COVID-19: Present and Future Challenges for Dental Practice
Abstract
:1. Introduction
2. Prevention: Provision of Dental Healthcare during the COVID-19 Pandemic
3. Treatment: Dental Aspects of Drugs Used for COVID-19 Treatment
3.1. Azithromycin
3.2. Chloroquine
3.3. Ibuprofen and NSAIDS in COVID-19 Patients
4. Oral Manifestations of COVID-19
4.1. Salivary Gland Infection
4.2. Taste Abnormalities
5. Discussion and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Amariles, P.; Granados, J.; Ceballos, M.; Montoya, C.J. COVID-19 in Colombia endpoints. Are we different, like Europe? Res. Soc. Adm. Pharm. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D. Antihypertensive drugs and risk of COVID-19? Lancet Respir. Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- Day, M. Covid-19: Four fifths of cases are asymptomatic, China figures indicate. BMJ 2020, 369, m1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Tu, L.; Zhu, P.; Mu, M.; Wang, R.; Yang, P.; Wang, X.; Hu, C.; Ping, R.; Hu, P.; et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. Am. J. Respir. Crit. Care Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Personal Protective Equipment. Available online: https://www.who.int/medical_devices/meddev_ppe/en/ (accessed on 27 April 2020).
- American Dental Association. ADA Coronavirus (COVID-19) Center for Dentists. Available online: https://success.ada.org/en/practice-management/patients/infectious-diseases-2019-novel-coronavirus? (accessed on 27 April 2020).
- American Dental Association. What Constitutes a Dental Emergency? Available online: https://success.ada.org/~/media/CPS/Files/Open%20Files/ADA_COVID19_Dental_Emergency_DDS.pdf (accessed on 27 April 2020).
- Dar-Odeh, N.; Fadel, H.T.; Abu-Hammad, S.; Abdeljawad, R.; Abu-Hammad, O.A. Antibiotic prescribing for Oro-facial infections in the paediatric outpatient: A review. Antibiotics 2018, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Durkin, M.J.; Hsueh, K.; Sallah, Y.H.; Feng, Q.; Jafarzadeh, S.R.; Munshi, K.D.; Lockhart, P.B.; Thornhill, M.H.; Henderson, R.R.; Fraser, V.J. An evaluation of dental antibiotic prescribing practices in the United States. J. Am. Dent. Assoc. 2017, 148, 878–886. [Google Scholar] [CrossRef] [Green Version]
- Bolfoni, M.R.; Pappen, F.G.; Pereira-Cenci, T.; Jacinto, R.C. Antibiotic prescription for endodontic infections: A survey of Brazilian endodontists. Int. Endod. J. 2018, 51, 148–156. [Google Scholar] [CrossRef]
- Struyf, T.; Vandael, E.; Leroy, R.; Mertens, K.; Catry, B. Antimicrobial prescribing by Belgian dentists in ambulatory care, from 2010 to 2016. Int. Dent. J. 2019, 69, 480–487. [Google Scholar] [CrossRef]
- Bacharier, L.B.; Guilbert, T.W.; Mauger, D.T.; Boehmer, S.; Beigelman, A.; Fitzpatrick, A.M.; Jackson, D.J.; Baxi, S.N.; Benson, M.; Burnham, C.A.D.; et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: A randomized clinical trial. JAMA J. Am. Med. Assoc. 2015, 314, 2034–2044. [Google Scholar] [CrossRef]
- Salman, S.; Rogerson, S.J.; Kose, K.; Griffin, S.; Gomorai, S.; Baiwog, F.; Winmai, J.; Kandai, J.; Karunajeewa, H.A.; O’Halloran, S.J.; et al. Pharmacokinetic properties of azithromycin in pregnancy. Antimicrob. Agents Chemother. 2010, 54, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Bizjak, E.D.; Haug, M.T.; Schilz, R.J.; Sarodia, B.D.; Dresing, J.M. Intravenous azithromycin-induced ototoxicity. Pharmacotherapy 1999, 19, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Serisier, D.J. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir. Med. 2013, 1, 262–274. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, M.; Li, S.; Gao, Y.; Xue, S.; Huang, H.; Chen, K.; Liu, F.; Chen, L. Electrophysiologic studies on the risks and potential mechanism underlying the proarrhythmic nature of azithromycin. Cardiovasc. Toxicol. 2017, 17, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Lim, H.S.; Chung, D.; Choi, J.G.; Yoon, D. Risk evaluation of azithromycin-induced QT prolongation in real-world practice. Biomed Res. Int. 2018, 2018, 1574806. [Google Scholar] [CrossRef] [Green Version]
- Retallack, H.; Di Lullo, E.; Arias, C.; Knopp, K.A.; Laurie, M.T.; Sandoval-Espinosa, C.; Leon, W.R.M.; Krencik, R.; Ullian, E.M.; Spatazza, J.; et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 2016, 113, 14408–14413. [Google Scholar] [CrossRef] [Green Version]
- Madrid, P.B.; Panchal, R.G.; Warren, T.K.; Shurtleff, A.C.; Endsley, A.N.; Green, C.E.; Kolokoltsov, A.; Davey, R.; Manger, I.D.; Gilfillan, L.; et al. Evaluation of ebola virus inhibitors for drug repurposing. ACS Infect. Dis. 2015, 1, 317–326. [Google Scholar] [CrossRef]
- Bosseboeuf, E.; Aubry, M.; Nhan, T.; de Pina, J.J.; Rolain, J.M.; Raoult, D.; Musso, D. Azithromycin inhibits the replication of zika virus. J. Antivir. Antiretrovir. 2018, 10, 6–11. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020. [Google Scholar] [CrossRef]
- Molina, J.M.; Delaugerre, C.; Goff, J.L.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect. 2020. [Google Scholar] [CrossRef]
- Shoaei, P.; Shojaei, H.; Jalali, M.; Khorvash, F.; Hosseini, S.M.; Ataei, B.; Vakili, B.; Ebrahimi, F.; Tavakoli, H.; Esfandiari, Z.; et al. Clostridium difficile isolated from faecal samples in patients with ulcerative colitis. BMC Infect. Dis. 2019, 19, 361. [Google Scholar] [CrossRef]
- Brito-Zerón, P.; Sisó-Almirall, A.; Bové, A.; Kostov, B.A.; Ramos-Casals, M. Primary Sjögren syndrome: An update on current pharmacotherapy options and future directions. Expert Opin. Pharmacother. 2013, 14, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Azzi, L.; Cerati, M.; Lombardo, M.; Pellilli, M.; Croveri, F.; Maurino, V.; Tagliabue, A.; Tettamanti, L.; Olszewska, M. Chronic ulcerative stomatitis: A comprehensive review and proposal for diagnostic criteria. Oral Dis. 2019, 25, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, J.; Wu, T.; Wu, J.; Ling, J.; Cheng, B. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma. Mol. Med. Rep. 2017, 16, 5779–5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tett, S.; Cutler, D.; Day, R.; Brown, K. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br. J. Clin. Pharmacol. 1989, 27, 771–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect. Dis. 2003, 3, 722–727. [Google Scholar] [CrossRef]
- Golden, E.B.; Cho, H.Y.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Quinoline-based antimalarial drugs: A novel class of autophagy inhibitors. Neurosurg. Focus 2015, 38, E12. [Google Scholar] [CrossRef]
- Ponticelli, C.; Moroni, G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin. Drug Saf. 2017, 16, 411–419. [Google Scholar] [CrossRef]
- Horta-Baas, G. Chloroquine-induced oral mucosal hyperpigmentation and nail dyschromia. Reumatol. Clin. 2018, 14, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Moraes, P.C.; Noce, C.W.; Thomaz, L.A.; Cintra, M.L.; Correa, M.E. Pigmented lichenoid drug eruption secondary to chloroquine therapy: An unusual presentation in lower lip. Minerva Stomatol. 2011, 60, 327–332. [Google Scholar] [PubMed]
- Sodhi M, E.M. Safety of ibuprofen in patients with COVID-19; causal or confounded? Chest 2020. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Clarifies Guidance on Ibuprofen, Says There’s No Evidence It Can Worsen COVID-19. Available online: https://www.cbc.ca/news/health/ibuprofen-covid-19-novel-coronavirus-1.5501496 (accessed on 27 April 2020).
- NICE. COVID-19 Rapid Evidence Summary: Acute Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) for People with or at Risk of COVID-19. Available online: https://www.nice.org.uk/advice/es23/chapter/Key-messages (accessed on 27 April 2020).
- NHS England. Acute Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in People with or at Risk of COVID-19 (RPS2001). Available online: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/04/C0211-NSAIDs-RPS_14-April.pdf (accessed on 27 April 2020).
- Kotfis, K.; Skonieczna-Żydecka, K. COVID-19: Gastrointestinal symptoms and potential sources of 2019-nCoV transmission. Anaesthesiol. Intensive Ther. 2020, 52. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.-W.; Tsang, O.T.-Y.; Chik-Yan Yip, C.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- To, K.K.; Lu, L.; Yip, C.C.; Poon, R.W.; Fung, A.M.; Cheng, A.; Lui, D.H.; Ho, D.T.; Hung, I.F.; Chan, K.H.; et al. Additional molecular testing of saliva specimens improves the detection of respiratory viruses. Emerg. Microbes Infect. 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Grantham, M.; Pantelic, J.; De Mesquita, P.J.B.; Albert, B.; Liu, F.; Ehrman, S.; Milton, D.K. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. USA 2018, 115, 1081–1086. [Google Scholar] [CrossRef] [Green Version]
- Dar-Odeh, N.S.; Al-Kayed, M.A. Variations of some salivary antimicrobial factors in different disease states: A review. Saudi Dent. J. 2002, 14, 99–104. [Google Scholar]
- Khurshid, Z.; Asiri, F.Y.I.; Al Wadaani, H. Human saliva: Non-invasive fluid for detecting novel coronavirus (2019-nCoV). Int. J. Environ. Res. Public Health 2020, 17, 2225. [Google Scholar] [CrossRef] [Green Version]
- Baboor, A.S.; Alnazzawi, A.A.; Abu-Hammad, O.A.; Dar-Odeh, N.S. Unconventional materials and substances used in water pipe (narghile) by smokers in central western region, Saudi Arabia. Saudi Med. J. 2014, 35, 890–893. [Google Scholar]
- Giacomelli, A.; Pezzati, L.; Conti, F.; Bernacchia, D.; Siano, M.; Oreni, L.; Rusconi, S.; Gervasoni, C.; Ridolfo, A.L.; Rizzardini, G.; et al. Self-reported olfactory and taste disorders in in patients with severe acute respiratory coronavirus 2 infection: A cross-sectional study. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liu Z, S.C. Conjunctiva is not a preferred gateway of entry for SARS-CoV-2 to infect respiratory tract. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dar-Odeh, N.; Babkair, H.; Abu-Hammad, S.; Borzangy, S.; Abu-Hammad, A.; Abu-Hammad, O. COVID-19: Present and Future Challenges for Dental Practice. Int. J. Environ. Res. Public Health 2020, 17, 3151. https://doi.org/10.3390/ijerph17093151
Dar-Odeh N, Babkair H, Abu-Hammad S, Borzangy S, Abu-Hammad A, Abu-Hammad O. COVID-19: Present and Future Challenges for Dental Practice. International Journal of Environmental Research and Public Health. 2020; 17(9):3151. https://doi.org/10.3390/ijerph17093151
Chicago/Turabian StyleDar-Odeh, Najla, Hamzah Babkair, Shaden Abu-Hammad, Sary Borzangy, Abdalla Abu-Hammad, and Osama Abu-Hammad. 2020. "COVID-19: Present and Future Challenges for Dental Practice" International Journal of Environmental Research and Public Health 17, no. 9: 3151. https://doi.org/10.3390/ijerph17093151
APA StyleDar-Odeh, N., Babkair, H., Abu-Hammad, S., Borzangy, S., Abu-Hammad, A., & Abu-Hammad, O. (2020). COVID-19: Present and Future Challenges for Dental Practice. International Journal of Environmental Research and Public Health, 17(9), 3151. https://doi.org/10.3390/ijerph17093151