Influence of SPV Installations on the Thermal Character of the Urban Milieu
Abstract
:1. Introduction
2. Urban Thermal Environment (UTE)
2.1. Land–Atmosphere Interface in Urban Areas
2.1.1. Urban Boundary Layer
2.1.2. Urban Canopy Layer
2.2. Factors Affecting the UTE
2.3. Tools to Measure the UTE
2.4. Summary
3. UTE and Solar Photovoltaic
3.1. Behavior of SPV in Urban Milieu
3.2. Modified Surface Properties Due to Materials
3.3. Modified Temperature Profile Due to SPV
3.4. Effect of SPV Technological Improvements on the UTE
4. Conclusions and Future Perspective
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
αpv | Albedo of the upward face of the SPV panel. |
εpv_f | Emissivity of the upward face of the SPV panel. |
εpv_b | Emissivity of the downward face of the SPV panel. |
effpv | Solar conversion efficiency of the SPV panel. |
LWin | Incoming longwave radiation (W/m2). |
LWout | Outgoing longwave radiation (W/m2) (emitted) from surfaces. |
LWt | Trapped longwave radiation (W/m2) between SPV and underlying surface. |
SWin | Incoming shortwave radiation (W/m2). |
SWout | Outgoing shortwave radiation (W/m2) (reflected) from surfaces. |
QS | Stored thermal heat flux (W/m2) in surfaces. |
QE | Latent heat flux (W/m2) from vegetation (evapotranspiration) and soil. |
QA | Anthropogenic heat flux (W/m2) from the SPV panel and other materials/activities. |
QH | Sensible heat flux (W/m2) from the SPV panel and other surfaces into the atmosphere. |
Tpv | Temperature (°C) of the SPV panel. |
References
- Phillips, J. Determining the sustainability of large-scale photovoltaic solar power plants. Renew. Sustain. Energy Rev. 2013, 27, 435–444. [Google Scholar] [CrossRef]
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N.J. Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Glob. Chang. Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Berdahl, P.; Bretz, S.E. Preliminary survey of the solar reflectance of cool roofing materials. Energy Build. 1997. [Google Scholar] [CrossRef] [Green Version]
- Xu, M. Development of an Integrated Urban Heat Island Simulation Tool. Ann. Ecol. Environ. Sci. 2017, 1, 27–45. [Google Scholar]
- Lacis, A.A.; Hansen, J.E. A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci. 1974, 31. [Google Scholar] [CrossRef]
- Ohlhorst, C.W.; Vaughn, W.L.; Daryabeigi, K.; Lewis, R.K.; Rodriguez, A.C.; Milhoan, J.D.; Koenig, J.R. Emissivity Results on High Temperature Coatings for Refractory Composite Materials. 2018. Available online: http://hdl.handle.net/2060/20070031768 (accessed on 16 September 2020).
- Salamanca, F.; Tonse, S.; Menon, S.; Garg, V.; Singh, K.P.; Naja, M.; Fischer, M.L. Top-of-atmosphere radiative cooling with white roofs: Experimental verification and model-based evaluation. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- Ostry, M.; Charvat, P. Materials for advanced heat storage in buildings. Procedia Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
- Christen, A.; Vogt, R. Energy and radiation balance of a central European City. Int. J. Climatol. 2004. [Google Scholar] [CrossRef]
- Muhaisen, A. Investigation of the Thermal Performance of Building Form in the Mediterranean Climate of the Gaza Strip. IUG J. Nat. Stud. 2013, 21, 101–122. [Google Scholar]
- Mirzaei, P.A.; Haghighat, F. Approaches to study Urban Heat IslanD—Abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Bande, L.; Afshari, A.; Al Masri, D.; Jha, M.; Norford, L.; Tsoupos, A.; Marpu, P.; Pasha, Y.; Armstrong, P. Validation of UWG and ENVI-met models in an Abu Dhabi District, based on site measurements. Sustainability 2019, 11, 4378. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W. Constructed Climates: A Primer on Urban Environments; University of Chicago Press: Chicago, IL, USA, 2011. [Google Scholar]
- Demirezen, E.; Ozden, T.; Akinoglu, B.G. Impacts of a photovoltaic power plant for possible heat island effect. In Proceedings of the 2018 International Conference on Photovoltaic Science and Technologies (PVCon), Ankara, Turkey, 4–6 July 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Xu, M.; Bruelisauer, M.; Berger, M. Development of a new urban heat island modeling tool: Kent Vale case study. Procedia Comput. Sci. 2017, 108, 225–234. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Reducing Urban Heat Islands: Compendium of Strategies—Urban Heat Island Basics; 2008. Available online: https://www.epa.gov/sites/production/files/2014-06/documents/basicscompendium.pdf (accessed on 16 September 2020).
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas. Sol. Energy 2013, 91, 358–367. [Google Scholar] [CrossRef]
- Hu, A.; Levis, S.; Meehl, G.A.; Han, W.; Washington, W.M.; Oleson, K.W.; van Ruijven, B.J.; He, M.; Strand, W.G. Impact of solar panels on global climate. Nat. Clim. Chang. 2016, 6, 290–294. [Google Scholar] [CrossRef]
- Edalat, M.M.; Stephen, H. Effects of two utility-scale solar energy plants on land-cover patterns using SMA of Thematic Mapper data. Renew. Sustain. Energy Rev. 2017, 67, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matai, K.; Manchanda, S. LST Mapping of SPV to Gauge Their Influence on Near-Surface Air Temperature of New Delhi City. In Green Buildings and Sustainable Engineering; Springer: Singapore, 2018; pp. 3–24. [Google Scholar]
- Burg, B.R.; Ruch, P.; Paredes, S.; Michel, B. Placement and efficiency effects on radiative forcing of solar installations. AIP Conf. Proc. 2015, 1679. [Google Scholar] [CrossRef]
- Cortes, A.; Murashita, Y.; Matsuo, T.; Kondo, A.; Shimadera, H.; Inoue, Y. Numerical evaluation of the effect of photovoltaic cell installation on urban thermal environment. Sustain. Cities Soc. 2015. [Google Scholar] [CrossRef]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Sahu, B.K. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sustain. Energy Rev. 2015, 43, 621–634. [Google Scholar] [CrossRef]
- Nemet, G.F. Net radiative forcing from widespread deployment of photovoltaics. Environ. Sci. Technol. 2009. [Google Scholar] [CrossRef]
- Parthasara, S.; Neelamegam, P.; Thilakan, P. Outdoor Performance Characterization of Multi-Crystalline Silicon Solar Module. J. Appl. Sci. 2012, 12, 1953–1959. [Google Scholar] [CrossRef]
- Burg, B.R.; Ruch, P.; Paredes, S.; Michel, B. Effects of radiative forcing of building integrated photovoltaic systems in different urban climates. Sol. Energy 2017, 147, 399–405. [Google Scholar] [CrossRef]
- Millstein, D.; Menon, S. Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Pham, J.V.; Baniassadi, A.; Brown, K.E.; Heusinger, J.; Sailor, D.J. Comparing photovoltaic and reflective shade surfaces in the urban environment: Effects on surface sensible heat flux and pedestrian thermal comfort. Urban Clim. 2019, 29. [Google Scholar] [CrossRef]
- Genchi, Y.; Ishisaki, M.; Ohashi, Y.; Kikegawa, Y.; Takahashi, H.; Inaba, A. Impacts of large-scale photovoltaic panel installation on the heat island effect in Tokyo. In Proceedings of the Fifth Conference on the Urban Climate, Łódź, Poland, 1–5 September 2003; pp. 1–4. [Google Scholar]
- Fthenakis, V.; Yu, Y. Analysis of the potential for a heat island effect in large solar farms. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 3362–3366. [Google Scholar] [CrossRef]
- Scherba, A.; Sailor, D.J.; Rosenstiel, T.N.; Wamser, C.C. Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment. Build. Environ. 2011, 46, 2542–2551. [Google Scholar] [CrossRef]
- Chemisana, D.; Lamnatou, C. Photovoltaic-green roofs: An experimental evaluation of system performance. Appl. Energy 2014, 119, 246–256. [Google Scholar] [CrossRef]
- Efthymiou, C.; Santamouris, M.; Kolokotsa, D.; Koras, A. Development and testing of photovoltaic pavement for heat island mitigation. Sol. Energy 2016, 130, 148–160. [Google Scholar] [CrossRef]
- Masson, V.; Bonhomme, M.; Salagnac, J.-L.; Briottet, X.; Lemonsu, A. Solar panels reduce both global warming and urban heat island. Front. Environ. Sci. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand. Bound. Layer Meteorol. 2016, 161, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Heusinger, J.; Broadbent, A.M.; Sailor, D.J.; Georgescu, M. Introduction, evaluation and application of an energy balance model for photovoltaic modules. Sol. Energy 2020, 195, 382–395. [Google Scholar] [CrossRef]
- Chang, R.; Luo, Y.; Zhu, R. Simulated local climatic impacts of large-scale photovoltaics over the barren area of Qinghai, China. Renew. Energy 2020, 145, 478–489. [Google Scholar] [CrossRef]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Bach, E.; Zeng, N. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef] [Green Version]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Lv, F.; Hui, X.; Ma, L.; Hou, X. Study on the local climatic effects of large photovoltaic solar farms in desert areas. Sol. Energy 2017, 144, 244–253. [Google Scholar] [CrossRef]
- Pillai, R.; Aaditya, G.; Mani, M.; Ramamurthy, P. Cell (module) temperature regulated performance of a building integrated photovoltaic system in tropical conditions. Renew. Energy 2014, 72, 140–148. [Google Scholar] [CrossRef] [Green Version]
Paper | Tools Use for Analysis | Conclusions Drawn | |||
---|---|---|---|---|---|
YES, SPV Affects the Urban Milieu | NO, SPV Does not Affect the Urban Milieu | Mixed Results | More Detailed Studies are Required | ||
[1] | Mathematical model | √ | √ | ||
[2] | Review | √ | √ | ||
[4] | Review | √ | √ | ||
[23] | Simulation model | √ | √ | ||
[24] | Simulation model | √ | √ | √ | |
[25] | Remote sensing | √ | |||
[26] | Field measurements | √ | √ | ||
[27] | Remote sensing | √ | √ | √ | √ |
[29] | Simulation model | √ | √ | ||
[31] | Review | √ | √ | ||
[33] | Mathematical model | √ | √ | ||
[35] | Mathematical model | √ | √ | ||
[36] | Simulation model | √ | √ | ||
[37] | Field measurements | √ | |||
[38] | Simulation model | √ | √ | √ | |
[39] | Field measurements | √ | |||
[40] | Simulation model | √ | |||
[43] | Simulation model | √ | √ | ||
[44] | Simulation model | √ | √ | √ | |
[45] | Simulation model | √ | |||
[46] | Simulation model | √ | √ | ||
[47] | Simulation model | √ | √ |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matai, K. Influence of SPV Installations on the Thermal Character of the Urban Milieu. J 2020, 3, 343-357. https://doi.org/10.3390/j3030027
Matai K. Influence of SPV Installations on the Thermal Character of the Urban Milieu. J. 2020; 3(3):343-357. https://doi.org/10.3390/j3030027
Chicago/Turabian StyleMatai, Khushal. 2020. "Influence of SPV Installations on the Thermal Character of the Urban Milieu" J 3, no. 3: 343-357. https://doi.org/10.3390/j3030027
APA StyleMatai, K. (2020). Influence of SPV Installations on the Thermal Character of the Urban Milieu. J, 3(3), 343-357. https://doi.org/10.3390/j3030027