Magnesium Sulfate Treatment During Total Knee Arthroplasty Decreases Postoperative Urinary Retention: A Retrospective Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Spinal Anesthesia and Magnesium Administration
2.3. Postoperative Pain Management
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Baldini, G.; Bagry, H.; Aprikian, A.; Carli, F. Postoperative urinary retention: Anesthetic and perioperative considerations. Anesthesiology 2009, 110, 1139–1157. [Google Scholar] [CrossRef] [Green Version]
- Kort, N.P.; Bemelmans, Y.; Vos, R.; Schotanus, M.G.M. Low incidence of postoperative urinary retention with the use of a nurse-led bladder scan protocol after hip and knee arthroplasty: A retrospective cohort study. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 283–289. [Google Scholar] [CrossRef]
- Lingaraj, K.; Ruben, M.; Chan, Y.H.; Das, S.D. Identification of risk factors for urinary retention following total knee arthroplasty: A Singapore hospital experience. Singap. Med. J. 2007, 48, 213–216. [Google Scholar]
- Maurer, S.G.; Chen, A.L.; Hiebert, R.; Pereira, G.C.; Di Cesare, P.E. Comparison of outcomes of using spinal versus general anesthesia in total hip arthroplasty. Am. J. Orthop. 2007, 36, E101–E106. [Google Scholar] [PubMed]
- Pugely, A.J.; Martin, C.T.; Gao, Y.; Mendoza-Lattes, S.; Callaghan, J.J. Differences in short-term complications between spinal and general anesthesia for primary total knee arthroplasty. J. Bone Jt. Surg. Am. 2013, 95, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Michelson, J.D.; Lotke, P.A.; Steinberg, M.E. Urinary-bladder management after total joint-replacement surgery. N. Engl. J. Med. 1988, 319, 321–326. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, E.Y.; Na, H.S.; Kim, T.K.; Kim, M.H.; Do, S.H. Magnesium sulphate attenuates acute postoperative pain and increased pain intensity after surgical injury in staged bilateral total knee arthroplasty: A randomized, double-blinded, placebo-controlled trial. Br. J. Anaesth. 2016, 117, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.H.; Koo, B.W.; Kim, B.G.; Oh, A.Y.; Kim, H.H.; Park, D.J.; Lee, C.M.; Kim, S.T.; Do, S.H. Prospective, randomized and controlled trial on magnesium sulfate administration during laparoscopic gastrectomy: Effects on surgical space conditions and recovery profiles. Surg. Endosc. 2016, 30, 4976–4984. [Google Scholar] [CrossRef] [PubMed]
- Shariat Moharari, R.; Motalebi, M.; Najafi, A.; Zamani, M.M.; Imani, F.; Etezadi, F.; Pourfakhr, P.; Khajavi, M.R. Magnesium Can Decrease Postoperative Physiological Ileus and Postoperative Pain in Major non-Laparoscopic Gastrointestinal Surgeries: A Randomized Controlled Trial. Anesth. Pain Med. 2014, 4, e12750. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.K.; Chung, S.H.; Park, J.; Shin, H.; Chang, C.B.; Kim, T.K.; Do, S.H. Effects of Perioperative Magnesium Sulfate Administration on Postoperative Chronic Knee Pain in Patients Undergoing Total Knee Arthroplasty: A Retrospective Evaluation. J. Clin. Med. 2019, 8, 2231. [Google Scholar] [CrossRef] [Green Version]
- Elsamra, S.E.; Ellsworth, P. Effects of analgesic and anesthetic medications on lower urinary tract function. Urol. Nurs. 2012, 32, 60–67. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, J.A.; Hopkins, P.M.; Ravenscroft, A.; Stevens, J.D. Patient-controlled analgesia and urinary retention following lower limb joint replacement: Prospective audit and logistic regression analysis. Eur. J. Anaesthesiol. 2000, 17, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Petros, J.G.; Mallen, J.K.; Howe, K.; Rimm, E.B.; Robillard, R.J. Patient-controlled analgesia and postoperative urinary retention after open appendectomy. Surg. Gynecol. Obs. 1993, 177, 172–175. [Google Scholar] [CrossRef]
- Shimosawa, T.; Takano, K.; Ando, K.; Fujita, T. Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings. Hypertension 2004, 44, 897–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herroeder, S.; Schonherr, M.E.; De Hert, S.G.; Hollmann, M.W. Magnesium--essentials for anesthesiologists. Anesthesiology 2011, 114, 971–993. [Google Scholar] [CrossRef] [Green Version]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic uses of magnesium. Am. Fam. Physician 2009, 80, 157–162. [Google Scholar] [PubMed]
- Tammela, T.; Kontturi, M.; Lukkarinen, O. Postoperative urinary retention. I. Incidence and predisposing factors. Scand. J. Urol. Nephrol. 1986, 20, 197–201. [Google Scholar] [CrossRef]
- Keita, H.; Diouf, E.; Tubach, F.; Brouwer, T.; Dahmani, S.; Mantz, J.; Desmonts, J.M. Predictive factors of early postoperative urinary retention in the postanesthesia care unit. Anesth. Analg. 2005, 101, 592–596. [Google Scholar] [CrossRef]
- Hansen, B.S.; Soreide, E.; Warland, A.M.; Nilsen, O.B. Risk factors of post-operative urinary retention in hospitalised patients. Acta. Anaesthesiol. Scand. 2011, 55, 545–548. [Google Scholar] [CrossRef]
- Pavlin, D.J.; Pavlin, E.G.; Gunn, H.C.; Taraday, J.K.; Koerschgen, M.E. Voiding in patients managed with or without ultrasound monitoring of bladder volume after outpatient surgery. Anesth. Analg. 1999, 89, 90–97. [Google Scholar] [CrossRef]
- Axelsson, K.; Mollefors, K.; Olsson, J.O.; Lingardh, G.; Widman, B. Bladder function in spinal anaesthesia. Acta Anaesthesiol. Scand. 1985, 29, 315–321. [Google Scholar] [CrossRef]
- Cho, H.J.; Chang, C.B.; Kim, K.W.; Park, J.H.; Yoo, J.H.; Koh, I.J.; Kim, T.K. Gender and prevalence of knee osteoarthritis types in elderly Koreans. J. Arthroplast. 2011, 26, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Na, H.S.; Jeon, Y.T.; Ro, Y.J.; Kim, C.S.; Do, S.H. I.V. infusion of magnesium sulphate during spinal anaesthesia improves postoperative analgesia. Br. J. Anaesth. 2010, 104, 89–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, N.W.; Buote, N.J.; Bergman, P. Effect of epidural analgesia with opioids on the prevalence of urinary retention in dogs undergoing surgery for cranial cruciate ligament rupture. J. Am. Vet. Med. Assoc. 2014, 244, 940–943. [Google Scholar] [CrossRef]
- James, M.F.; Beer, R.E.; Esser, J.D. Intravenous magnesium sulfate inhibits catecholamine release associated with tracheal intubation. Anesth. Analg. 1989, 68, 772–776. [Google Scholar] [CrossRef]
- Yu, H.J.; Hypolite, J.A.; Wein, A.J.; Levin, R.M. Effect of magnesium ions on rabbit detrusor contractility and intracellular free calcium. Pharmacology 1995, 51, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Saito, M.; Kondo, A. Effects of magnesium ions on detrusor contraction in rat. Urol. Int. 1995, 54, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Na, H.S.; Shin, H.J.; Kang, S.B.; Hwang, J.W.; Do, S.H. Effects of magnesium sulphate on coagulation after laparoscopic colorectal cancer surgery, measured by rotational thromboelastometry (ROTEM(R)). Anaesthesia 2014, 69, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Place, H.M.; Enzenauer, R.J.; Muff, B.J.; Ziporin, P.J.; Brown, C.W. Hypomagnesemia in postoperative spine fusion patients. Spine 1996, 21, 2268–2272. [Google Scholar] [CrossRef] [PubMed]
- Do, S.H. Magnesium: A versatile drug for anesthesiologists. Korean J. Anesth. 2013, 65, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Andersson, K.E. Bladder activation: Afferent mechanisms. Urology 2002, 59, 43–50. [Google Scholar] [CrossRef]
- Andersson, K.E.; Hedlund, P. Pharmacologic perspective on the physiology of the lower urinary tract. Urology 2002, 60, 13–20. [Google Scholar] [CrossRef]
Unmatched Cohort (n = 483) | Matched Cohort (n = 330) | |||||||
---|---|---|---|---|---|---|---|---|
Control n = 368 | Magnesium n = 115 | SMD | p | Control n = 115 | Magnesium n = 115 | SMD | p | |
Age, year | 71.2 (7.2) | 72.2 (7.3) | 0.137 | 0.217 | 72.2 (7.4) | 72.2 (7.3) | <0.001 | 0.921 |
Sex | ||||||||
Male | 51 (13.9) | 16 (13.9) | 0.002 | 0.988 | 15 (13.0) | 16 (13.9) | 0.026 | >0.999 |
Female | 317 (86.1) | 99 (86.1) | 100 (87.0) | 99 (86.1) | ||||
BMI, kg·m−2 | 27.0 (3.6) | 26.5 (3.3) | 0.142 | 0.126 | 26.8 (3.7) | 26.5 (3.3) | 0.075 | 0.141 |
ASA status (I/II) | ||||||||
I | 48 (13.0) | 7 (6.1) | 0.220 | 0.040 | 7 (6.1) | 7 (6.1) | <0.001 | >0.999 |
II | 320 (87.) | 108 (93.9) | 108 (93.9) | 108 (93.9) | ||||
Hypertension | 240 (65.2) | 82 (71.3) | 0.129 | 0.227 | 87 (75.7) | 82 (71.3) | 0.099 | 0.551 |
Diabetes mellitus | 105 (28.5) | 25 (21.7) | 0.154 | 0.152 | 26 (22.6) | 25 (21.7) | 0.021 | >0.999 |
IHD * | 10 (2.7) | 2 (1.7) | 0.063 | 0.740 | 3 (2.6) | 2 (1.7) | 0.060 | >0.999 |
CVD * | 16 (4.3) | 8 (7.0) | 0.120 | 0.261 | 6 (5.2) | 8 (7.0) | 0.073 | 0.791 |
Anemia (Hb <10 g·dL−1) | 6 (1.6) | 1 (0.9) | 0.064 | >0.999 | 1 (0.9) | 1 (0.9) | <0.001 | >0.999 |
GFR, mL·min−1 | 81.8 (14.8) | 83.6 (13.1) | 0.125 | 0.206 | 82.7 (14.7) | 83.6 (13.1) | 0.065 | 0.621 |
Spinal anesthesia | ||||||||
Bupivacaine, mg | 11.7 (1.3) | 12.0 (1.3) | 0.231 | 0.069 | 11.9 (1.2) | 12.0 (1.3) | 0.024 | 0.850 |
Intrathecal FTN, μg | 15.7 (7.2) | 13.4 (5.7) | 0.335 | 0.002 | 13.6 (5.0) | 13.4 (5.7) | 0.040 | 0.764 |
Operative characteristics | ||||||||
Operation time, min | 130.3 (28.0) | 128.6 (31.4) | 0.059 | 0.587 | 128.1(26.8) | 128.6 (31.4) | 0.016 | 0.899 |
Estimated blood loss, mL | 72.1 (66.2) | 80.4 (65.9) | 0.126 | 0.243 | 80.2 (79.8) | 80.4 (65.9) | 0.002 | 0.986 |
Intravenous fluid, mL | 448.5 (164.8) | 446.1 (165.7) | 0.015 | 0.892 | 442.6 (152.1) | 446.1 (165.7) | 0.022 | 0.871 |
Premedication | ||||||||
Midazolam, mg | 2.3 (1.0) | 2.0 (1.0) | 0.300 | 0.004 | 2.1 (1.0) | 2.0 (1.0) | 0.098 | 0.141 |
Sedation | ||||||||
None | 204 (55.4) | 62 (53.9) | 0.423 | <0.001 | 66 (55.7) | 62 (53.9) | 0.098 | 0.382 |
Propofol | 117 (31.8) | 2 (1.7) | 5 (3.5) | 2 (1.7) | ||||
Dexmedetomidine | 47 (12.8) | 51 (44.3) | 44 (40.9) | 51 (44.3) |
Control | Magnesium | Estimated Difference (95% CI) | Odds Ratio (95% CI) | p | |
---|---|---|---|---|---|
Before matching | |||||
Urinary retention | 217/368 (59.0) | 53/115 (46.1) | 0.60 (0.39–0.91) | 0.015 | |
MEC | 240.3 (140.1) | 205.5 (136.7) | 34.8 (5.4–64.1) | 0.020 | |
After matching | |||||
Urinary retention | 73/115 (63.5) | 53/115 (46.1) | 0.49 (0.29–0.83) | 0.011 | |
MEC | 242.4 (133.8) | 205.5 (136.7) | 36.9 (1.7–72.0) | 0.049 |
Odds Ratio (95% CI) | p | |
---|---|---|
Magnesium continuous infusion | 0.60 (0.39–0.91) | 0.016 |
Age | 1.04 (1.02–1.07) | 0.002 |
Sex | ||
Male | 1 | |
Female | 0.67 (0.39–1.15) | 0.143 |
BMI | 0.98 (0.93–1.04) | 0.559 |
ASA | ||
I | 1 | |
II | 0.98 (0.56–1.7) | 0.941 |
DM | 1.26 (0.84–1.90) | 0.271 |
IHD * | 1.11 (0.35–3.54) | 0.864 |
CVD * | 1.61 (0.68–3.85) | 0.280 |
Anemia | 0.31 (0.06–1.62) | 0.165 |
Bupivacaine | 1.02 (0.89–1.17) | 0.752 |
Intrathecal FTN | 1.01 (0.98–1.04) | 0.482 |
Operation time | 1.00 (0.99–1.00) | 0.475 |
Estimated blood loss | 1.00 (1.00–1.00) | 0.788 |
Intravenous fluid | 1.00 (1.00–1.00) | 0.375 |
Premedication (midazolam, mg) | 1.01 (0.78–1.30) | 0.947 |
Sedation | ||
None | 1 | |
Propofol | 0.97 (0.63–1.50) | 0.887 |
Dexmedetomidine | 0.67 (0.41–1.08) | 0.096 |
Morphine equivalent consumption in POD 0 to 3 | 1.00 (1.00–1.00) | 0.368 |
Odds Ratio (95% CI) | p | |
---|---|---|
Magnesium continuous infusion | 0.56 (0.37–0.86) | 0.008 |
Age | 1.05 (1.02–1.07) | 0.001 |
Sex | ||
Male | 1 | |
Female | 0.63 (0.37–1.10) | 0.102 |
Anemia | 0.27 (0.05–1.48) | 0.132 |
Sedation | ||
None | 1 | |
Propofol | 0.96 (0.61–1.52) | 0.869 |
Dexmedetomidine | 0.81 (0.48–1.38) | 0.439 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-W.; Kim, E.-K.; Lim, D.; Oh, T.K.; Park, S.; Do, S.-H. Magnesium Sulfate Treatment During Total Knee Arthroplasty Decreases Postoperative Urinary Retention: A Retrospective Propensity Score-Matched Analysis. J. Clin. Med. 2020, 9, 620. https://doi.org/10.3390/jcm9030620
Park J-W, Kim E-K, Lim D, Oh TK, Park S, Do S-H. Magnesium Sulfate Treatment During Total Knee Arthroplasty Decreases Postoperative Urinary Retention: A Retrospective Propensity Score-Matched Analysis. Journal of Clinical Medicine. 2020; 9(3):620. https://doi.org/10.3390/jcm9030620
Chicago/Turabian StylePark, Jin-Woo, Eun-Kyoung Kim, Dongsik Lim, Tak Kyu Oh, Seongjoo Park, and Sang-Hwan Do. 2020. "Magnesium Sulfate Treatment During Total Knee Arthroplasty Decreases Postoperative Urinary Retention: A Retrospective Propensity Score-Matched Analysis" Journal of Clinical Medicine 9, no. 3: 620. https://doi.org/10.3390/jcm9030620
APA StylePark, J.-W., Kim, E.-K., Lim, D., Oh, T. K., Park, S., & Do, S.-H. (2020). Magnesium Sulfate Treatment During Total Knee Arthroplasty Decreases Postoperative Urinary Retention: A Retrospective Propensity Score-Matched Analysis. Journal of Clinical Medicine, 9(3), 620. https://doi.org/10.3390/jcm9030620