Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities
Abstract
:1. Introduction
2. Results
2.1. Identification of Iridoids and Phenolics in D. fullonum L. Leaves and Roots
2.2. Quantification of Iridoid and Phenolic Compounds in D. fullonum L. Leaves and Roots
2.3. Antimicrobial Activity
2.4. Antioxidant and Antiacetylcholinesterase Activity
3. Materials and Methods
3.1. Reagents and Standards
3.2. Plant Material
3.3. Extraction Procedure for Polyphenolic, Antioxidant as ORAC Method, and Anti-Acetylcholinesterase Activity Analysis
3.4. Identification and Quantification of Iridoids and Phenolic Compounds by the UPLC-PDA-QTof-MS/MS Method
3.5. Antimicrobial Activity
3.5.1. Agar Diffusion Method: The Effects of Water Extracts from Leaves and Root on Growth of Bacteria and Yeast
3.5.2. Well Diffusion Method
3.5.3. Spot Test
3.5.4. Growth in Bioscreen C Microbial Growth Analyzer
3.6. Biological Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaiser, A.; Carle, R.; Kammerer, D.R. Effects of blanching on polyphenol stability of innovative paste-like parsley (Petroselinum crispum (Mill.) Nym ex A. W. Hill) and marjoram (Origanum majorana L.) products. Food Chem. 2013, 138, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Ferlemi, A.V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Legal Status of Traditional Medicine and Complementary/Alternative Medicine: Worldwide Review; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Chandrasekara, A.; Shahidi, F. Herbal beverages: Bioactive compounds and their role in disease risk reduction—A review. J. Tradit. Complement. Med. 2018, 8, 451–458. [Google Scholar] [CrossRef]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.O.; Dommes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Grayer, R.J.; Kokubun, T. Plant–fungal interactions: The search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 2001, 56, 253–263. [Google Scholar] [CrossRef]
- Pan, J.; Yi, X.; Wang, Y.; Chen, G.; He, X. Benzophenones from mango leaves exhibit α-glucosidase and NO anhibitory activities. J. Agric. Food Chem. 2016, 64, 7475–7480. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Med. Inflamm. 2007, 2007, 45673. [Google Scholar] [CrossRef] [Green Version]
- Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. Chem. Pharm. Bull. 2007, 55, 689–728. [Google Scholar] [CrossRef] [Green Version]
- Ghisalberti, E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 1998, 5, 147–163. [Google Scholar] [CrossRef]
- Ramírez-Cisneros, M.A.; Rios, M.Y.; Aguilar-Guadarrama, A.B.; Rao, P.P.N.; Aburto-Amar, R.; Rodríguez-López, V. In vitro COX-1 and COX-2 enzyme inhibitory activities of iridoids from Penstemon barbatus, Castilleja tenuiflora, Cresentiaalata and Vitex mollis. Bioorg. Med. Chem. Lett. 2015, 25, 4505–4508. [Google Scholar] [CrossRef]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieri, V.; Schwaiger, S.; Ellmerer, E.P.; Stuppner, H. Iridoid glycosides from the leaves of Sambucus ebulus. J. Nat. Prod. 2009, 72, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Liebold, T.; Straubinger, R.; Rauwald, H. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris Huds. Roots against Borrelia burgdorferi s. s. in vitro. Pharmazie 2011, 66, 628–630. [Google Scholar] [PubMed]
- Zhao, Y.-M.; Shi, Y.P. Phytochemicals and biological activities of Dipsacus species. Chem. Biodivers. 2011, 8, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Brorson, Ø.; Brorson, S.H. An in vitro study of the activity of telithromycin against mobile and cystic forms of Borrelia afzelii. Infection 2006, 34, 26–28. [Google Scholar] [CrossRef]
- Jensen, S.R.; Lyse-Petersen, S.E.; Nielsen, B.J. Novel bis-iridoid glucosides from Dipsacus sylvestris. Phytochemistry 1979, 18, 273–277. [Google Scholar] [CrossRef]
- Tomassini, L.; Foddai, S.; Nicoletti, M. Iridoids from Dipsacus ferox (Dipsacaceae). Biochem. Syst. Ecol. 2004, 32, 1083–1085. [Google Scholar] [CrossRef]
- Tomita, H.; Mouri, Y. An iridoid glucoside from Dipsacus asperoides. Phytochemistry 1996, 42, 239–240. [Google Scholar] [CrossRef]
- Linga, Y.; Liu, K.; Zhang, Q.; Liao, L.; Lu, Y. High performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight–mass spectrometry as a powerful analytical strategy for systematic analysis and improved characterization of the major bioactive constituents from Radix Dipsaci. J. Pharm. Biomed. Anal. 2016, 98, 120–129. [Google Scholar]
- Li, Y.; Zhang, J.J.; Xu, D.-P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.-B. Bioactivities and health benefits of wild fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, J.D.; László, F.; Szabó, B.P. New Bis-Iridoids from Dipsacusl aciniatus. J. Nat. Prod. 1993, 56, 1486–1499. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kucharska, A. Effect of pre-treatment of blue honeysuckle berries on bioactive iridoid content. Food Chem. 2018, 240, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Zhang, Y.; Feng, J.; Cai, H.; Zhang, C.; Ding, M.; Cong, X. Rapid and sensitive assay for determining the main components in processed Fructus corni by UPLC–Q-TOF-MS. Chromatographia 2011, 73, 135–141. [Google Scholar] [CrossRef]
- Tian, X.-Y.; Wang, Y.-H.; Liu, H.-Y.; Yu, S.-S.; Fang, W.-S. On the chemical constituents of Dipsacus asper. Chem. Pharm. Bull. 2007, 55, 1677–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, D.; Zhang, C.; Li, J.; Yang, H.; Shen, J.; Yang, Z. A New iridoid glycoside from the Roots of Dipsacus asper. Molecules 2012, 17, 1419–1424. [Google Scholar] [CrossRef]
- Kucharska, A.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J. Food Compos. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- Hung, T.M.; Na, M.K.; Thuong, P.T.; Su, N.D.; Sok, D.E.; Song, K.S.; Seong, Y.H.; Bae, K.H. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 2006, 108, 188–192. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Krzyżanowska, J. Preliminary antifungal activity of some Dipsacaceae family plants. Herba. Pol. 1999, 2, 101–107. [Google Scholar]
- Yang, H.B.; Feng, X.; Xu, J.; Lei, H.; Zhang, L. Multi-component HPLC analysis and antioxidant activity characterization of extracts from Dipsacus sativus (Linn.) Honck. Int. J. Food Prop. 2016, 19, 1000–1006. [Google Scholar] [CrossRef]
- Sożanski, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Dzimira, S.; Piasecki, T.; Piórecki, N.; Magdalan, J.; et al. Iridoid-loganic acid versus anthocyanins from the Cornus mas fruits (Cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef]
- Takamura, C.; Hirata, T.; Ueda, T.; Ono, M.; Miyashita, H.; Ikeda, T.; Nohara, T. Iridoids from the Green Leaves of Eucommia ulmoides. J. Nat. Prod. 2007, 70, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Satsu, H.; Bae, M.J.; Zhao, Z.; Ogiwara, H.; Totsuka, M.; Shimizu, M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem. 2015, 168, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Tandon, S.; Garg, G.; Adarwal, R.; Sand, N.K. Qualitative analysis of phenolic constituents from Ajuga and Teucrium leaves and roots. J. Nat. Prod. Biomed. Res. 2016, 2, 1–3. [Google Scholar]
- Oszmiański, J.; Wojdyło, A.; Lamer-Zarawska, E.; Świąder, K. Antioxidant tannins from Rosaceae plant roots. Food Chem. 2007, 100, 579–583. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly) phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Paliyath, G.; Pinhero, R.G.; Rao, M.V.; Murr, D.P.; Fletcher, R.A. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance in maize seedlings. Plant Physiol. 1997, 114, 695–704. [Google Scholar]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Aggati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry with cultivar and development stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatkovic, B.; Stankov-Jovanovic, V.; Mitic, V.; Jovic, J.; Comic, L.; Kocic, B.; Bernstein, N. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS Wagening. J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Osawa, K.; Yasuda, H.; Maruyama, T.; Morita, H.; Takeya, K.; Itokawa, H. Isoflavanones from the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria. Chem. Pharm. Bull. 1992, 40, 2970–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones. Bioorg. Med. Chem. Lett. 1993, 3, 225–230. [Google Scholar] [CrossRef]
- Bernard, F.X.; Sable, S.; Cameron, B.; Provost, J.; Desnottes, J.F.; Crouzet, J.; Blanche, F. Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents Chemother. 1997, 41, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant essential oils as active anti- microbial agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Aghraz, A.; Benameur, Q.; Gervasi, T.; Ait dra, L.; Ben-Mahdi, M.H.; Larhsini, M.; Markouk, M.; Cicero, N. Antibacterial activity of Cladanthus arabicus and Bubonium imbricatum essential oils alone and in combination with conventional antibiotics against Enterobacteriaceae isolate. Lett. Appl. Microbiol. 2018, 67, 175–182. [Google Scholar] [CrossRef]
- Pacifico, S.; D’Abrosca, B.; Pascarella, M.T.; Letizia, M.; Uzzo, P.; Piscopo, V.; Fiorentino, A. Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedrisin cell-free systems. Med. Chem. 2009, 17, 6173–6179. [Google Scholar] [CrossRef]
- Hasbal, G.; Yilmaz-Ozden, T.; Can, A. Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J. Food Drug Anal. 2015, 23, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Bivar Roseiro, L.; Rauter, A.P.; Mourato Serralheiro, M.L. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutr. Aging 2012, 1, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Foods 2018, 48, 632–642. [Google Scholar] [CrossRef]
- Wróblewska, K.; Szumny, A.; Żarowska, B.; Kromer, K.; Dębicz, R.; Fabian, S. Impact of mulching on growth essential oil composition and its biological activity in Monarda didyma L. Ind. Crop Prod. 2019, 129, 299–308. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Compound | TR (min) | λmax (nm) | MS (m/z) | MS/MS (m/z) | Leaves | Roots | |
---|---|---|---|---|---|---|---|---|
2017 | 2018 | |||||||
Iridoids | ||||||||
1 | Loganic acid | 3.86 | 240 | 375 | 213/191/169/151/119 | 2.60 ± 0.11b | 0.18 ± 0.06c | 5.27 ± 0.67a |
2 | Loganin | 5.18 | 238 | 389 | 227/209 | 0.64 ± 0.02b | 0.56 ± 0.02b | 3.02 ± 0.23a |
3 | Sweroside | 5.30 | 238 | 357 | 195/125 | 0.67 ± 0.11a | 0.35 ± 0.01b | 0.45 ± 0.06b |
4 | Cantleyoside | 8.24 | 236 | 745 | 583 | 2.38 ± 0.21c | 11.83 ± 1.11b | 21.41 ± 2.13a |
5 | Sylvestroside III | 9.14 | 240 | 583 | 421 | 34.80 ± 3.21a | 19.14 ± 3.21b | 3.17 ± 0.66c |
Total iridoids | 41.09 | 32.06 | 33.32 | |||||
Polyphenol | ||||||||
1 | Neochlorogenic acid | 3.54 | 325 | 353 | 191 | 0.52 ± 0.1a | 0.48 ± 0.05a | 0.24 ± 0.02b |
2 | Chlorogenic acid | 5.02 | 325 | 353 | 191 | 10.98 ± 2.01b | 28.44 ± 2.54a | 6.47 ± 0.45c |
3 | Cryptochlorogenic acid | 5.27 | 325 | 353 | 191 | 0.86 ± 0.23a | 0.63 ± 0.04a | 0.30 ± 0.02b |
4 | Caffeoylquinic acid | 5.56 | 325 | 353 | 191 | 0.40 ± 0.05b | 1.15 ± 0.12a | 0.07 ± 0.01c |
5 | Apigenin-6-C-glucoside-7-O-glucoside (Saponarin) | 5.74 | 334 | 593 | 431/311 | 5.74 ± 0.12b | 8.54 ± 1.43a | 0.02 ± 0.01c |
6 | Luteolin 8-C-d-glucopiranoside (Orientin) | 5.87 | 347 | 447 | 327 | 0.42 ± 0.03b | 4.65 ± 1.09a | nd * |
7 | Apigenin-6-C-glucoside (Saponaretin) | 6.78 | 339 | 431 | 311 | 1.17 ± 0.12b | 2.99 ± 0.38a | nd |
8 | 3,5-Dicaffeoylquinic acid | 10.79 | 326 | 515 | 353/191 | 2.78 ± 0.51b | 3.96 ± 0.32a | 3.77 ± 0.34a |
9 | Di-caffeoylquinic acid isomer | 11.10 | 326 | 515 | 353/191 | 0.17 ± 0.11a | 0.21 ± 0.03a | 0.17 ± 0.02a |
10 | Di-caffeoylquinic acid isomer | 11.45 | 326 | 515 | 353/191 | 0.38 ± 0.04b | 0.53 ± 0.10b | 1.39 ± 0.09a |
Total polyphenols | 23.42 | 51.58 | 12.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oszmiański, J.; Wojdyło, A.; Juszczyk, P.; Nowicka, P. Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants 2020, 9, 78. https://doi.org/10.3390/plants9010078
Oszmiański J, Wojdyło A, Juszczyk P, Nowicka P. Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants. 2020; 9(1):78. https://doi.org/10.3390/plants9010078
Chicago/Turabian StyleOszmiański, Jan, Aneta Wojdyło, Piotr Juszczyk, and Paulina Nowicka. 2020. "Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities" Plants 9, no. 1: 78. https://doi.org/10.3390/plants9010078
APA StyleOszmiański, J., Wojdyło, A., Juszczyk, P., & Nowicka, P. (2020). Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants, 9(1), 78. https://doi.org/10.3390/plants9010078