Effect of Training Phase on Physical and Physiological Parameters of Male Powerlifters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Muscular Performance
2.4. Flexibility
2.5. Body Composition
2.6. Pulse Wave Velocity and Blood Pressure
2.7. Diet and Training Diaries
2.8. Blood and Urine Analysis
2.9. Statistical Analysis
3. Results
3.1. Exercise Performance and Body Composition between Training Phases
3.2. Physiological Health Parameters between Training Phases
3.3. Diet and Exercise between Training Phases
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferland, P.M.; Comtois, A.S. Classic powerlifting performance: A systematic review. J. Strength Cond. Res. 2019, 33, S194–S201. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Lloyd, R.; Agouris, I.; Stewart, A. Contemporary training practices in elite British powerlifters: Survey results from an international competition. J. Strength Cond. Res. 2009, 23, 380–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harries, S.K.; Lubans, D.R.; Callister, R. Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. J. Strength Cond. Res. 2015, 29, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Reichel, T.; Mitnacht, M.; Fenwick, A.; Meffert, R.; Hoos, O.; Fehske, K. Incidence and characteristics of acute and overuse injuries in elite powerlifters. Cogent Med. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Tapering practices of Croatian open-class powerlifting champions. J. Strength Cond. Res. 2017, 31, 2371–2378. [Google Scholar] [CrossRef]
- Pritchard, H.J.; Tod, D.A.; Barnes, M.J.; Keogh, J.W.; McGuigan, M.R. Tapering practices of New Zealand’s elite raw powerlifters. J. Strength Cond. Res. 2016, 30, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Keogh, J.W.; Hume, P.A.; Pearson, S.N.; Mellow, P. Anthropometric dimensions of male powerlifters of varying body mass. J. Sports Sci. 2007, 25, 1365–1376. [Google Scholar] [CrossRef]
- Mayhew, J.L.; McCormick, T.P.; Piper, F.C.; Kurth, A.L.; Arnold, M.D. Relationships of body dimensions to strength performance in novice adolescent male powerlifters. Pediatr. Exerc. Sci. 1993, 5, 347–356. [Google Scholar] [CrossRef]
- Ferrari, L.; Colosio, A.L.; Teso, M.; Pogliaghi, S. Performance and anthropometrics of classic powerlifters: Which characteristics matter? J. Strength Cond. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Nolan, D.; Lynch, A.E.; Egan, B. Self-reported prevalence, magnitude, and methods of rapid weight loss in male and female competitive powerlifters. J. Strength Cond. Res. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Aasa, U.; Svartholm, I.; Andersson, F.; Berglund, L. Injuries among weightlifters and powerlifters: A systematic review. Br. J. Sports Med. 2017, 51, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Siewe, J.; Rudat, J.; Röllinghoff, M.; Schlegel, U.; Eysel, P.; Michael, J.-P. Injuries and overuse syndromes in powerlifting. Int. J. Sports Med. 2011, 32, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Strömbäck, E.; Aasa, U.; Gilenstam, K.; Berglund, L. Prevalence and consequences of injuries in powerlifting: A cross-sectional study. Orthop. J. Sports Med. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- van Amsterdam, J.; Opperhuizen, A.; Hartgens, F. Adverse health effects of anabolic–androgenic steroids. Regul. Toxicol. Pharmacol. 2010, 57, 117–123. [Google Scholar] [CrossRef]
- Yesalis, C.E., III; Herrick, R.T.; Buckley, W.E.; Friedl, K.E.; Brannon, D.; Wright, J.E. Self-reported use of anabolic-androgenic steroids by elite power lifters. Phys. Sportsmed. 1988, 16, 91–100. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Vanderburgh, P.M.; Dooman, C. Considering body mass differences, who are the world’s strongest women? Med. Sci. Sports Exerc. 2000, 32, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, D.A.; Cobley, S.P.; Davies, T.B.; Michael, S.W.; Halaki, M. Accuracy in estimating repetitions to failure during resistance exercise. J. Strength Cond. Res. 2017, 31, 2162–2168. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.; Ibañez, J.; González-Badillo, J.J.; Ratamess, N.A.; Kraemer, W.J.; Häkkinen, K.; Bonnabau, H.; Granados, C.; French, D.N.; Gorostiaga, E.M. Detraining and tapering effects on hormonal responses and strength performance. J. Strength Cond. Res. 2007, 21, 768–775. [Google Scholar] [PubMed] [Green Version]
- Häkkinen, K.; Kallinen, M.; Komi, P.V.; Kauhanen, H. Neuromuscular adaptations during short-term “normal” and reduced training periods in strength athletes. Electromyogr. Clin. Neurophysiol. 1991, 31, 35–42. [Google Scholar] [PubMed]
- Coutts, A.; Reaburn, P.; Piva, T.J.; Murphy, A. Changes in selected biochemical, muscular strength, power, and endurance measures during deliberate overreaching and tapering in rugby league players. Int. J. Sports Med. 2007, 28, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Berge, H.M.; Isern, C.B.; Berge, E. Blood pressure and hypertension in athletes: A systematic review. Br. J. Sports Med. 2015, 49, 716–723. [Google Scholar] [CrossRef]
- Stafford, R.S. New high blood pressure guidelines: Back on track with lower treatment goals, but implementation challenges abound. Am. J. Prev. Med. 2018, 55, 575–578. [Google Scholar] [CrossRef]
- Kokubo, Y.; Iwashima, Y. Higher blood pressure as a risk factor for diseases other than stroke and ischemic heart disease. Hypertension 2015, 66, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.V.; Waclawovsky, G.; Kramer, A.B.; Stein, C.; Eibel, B.; Grezzana, G.B.; Schaun, M.I.; Lehnen, A.M. Comparison of cardiac and vascular parameters in powerlifters and long-distance runners: Comparative cross-sectional study. Arq. Bras. Cardiol. 2018, 111, 772–781. [Google Scholar] [CrossRef]
- Miyachi, M. Effects of resistance training on arterial stiffness: A meta-analysis. Br. J. Sports Med. 2013, 47, 393–396. [Google Scholar] [CrossRef]
- Fu, Q.; Levine, B.D. Exercise and the autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 147–160. [Google Scholar]
- Higashi, Y.; Noma, K.; Yoshizumi, M.; Kihara, Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009, 73, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001, 37, 1236–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaboration, T.R.V.f.A.S. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar]
- Fontana, L.; Hu, F.B. Optimal body weight for health and longevity: Bridging basic, clinical, and population research. Aging Cell 2014, 13, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantari, K.; Bolton, W.K. A good reason to measure 24-hour urine creatinine excretion, but not to assess kidney function. Clin. J. Am. Soc. Nephrol. 2013, 8, 1847–1849. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.M.; Mardock, M.A.; Biehl, A.J.; Riechman, S.E. Macronutrient intake in collegiate powerlifters participating in off season training. J. Int. Soc. Sports Nutr. 2010, 7, P8. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M. Protein requirements and supplementation in strength sports. Nutrition 2004, 20, 689–695. [Google Scholar] [CrossRef]
- Phillips, S.M. Dietary protein for athletes: From requirements to metabolic advantage. Appl. Physiol. Nutr. Metab. 2006, 31, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Kamper, A.-L.; Strandgaard, S. Long-term effects of high-protein diets on renal function. Annu. Rev. Nutr. 2017, 37, 347–369. [Google Scholar] [CrossRef]
- Baker, D.G.; Newton, R.U. Adaptations in upper-body maximal strength and power output resulting from long-term resistance training in experienced strength-power athletes. J. Strength Cond. Res. 2006, 20, 541–546. [Google Scholar]
Parameter | Preparatory Phase | Competition Phase | % Change | Z | p Value |
---|---|---|---|---|---|
CP 1RM (N) | 1025.0 (925.0–1112.5) | 1005.0 (935.0–1150.0) | −2.0 | −1.40 | 0.16 |
CP peak power (W) | 862.0 (811.0–1079.5) | 890.0 (769.5–1094.5) | 3.2 | −0.89 | 0.37 |
CP endurance (rep) | 20.0 (18.5–21.0) | 22.0 (18.5–24.0) | 10.0 | −1.62 | 0.11 |
LP 1RM (N) b | 4025.0 (3804.8–4162.5) | 4000.0 (3625.0–4250.0) | −0.6 | −1.19 | 0.24 |
LP peak power (W) a | 2561.0 (2008.8–2862.3) | 2332.8 (1891.0–3338.0) | −8.9 | −0.68 | 0.50 |
LP endurance (rep) a | 41.0 (28.5–43.8) | 31.0 (25.0–33.0) | −24.4 | −1.78 | 0.08 † |
Handgrip—right (kg) b | 51.0 (47.0–52.0) | 52.3 (43.0–62.0) | 2.5 | −0.85 | 0.40 |
Handgrip—left (kg) b | 50.0 (42.3–59.5) | 50.0 (47.0–58.0) | 0.0 | −0.93 | 0.35 |
Sit and reach (cm) | 31.5 (21.3–34.3) | 30.5 (20.5–36.8) | −3.2 | −0.68 | 0.50 |
Total mass (kg) | 88.3 (81.6–101.7) | 86.4 (80.1–101.6) | −2.2 | −1.37 | 0.17 |
Fat mass (kg) | 15.7 (9.0–23.9) | 16.6 (8.4–22.8) | 5.7 | −0.89 | 0.37 |
Lean mass (kg) | 70.3 (63.5–74.0) | 68.3 (64.3–73.9) | −2.8 | −0.77 | 0.44 |
FFM (kg) | 74.3 (67.0–77.8) | 72.4 (67.6–77.8) | −2.7 | −0.65 | 0.52 |
SMM (kg) | 37.0 (34.1–41.5) | 36.7 (34.9–42.2) | −0.6 | −1.36 | 0.17 |
Body fat (%) | 17.6 (12.6–25.0) | 19.5 (11.7–24.0) | 10.8 | −0.83 | 0.41 |
Android fat (kg) | 1.4 (0.8–2.5) | 1.5 (0.7–2.4) | 7.7 | −1.01 | 0.31 |
Arms lean mass (kg) | 10.4 (9.1–11.0) | 9.7 (9.1–10.8) | −6.7 | −0.77 | 0.44 |
Legs lean mass (kg) | 21.6 (20.0–24.8) | 22.1 (20.3–25.6) | 2.3 | −2.07 | 0.04* |
Parameter | Reference Range a | Preparatory Phase | Competition Phase | % Change | Z | p Value |
---|---|---|---|---|---|---|
SBP (mmHg) | 115.0 (109.5–121.0) | 110.0 (10.5.0–114.3) | −4.3 | −1.54 | 0.13 | |
DBP (mmHg) | 71.0 (64.5–78.5) | 66.5 (61.8–71.0) | −6.3 | −0.51 | 0.61 | |
PWV (m/s) | 6.5 (5.9–7.5) | 6.6 (5.9–7.1) | 1.5 | −1.55 | 0.12 | |
Testosterone (nmol/L) | 11.5–32.0 | 20.8 (18.9–22.5) | 20.2 (18.3–21.0) | −2.9 | −0.77 | 0.44 |
Free testosterone (pmol/L) | 260–740 | 350.0 (309.5–444.5) | 350.0 (311.5–414.3) | 0 | −0.77 | 0.44 |
SHBG (nmol/L) | 15–50 | 44.0 (33.5–53.5) | 44.0 (35.3–48.0) | 0 | −0.43 | 0.67 |
Free androgen index (%) | 15–100 | 42.8 (38.5–63.4) | 45.0 (37.1–59.5) | 5.1 | −0.98 | 0.33 |
IGF-1 (nmol/L) | 21–68 | 27.0 (24.5–33.0) | 27.5 (27.0–31.3) | 1.9 | −1.33 | 0.18 |
Creatinine (umol/L) | 60–110 | 80.0 (75.0–117.5) | 80.0 (76.3–88.8) | 0 | −0.43 | 0.67 |
Glucose (mmol/L) | 3.6–6.0 | 4.5 (4.3–4.8) | 4.7 (4.2–5.0) | 4.4 | −0.34 | 0.73 |
Insulin (mU/L) | 0–20 | 4.0 (3.5–8.0) | 5.0 (4.0–6.0) | 25 | −0.55 | 0.58 |
Triglycerides (mmol/L) | 0.5–1.7 | 0.6 (0.5–0.8) | 0.7 (0.4–1.2) | 16.7 | −0.51 | 0.61 |
Total cholesterol (mmol/L) | 3.9–5.5 | 4.7 (4.2–5.5) | 5.0 (3.8–5.3) | 6.4 | −1.47 | 0.14 |
HDL (mmol/L) | 0.8–1.5 | 1.4 (1.4–1.7) | 1.3 (1.2–1.6) | −7.2 | −0.94 | 0.35 |
LDL (mmol/L) | 1.7–3.5 | 3.1 (2.6–3.5) | 3.0 (2.2–3.4) | −3.2 | −1.20 | 0.23 |
Cortisol (nmol/L) | 138–650 | 279.0 (228.0–412.5) | 369.5 (274.3–406.0) | 32.4 | −0.42 | 0.67 |
Vitamin D (nmol/L) | 50–140 | 85.0 (63.5–133.5) | 94.5 (58.5–98.5) | 11.2 | −0.34 | 0.74 |
Urine volume (mL) | 3220.0 (1930.0–5065.0) | 3225.0 (2530.0–4785.0) | 0.2 | −0.28 | 0.78 | |
Creatinine excretion (mmol/day) | 8.8–18.0 | 21.5 (20.0–23.5) | 23.1 (20.0–25.6) | 7.4 | −1.01 | 0.31 |
Creatinine clearance (mL/s) b | 1.10–3.20 | 2.4 (1.9–2.8) | 2.7 (2.3–3.3) | 12.5 | −1.78 | 0.08 † |
Preparatory Phase | Competition Phase | % Change | Z | p Value | |
---|---|---|---|---|---|
Total energy (kJ) | 14,639.7 (10,749.8–16,275.3) | 12,156.8 (10,049.5–14,720.4) | −17.0 | −1.86 | 0.06 † |
Protein (g) | 229.1 (169.4–245.2) | 210.6 (137.7–216.8) | −8.1 | −1.52 | 0.13 |
Fat (g) | 89.9 (86.8–139.6) | 92.1 (82.4–111.5) | 2.4 | −1.69 | 0.09 † |
Carbohydrates (g) | 276.2 (252.8–338.3) | 299.8 (219.2–308.2) | 8.5 | −1.86 | 0.06 † |
UB RT volume (kg) | 22,732.5 (7290.0–30,123.5) | 10,377.0 (3560.0–19,320.0) | −54.4 | −1.35 | 0.18 |
LB RT volume (kg) | 16,662.5 (9975.0–27,170.0) | 4180.0 (1312.5–10,113.0) | −75.0 | −2.03 | 0.04 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hackett, D.A.; Wilson, G.C.; Mitchell, L.; Haghighi, M.M.; Clarke, J.L.; Mavros, Y.; O’Connor, H.; Hagstrom, A.D.; Slater, G.J.; Keogh, J.; et al. Effect of Training Phase on Physical and Physiological Parameters of Male Powerlifters. Sports 2020, 8, 106. https://doi.org/10.3390/sports8080106
Hackett DA, Wilson GC, Mitchell L, Haghighi MM, Clarke JL, Mavros Y, O’Connor H, Hagstrom AD, Slater GJ, Keogh J, et al. Effect of Training Phase on Physical and Physiological Parameters of Male Powerlifters. Sports. 2020; 8(8):106. https://doi.org/10.3390/sports8080106
Chicago/Turabian StyleHackett, Daniel A., Guy C. Wilson, Lachlan Mitchell, Marjan Mosalman Haghighi, Jillian L. Clarke, Yorgi Mavros, Helen O’Connor, Amanda D. Hagstrom, Gary J. Slater, Justin Keogh, and et al. 2020. "Effect of Training Phase on Physical and Physiological Parameters of Male Powerlifters" Sports 8, no. 8: 106. https://doi.org/10.3390/sports8080106
APA StyleHackett, D. A., Wilson, G. C., Mitchell, L., Haghighi, M. M., Clarke, J. L., Mavros, Y., O’Connor, H., Hagstrom, A. D., Slater, G. J., Keogh, J., & McLellan, C. (2020). Effect of Training Phase on Physical and Physiological Parameters of Male Powerlifters. Sports, 8(8), 106. https://doi.org/10.3390/sports8080106