Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Measurements
- –
- BRI = 364.2 − 365.5 [1 − π−2 WC2 (m) Height−2 (m)]1/2
- –
- BAI = [Hip circumference (m)/Height2/3 (m)] − 18
- –
- ABSI = WC (m)/[BMI2/3(kg/m2)Height1/2 (m)]
- –
- C = 0.109−1 WC (m) [Weight (kg)/Height (m)]−1/2
- –
- VAI = Males: [WC/39.68 + (1.88 × BMI)] × (TG/1.03) × (1.31/HDL); Females: [WC/36.58+(1.89 × BMI)] × (TG/0.81) × (1.52/HDL)
- –
- TyG index = Ln[(triglyceride (mg/dl) × glucose (mg/dl)/2]
- –
- TyG-BMI = TyG × BMI
- –
- TyG-WC = TyG × WC
- –
- TyG-WHtR = TyG × WHtR
2.3. Laboratory Measurements
2.4. Classification of Variables
2.5. Analysis Plan
3. Results
3.1. Clinical and Sociodemographic Characteristics of the Study Participants According to Their Glycemic Status
3.2. Obesity- and Lipid-Related Parameters According to the 2016 American Diabetes Association Glycemic Status
3.3. Association of Prediabetes with the Level of Obesity- and Lipid-Related Indices
3.4. Receiver Operating Characteristic Curve Analysis for the Obesity- and Lipid-Related Indices for Diagnosing Prediabetes According the 2016 American Diabetes Association Criteria
3.5. Prevalence of Prediabetes According to Obesity- and Lipid-Related Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, M.L. Prediabetes. Nurs. Clin. N. Am. 2017, 52, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Nasr, G.; Sliem, H. Silent myocardial ischemia in prediabetics in relation to insulin resistance. J. Cardiovasc. Dis. Res. 2010, 1, 116–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitan, E.B.; Song, Y.; Ford, E.S.; Liu, S. Is Nondiabetic Hyperglycemia a Risk Factor for Cardiovascular Disease? Arch. Intern. Med. 2004, 164, 2147. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, O.; Takano, M.; Yamamoto, M.; Shirakabe, A.; Kimata, N.; Inami, T.; Kobayashi, N.; Munakata, R.; Murakami, D.; Inami, S.; et al. Impact of prediabetic status on coronary atherosclerosis: A multivessel angioscopic study. Diabetes Care 2013, 36, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cai, X.; Mai, W.; Li, M.; Hu, Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ 2016, 355, i5953. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014; ISBN 9789241564854. [Google Scholar]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Buysschaert, M.; Bergman, M. Definition of Prediabetes. Med. Clin. N. Am. 2011, 95, 289–297. [Google Scholar] [CrossRef]
- Yip, W.; Sequeira, I.; Plank, L.; Poppitt, S. Prevalence of Pre-Diabetes across Ethnicities: A Review of Impaired Fasting Glucose (IFG) and Impaired Glucose Tolerance (IGT) for Classification of Dysglycaemia. Nutrients 2017, 9, 1273. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.M.; Balion, C.; Hunt, D.; Yazdi, H.; Booker, L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: A systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 2007, 78, 305–312. [Google Scholar] [CrossRef]
- Gu, Z.; Li, D.; He, H.; Wang, J.; Hu, X.; Zhang, P.; Hong, Y.; Liu, B.; Zhang, L.; Ji, G. Body mass index, waist circumference, and waist-to-height ratio for prediction of multiple metabolic risk factors in Chinese elderly population. Sci. Rep. 2018, 8, 385. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, P.; Wang, Q.; He, H.; Xu, J.; Zhang, L.; Li, D.; Wang, J.; Hu, X.; Ji, G.; et al. Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population. Lipids Health Dis. 2018, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Q.; Cui, M.; Yin, Z.; Li, L.; Zhong, T.; Huo, Y.; Xie, P. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J. Diabetes Investig. 2018, 9, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; García-Hermoso, A.; Cano, C.A.; Izquierdo, M. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults. J. Cachexia. Sarcopenia Muscle 2019, 10, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.; Corchuelo, J.; Curcio, C.-L.; Calzada, M.-T.; Mendez, F. SABE Colombia: Survey on Health, Well-Being, and Aging in Colombia—Study Design and Protocol. Curr. Gerontol. Geriatr. Res. 2016, 2016, 7910205. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Shi, S.; Ren, X.; Han, T.; Li, Y.; Chen, Y.; Liu, W.; Hou, P.C.; Hu, Y. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: Cross-sectional and prospective cohort study. J. Transl. Med. 2016, 14, 260. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, J.J.; Rhinehart, A.S.; Shaefer, C.F.; Neuman, A. Diagnosis and Management of Diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann. Intern. Med. 2016, 164, 542. [Google Scholar] [CrossRef] [PubMed]
- Claridge-Chang, A.; Assam, P.N. Estimation statistics should replace significance testing. Nat. Methods 2016, 13, 108–109. [Google Scholar] [CrossRef] [Green Version]
- Salgado, J.F. Transforming the Area under the Normal Curve (AUC) into Cohen’s d, Pearson’s r pb, Odds-Ratio, and Natural Log Odds-Ratio: Two Conversion Tables. Eur. J. Psychol. Appl. Leg. Context 2018, 10, 35–47. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Mahwah, NJ, USA, 1988; ISBN 0805802835. [Google Scholar]
- McHugh, M.L. The chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventh-edition.html (accessed on 20 August 2019).
- Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The Di@bet.es Study. Diabetologia 2012, 55, 88–93. [Google Scholar] [CrossRef]
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and Trends in Diabetes Among Adults in the United States, 1988–2012. JAMA 2015, 314, 1021. [Google Scholar] [CrossRef]
- Vilanova, M.B.; Falguera, M.; Marsal, J.R.; Rubinat, E.; Alcubierre, N.; Castelblanco, E.; Granado-Casas, M.; Miró, N.; Molló, À.; Mata-Cases, M.; et al. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: Mata-Cases, M.; Franch-Nadal, J.; Mauricio, D. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: The prospective Mollerussa cohort studythe prospective Mollerussa cohort study. BMJ open 2017, 7, e015158. [Google Scholar] [CrossRef]
- Barceló, A.; Gregg, E.W.; Pastor-Valero, M.; Robles, S.C. Waist circumference, BMI and the prevalence of self-reported diabetes among the elderly of the United States and six cities of Latin America and the Caribbean. Diabetes Res. Clin. Pract. 2007, 78, 418–427. [Google Scholar] [CrossRef]
- Yang, X.Y.; Zhang, M.; Luo, X.P.; Wang, J.J.; Yin, L.; Pang, C.; Wang, G.A.; Shen, Y.X.; Wu, D.T.; Zhang, L.; et al. Body mass index, waist circumference and waist-to-height ratio associated with the incidence of type 2 diabetes mellitus: A cohort study. Zhonghua Yu Fang Yi Xue Za Zhi 2016, 50, 328–333. [Google Scholar] [PubMed]
- Fujita, M.; Sato, Y.; Nagashima, K.; Takahashi, S.; Hata, A. Predictive Power of a Body Shape Index for Development of Diabetes, Hypertension, and Dyslipidemia in Japanese Adults: A Retrospective Cohort Study. PLoS ONE 2015, 10, e0128972. [Google Scholar] [CrossRef] [PubMed]
- Hardy, D.S.; Stallings, D.T.; Garvin, J.T.; Xu, H.; Racette, S.B. Best anthropometric discriminators of incident type 2 diabetes among white and black adults: A longitudinal ARIC study. PLoS ONE 2017, 12, e0168282. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Shen, W.; Song, X.; Ju, L.; Tong, W.; Wang, H.; Zheng, S.; Jin, Y.; Wu, Y.; Wang, W.; et al. Effects of Prediabetes Mellitus Alone or Plus Hypertension on Subsequent Occurrence of Cardiovascular Disease and Diabetes Mellitus. Hypertension 2015, 65, 525–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwose, E.U.; Richards, R.S.; Bwititi, P.T.; Igumbor, E.O.; Oshionwu, E.J.; Okolie, K.; Onyia, I.C.; Pokhrel, A.; Gyawali, P.; Okuzor, J.N.; et al. Prediabetes and cardiovascular complications study (PACCS): International collaboration 4 years’ summary and future direction. BMC Res. Notes 2017, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Segade, S.; Rodriguez, J.; Camiña, F.; Sanmartín-Portas, L.; Gerpe-Jamardo, J.; Pazos-Couselo, M.; García-López, J.M.; Alonso-Sampedro, M.; González-Quintela, A.; Gude, F. Prediabetes defined by HbA1c and by fasting glucose: Differences in risk factors and prevalence. Acta Diabetol. 2019, 56, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Er, L.-K.; Wu, S.; Chou, H.-H.; Hsu, L.-A.; Teng, M.-S.; Sun, Y.-C.; Ko, Y.-L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Spruijt-Metz, D.; O’Reilly, G.A.; Cook, L.; Page, K.A.; Quinn, C. Behavioral contributions to the pathogenesis of type 2 diabetes. Curr. Diab. Rep. 2014, 14, 475. [Google Scholar] [CrossRef]
- Zhang, S.; Du, T.; Zhang, J.; Lu, H.; Lin, X.; Xie, J.; Yang, Y.; Yu, X. The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease. Lipids Health Dis. 2017, 1, 15. [Google Scholar] [CrossRef]
- Lee, E.Y.; Yang, H.K.; Lee, J.; Kang, B.; Yang, Y.; Lee, S.H.; Ko, S.H.; Ahn, Y.B.; Cha, B.Y.; Yoon, K.H.; et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016, 15, 155. [Google Scholar] [CrossRef]
- Du, T.; Yuan, G.; Zhang, M.; Zhou, X.; Sun, X.; Yu, X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc. Diabetol. 2014, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Lambrinoudaki, I.; Kazani, M.V.; Armeni, E.; Georgiopoulos, G.; Tampakis, K.; Rizos, D.; Augoulea, A.; Kaparos, G.; Alexandrou, A.; Stamatelopoulos, K. The TyG Index as a Marker of Subclinical Atherosclerosis and Arterial Stiffness in Lean and Overweight Postmenopausal Women. Heart Lung Circ. 2018, 27, 716–724. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Sample (n = 3307) | Healthy (n = 2468) | Prediabetes (n = 839) | p for Groups |
---|---|---|---|---|
Age | 69.8 (7.6) | 69.7 (7.6) | 70.2 (7.7) | 0.331 |
Anthropometric | ||||
Height (m) | 1.56 (0.08) | 1.56 (0.08) | 1.55 (0.11) | 0.143 |
Weight (kg) | 65.1 (12.79) | 63.84 (12.21) | 68.1 (13.42) | <0.001 |
BMI (kg/m2) | 26.78 (5.02) | 26.32 (4.94) | 28.13 (5.00) | <0.001 |
WC (cm) | 92.20 (10.93) | 91.1 (10.93) | 95.41 (10.61) | <0.001 |
Waist height ratio | 0.58 (0.09) | 0.58 (0.09) | 0.60 (0.08) | <0.001 |
Triglycerides (mg/dL) | 159.55 (86.61) | 153.43 (81.47) | 175.43 (95.56) | <0.001 |
Glucose (mg/dL) | 92.61 (11.61) | 87.48 (8.43) | 107.17 (6.49) | <0.001 |
Obesity Indices | ||||
BRI | 5.14 (2.02) | 5.00 (1.97) | 5.55 (2.10) | <0.001 |
ABSI (m7/6/kg2/3) | 0.0803 (0.015) | 0.0805 (0.014) | 0.799 (0.017) | 0.316 |
C (m2/3/kg1/2) | 1.27 (0.24) | 1.271 (0.23) | 1.276 (0.27) | 0.634 |
VAI | 3.00 (3.16) | 3.00 (3.15) | 3.10 (3.19) | 0.445 |
TyG index | 8.78 (0.49) | 8.70 (0.47) | 9.03 (0.46) | <0.001 |
TyG-BMI | 236.0 (48.90) | 229.63 (47.25) | 254.64 (48.92) | <0.001 |
TyG-WC | 811.29 (116.65) | 794.31 (111.94) | 863.90 (112.58) | <0.001 |
TyG-WHtR | 5.18 (0.91) | 5.07 (0.91) | 5.51 (0.82) | <0.001 |
Weight Status | ||||
Underweight | 78 (2.4) | 66 (2.7) | 12 (1.4) | 0.305 |
Normal weight | 1046 (31.6) | 858 (34.8) | 188 (22.4) | <0.001 |
Overweight | 1299 (39.3) | 943 (38.2) | 356 (42.4) | 0.209 |
Obesity | 884 (26.7) | 601 (24.4) | 283 (33.7) | 0.006 |
Socioeconomic Status, n (%) | ||||
1 to 3 (Low) | 3201 (96.8) | 2388 (96.8) | 813 (96.9) | 0.917 |
4 to 6 (Medium to high) | 106 (3.2) | 80 (3.2) | 26 (3.1) | 0.536 |
Smoking Status, n (%) | ||||
Yes | 337 (10.2) | 269 (10.9) | 68 (8.1) | 0.739 |
No | 2970 (89.8) | 2199 (89.1) | 771 (91.8) | 0.462 |
Alcohol Intake, n (%) | ||||
Yes | 418 (12.6) | 326 (13.2) | 92 (11.0) | 0.739 |
No | 2889 (87.4) | 2142 (86.8) | 747 (89.0) | 0.043 |
Physical Activity “proxy”, n (%) | ||||
Physically active | 1503 (45.4) | 1025 (41.5) | 478 (57.0) | <0.001 |
Non-Physically active | 1804 (54.6) | 1443 (58.5) | 361 (43.0) | <0.001 |
Self-Report Comorbid Chronic Diseases, n (%) | ||||
Hypertension | 1023 (30.9) | 867 (35.1) | 156 (18.6) | <0.001 |
Respiratory diseases | 217 (6.6) | 149 (6.0) | 68 (8.1) | 0.798 |
Cardiovascular diseases | 311 (9.4) | 219 (8.9) | 92 (11.2) | 0.737 |
Stroke | 61 (1.8) | 44 (1.8) | 17 (2.0) | 0.314 |
Osteoporosis | 397 (12.0) | 303 (12.3) | 94 (11.2) | 0.936 |
Cancer | 109 (3.3) | 84 (3.4) | 25 (3.0) | 0.590 |
Hearing loss | 270 (8.2) | 102 (4.1) | 168 (20.0) | <0.001 |
Vision loss | 919 (27.8) | 700 (28.4) | 219 (26.1) | 0.622 |
Parameters | BMI | WC | WHtR | BRI | ABSI | C | VAI | TyG | TyG-BMI | TyG-WC | TyG-WHtR |
---|---|---|---|---|---|---|---|---|---|---|---|
Men | |||||||||||
Area under curve | 0.633 | 0.640 | 0.613 | 0.617 | 0.534 | 0.580 | 0.564 | 0.700 | 0.674 | 0.689 | 0.667 |
Effect Size | 0.48 | 0.50 | 0.40 | 0.42 | 0.12 | 0.28 | 0.22 | 0.74 | 0.63 | 0.69 | 0.61 |
Odds Ratio | 2.38 | 2.50 | 2.08 | 2.14 | 1.24 | 1.67 | 1.51 | 3.86 | 3.17 | 3.53 | 3.02 |
P-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.066 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Optimal cutoffs | 25.58 | 96.0 | 0.57 | 4.96 | 0.088 | 1.35 | 2.52 | 8.72 | 224.59 | 844.20 | 5.27 |
J-Youden | 0.23 | 0.21 | 0.19 | 0.20 | 0.080 | 0.14 | 0.12 | 0.32 | 0.30 | 0.29 | 0.28 |
Sensitivity (%) | 62.10 | 59.10 | 61.21 | 58.43 | 21.87 | 56.10 | 60.89 | 75.63 | 68.04 | 61.26 | 55.18 |
Specificity (%) | 60.93 | 62.18 | 58.57 | 62.45 | 86.36 | 58.49 | 51.95 | 57.05 | 62.19 | 68.63 | 73.56 |
(+) Likelihood ratio | 1.59 | 1.56 | 1.57 | 1.56 | 1.60 | 1.35 | 1.27 | 1.74 | 1.80 | 1.95 | 2.09 |
(−) Likelihood ratio | 0.62 | 0.56 | 0.68 | 0.67 | 0.90 | 0.75 | 0.75 | 0.43 | 0.52 | 0.56 | 0.61 |
Women | |||||||||||
Area under curve | 0.603 | 0.597 | 0.600 | 0.596 | 0.504 | 0.573 | 0.575 | 0.695 | 0.642 | 0.654 | 0.655 |
Effect Size | 0.36 | 0.34 | 0.35 | 0.34 | 0.01 | 0.26 | 0.26 | 0.72 | 0.51 | 0.56 | 0.56 |
Odds Ratio | 1.95 | 1.87 | 1.91 | 1.86 | 1.02 | 1.60 | 1.62 | 3.79 | 2.54 | 2.76 | 2.77 |
P-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.390 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Optimal cutoffs | 26.57 | 90.0 | 0.60 | 5.51 | 0.076 | 1.23 | 2.16 | 8.92 | 234.02 | 802.81 | 5.67 |
J-Youden | 0.17 | 0.17 | 0.16 | 0.17 | 0.04 | 0.13 | 0.13 | 0.28 | 0.23 | 0.25 | 0.23 |
Sensitivity (%) | 70.36 | 65.61 | 61.01 | 61.45 | 84.31 | 63.45 | 67.22 | 60.77 | 75.81 | 70.38 | 51.57 |
Specificity (%) | 47.49 | 51.80 | 55.43 | 55.60 | 19.80 | 49.97 | 45.93 | 68.08 | 47.80 | 54.63 | 71.47 |
(+) Likelihood ratio | 1.34 | 1.36 | 1.37 | 1.38 | 1.05 | 1.27 | 1.24 | 1.90 | 1.44 | 1.55 | 1.80 |
(−) Likelihood ratio | 0.62 | 0.66 | 0.70 | 0.69 | 0.79 | 0.73 | 0.71 | 0.58 | 0.51 | 0.54 | 0.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Vélez, R.; Pérez-Sousa, M.Á.; González-Ruíz, K.; Cano-Gutierrez, C.A.; Schmidt-RioValle, J.; Correa-Rodríguez, M.; Izquierdo, M.; Romero-García, J.A.; Campos-Rodríguez, A.Y.; Triana-Reina, H.R.; et al. Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients 2019, 11, 2654. https://doi.org/10.3390/nu11112654
Ramírez-Vélez R, Pérez-Sousa MÁ, González-Ruíz K, Cano-Gutierrez CA, Schmidt-RioValle J, Correa-Rodríguez M, Izquierdo M, Romero-García JA, Campos-Rodríguez AY, Triana-Reina HR, et al. Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients. 2019; 11(11):2654. https://doi.org/10.3390/nu11112654
Chicago/Turabian StyleRamírez-Vélez, Robinson, Miguel Ángel Pérez-Sousa, Katherine González-Ruíz, Carlos A. Cano-Gutierrez, Jacqueline Schmidt-RioValle, María Correa-Rodríguez, Mikel Izquierdo, Jesús Astolfo Romero-García, Adriana Yolanda Campos-Rodríguez, Héctor Reynaldo Triana-Reina, and et al. 2019. "Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study" Nutrients 11, no. 11: 2654. https://doi.org/10.3390/nu11112654
APA StyleRamírez-Vélez, R., Pérez-Sousa, M. Á., González-Ruíz, K., Cano-Gutierrez, C. A., Schmidt-RioValle, J., Correa-Rodríguez, M., Izquierdo, M., Romero-García, J. A., Campos-Rodríguez, A. Y., Triana-Reina, H. R., & González-Jiménez, E. (2019). Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients, 11(11), 2654. https://doi.org/10.3390/nu11112654