Jóźwik-Doleba, M. Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effect of their mixtures? Additive and antagonistic antioxidant effects in mixtures of gallic ferulic and caffeic acids. Eur. Food Res. Technol. 2019, 245, 1473–1485. [Google Scholar] [CrossRef] [Green Version]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovic, P.; Niksic, M.; Vrvic, M.M.; van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [Green Version]
- Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem. 2018, 243, 373–381. [Google Scholar] [CrossRef]
- Huh, M.K.; Han, M.D. Inhibitory effect of hyaluronidase and DPPH radical scavenging activity using extraction of Equisetum arvens. Eur. J. Adv. Res. Biol. Life Sci. 2015, 3, 47–51. [Google Scholar]
- Ticar, B.F.; Rohmah, Z.; Mussatto, S.I.; Lim, J.M.; Park, S.; Choi, B.D. Hyaluronidase-inhibitory activities of glycosaminoglycans from Liparis tessellatus eggs. Carbohydr. Polym. 2017, 161, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Meng, T.X.; Furuta, S.; Fukamizu, S.; Yamamoto, R.; Ishikawa, H.; Arung, E.T.; Shimizu, K.; Ohga, S.; Kondo, R. Evaluation of biological activities of extracts from the fruiting body of Pleurotus citrinopileatus for skin cosmetics. J. Wood Sci. 2011, 57, 452–458. [Google Scholar] [CrossRef]
- Yahaya, Y.A.; Don, M.M. Evaluation of Trametes lactinea extracts on the inhibition of hyaluronidase, lipoxygenase and xanthine oxidase activities in vitro. J. Phys. Sci. 2012, 23, 1–15. [Google Scholar]
- Dandapat, S.; Sinha, M.P. Antioxidant and anti-Inflammatory activity of Pleurotus tuber-regium (Rumph. ex Fr.) Singer. Adv. Biol. Res. 2015, 9, 140–145. [Google Scholar]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 2017, 108, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.L.; Han, F.; Luan, S.S.; Ai, R.; Zhang, P.; Li, H.; Chen, L.X. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J. Agric. Food Chem. 2019, 67, 5147–5158. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Su, Y.; Feng, Y.; Hong, R. A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species. Int. J. Biol. Macromol. 2020, 154, 1074–1081. [Google Scholar] [CrossRef]
- Du, B.; Zeng, H.; Yang, Y.; Bian, Z.; Xu, B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int. J. Biol. Macromol. 2016, 91, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.N.; Alam, N.; Lee, K.R.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Lee, T.S. Antioxidant and anti-tyrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules 2011, 16, 2334–2347. [Google Scholar] [CrossRef]
- Rout, S.; Banerjee, R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresour. Technol. 2007, 98, 3159–3163. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, Y.L.; Li, Q.L.; Yang, L. Improved anti-melanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis. Braz. J. Med. Biol. Res. 2018, 51, e7256. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.S.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2017, 58, 1310–1329. [Google Scholar] [CrossRef] [PubMed]
Mushroom | Extract | Total Extraction Yield (% w/w) | Total Polysaccharide Content (mg GE/g extract) | Total Phenolic Content (mg GAE/g extract) |
---|---|---|---|---|
S. commune | CWE | 19.0 ± 1.3 b | 66.7 ± 2.2 e | 14.22 ± 0.02 b |
HWE | 9.2 ± 0.5 c | 76.3 ± 1.2 e | 14.65 ± 0.01 b | |
A. polytricha | CWE | 5.4 ± 1.1 d | 168.7 ± 9.5 b | 19.81 ± 0.56 a |
HWE | 6.2 ± 0.2 d | 140.8 ± 6.9 c | 12.11 ± 0.09 b | |
P. ostreatus | CWE | 20.3 ± 0.4 b | 235.8 ± 16.5 a | 13.06 ± 0.23 b |
HWE | 25.1 ± 0.5 a | 253.6 ± 2.2 a | 12.12 ± 0.66 b | |
G. lucidum | CWE | 3.0 ± 0.6 e | 63.2 ± 0.1 e | 7.15 ± 0.99 c |
HWE | 4.9 ± 0.7 d,e | 101.7 ± 0.1 d | 20.79 ± 4.21 a |
Mushroom | Extract | Total Glucan Content (%) | α-Glucan Content (%) | β-Glucan Content (%) |
---|---|---|---|---|
S. commune | CWE | 34.72 ± 1.94 a | 4.30 ± 0.40 b | 29.97 ± 1.55 a |
HWE | 34.26 ± 0.82 a | 2.22 ± 1.14 b | 32.05 ± 1.97 a | |
A. polytricha | CWE | 33.42 ± 5.16 a | 13.59 ± 2.63 a | 19.83 ± 7.81 a,b |
HWE | 31.09 ± 2.33 a | 5.14 ± 0.47 b | 25.96 ± 2.81 a | |
P. ostreatus | CWE | 27.35 ± 0.28 a | 1.46 ± 0.18 b | 25.89 ± 0.46 a |
HWE | 29.95 ± 0.98 a | 2.11 ± 0.83 b | 27.85 ± 1.80 a | |
G. lucidum | CWE | 10.12 ± 0.16 b | 1.69 ± 0.14 b | 8.44 ± 0.29 b |
HWE | 10.67 ± 1.05 b | 0.96 ± 0.46 b | 9.72 ± 1.51 b |
Biological Activity | Relation | Pearson r | R2 |
---|---|---|---|
Antioxidant activity (Superoxide anion scavenging activity) | SOA/TPC | 0.401 | 0.160 |
SOA/TPolC | 0.541 | 0.293 | |
SOA/BG | 0.373 | 0.139 | |
Antioxidant activity (DPPH radical scavenging activity) | DPPH/TPC | 0.572 | 0.327 |
DPPH/TPolC | 0.722 | 0.521 | |
DPPH/BG | 0.323 | 0.104 | |
Antioxidant activity (Ferric-reducing activity) | FRAP/TPC | 0.802 | 0.642 |
FRAP/TPolC | 0.342 | 0.117 | |
FRAP/BG | 0.572 | 0.327 | |
Hyaluronidase inhibition activity | Anti-Hya/TPC | 0.214 | 0.046 |
Anti-Hya/TPolC | 0.249 | 0.062 | |
Anti-Hya/BG | 0.702 | 0.494 | |
Tyrosinase inhibition activity | Anti-Tyro/TPC | 0.087 | 0.008 |
Anti-Tyro/TPolC | 0.712 | 0.506 | |
Anti-Tyro/BG | 0.015 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Razak, D.L.; Jamaluddin, A.; Abd Rashid, N.Y.; Sani, N.A.; Abdul Manan, M. Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity. J 2020, 3, 329-342. https://doi.org/10.3390/j3030026
Abd Razak DL, Jamaluddin A, Abd Rashid NY, Sani NA, Abdul Manan M. Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity. J. 2020; 3(3):329-342. https://doi.org/10.3390/j3030026
Chicago/Turabian StyleAbd Razak, Dang Lelamurni, Anisah Jamaluddin, Nur Yuhasliza Abd Rashid, Nor Ajila Sani, and Musaalbakri Abdul Manan. 2020. "Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity" J 3, no. 3: 329-342. https://doi.org/10.3390/j3030026
APA StyleAbd Razak, D. L., Jamaluddin, A., Abd Rashid, N. Y., Sani, N. A., & Abdul Manan, M. (2020). Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity. J, 3(3), 329-342. https://doi.org/10.3390/j3030026