Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras
Abstract
:1. Introduction
2. Canonical Connection of a Lie Group
- (i)
- belongs to D whenever Y belongs to D and X is arbitrary.
- (ii)
- belongs to D whenever Z belongs to D, and X and Y are arbitrary vector fields on M, where R denotes the curvature of ∇.
- (i)
- Curvature tensor R is covariantly constant.
- (ii)
- Connection has torsion zero.
- (iii)
- Curvature tensor R is zero if and only if the Lie algebra is two-step nilpotent.
- (iv)
- Ricci tensor is symmetric and in fact a multiple of the Killing form.
- (v)
- Ricci tensor is bi-invariant.
- (vi)
- Any left- or right-invariant vector field is a symmetry of the connection.
- (vii)
- Any left- or right-invariant one-form on G gives rise to a first integral on , i.e., any left- or right-invariant one-form defines a linear first integral of the geodesics.
- (viii)
- Geodesic curves are translations of one-parameter subgroups.
- (ix)
- Any vector field in the center of the Lie algebra is bi-invariant.
3. Formulation of Symmetry Algebra
4. Geodesics and Their Symmetry Algebras
4.1. :
4.1.1. :
4.1.2. :
4.1.3. :
4.1.4. :
4.1.5. :
4.1.6. :
4.2. :
:
4.3. :
4.3.1. :
4.3.2. :
4.3.3.
4.3.4.
4.4. :
4.5. :
:
4.6. :
4.7. :
4.7.1. :
4.7.2. :
4.7.3. :
4.8. :
4.9. :
4.9.1.
4.9.2. :
4.10. :
4.10.1. :
4.10.2. :
4.10.3. :
4.11. :
4.11.1. :
4.11.2. :
4.11.3. :
4.11.4. :
4.12. :
:
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: New York, NY, USA, 2000; Volume 107. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer Science & Business Media: New York, NY, USA, 2013; Volume 81. [Google Scholar]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: Cambridge, UK, 2000; Volume 22. [Google Scholar]
- Bluman, G.; Kumei, S. Symmetry-based algorithms to relate partial differential equations: I. Local symmetries. Eur. J. Appl. Math. 1990, 1, 189–216. [Google Scholar] [CrossRef] [Green Version]
- Kumei, S.; Bluman, G.W. When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 1982, 42, 1157–1173. [Google Scholar] [CrossRef]
- Mahomed, F.; Leach, P. The Lie algebra sl (3, R) and linearization. Quaest. Math. 1989, 12, 121–139. [Google Scholar] [CrossRef]
- Gagnon, L.; Winternitz, P. Symmetry classes of variable coefficient nonlinear Schrodinger equations. J. Phys. A Math. Gen. 1993, 26, 7061. [Google Scholar] [CrossRef]
- Šnobl, L.; Winternitz, P. Classification and Identification of Lie Algebras; American Mathematical Society: Providence, RI, USA, 2014; Volume 33. [Google Scholar]
- Lie, S. Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten. Math. Ann. 1888, 32, 213–281. [Google Scholar] [CrossRef]
- Lie, S. Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen; BG Teubner: Leipzig, Germany, 1891. [Google Scholar]
- Hermann, R. Sophus Lie’s 1880 Transformation Group Paper; Math Science Press: Brookline, MA, USA, 1975. [Google Scholar]
- Arrigo, D.J. Symmetry Analysis of Differential Equations: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ghanam, R.; Thompson, G. Symmetry algebras of the canonical Lie group geodesic equations in dimension three. Math. Aeterna 2018, 8, 37–47. [Google Scholar]
- Ghanam, R.; Thompson, G. Lie Symmetries of the canonical geodesic equations for four-dimensional Lie groups. Math. Aeterna 2018, 8, 57–70. [Google Scholar]
- Almusawa, H.; Ghanam, R.; Thompson, G. Symmetries of the canonical geodesic equations of five-dimensional nilpotent lie algebras. J. Gen. Lie Theory Appl. 2019, 13, 1–5. [Google Scholar] [CrossRef]
- Patera, J.; Sharp, R.T.; Winternitz, P.; Zassenhaus, H. Invariants of real low dimension Lie algebras. J. Math. Phys. 1976, 17, 986–994. [Google Scholar] [CrossRef]
- Cartan, E.; Schouten, J. On the geometry of the group-manifold of simple and semi-simple groups. Proc. Akad. Wetensch. Amst. 1926, 29, 803–815. [Google Scholar]
- Thompson, G. Variational connections on Lie groups. Differ. Geom. Its Appl. 2003, 18, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Ghanam, R.; Miller, E.; Thompson, G. Variationality of four-dimensional Lie group connections. J. Lie Theory 2004, 14, 395–425. [Google Scholar]
- Muzsnay, Z.; Thompson, G. Inverse problem of the calculus of variations on Lie groups. Differ. Geom. Appl. 2005, 23, 257–281. [Google Scholar] [CrossRef] [Green Version]
- Strugar, I.; Thompson, G. Inverse problem for the canonical Lie group connection in dimension five. Houst. J. Math. 2009, 35, 373–409. [Google Scholar]
- Kossowski, M.; Thompson, G. Submersive second order ordinary differential equations. Math. Proc. Camb. Philos. Soc. 1991, 110, 207–224. [Google Scholar] [CrossRef]
- Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces; Academic Press: Cambridge, MA, USA, 1979; Volume 80. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almusawa, H.; Ghanam, R.; Thompson, G. Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras. Symmetry 2019, 11, 1354. https://doi.org/10.3390/sym11111354
Almusawa H, Ghanam R, Thompson G. Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras. Symmetry. 2019; 11(11):1354. https://doi.org/10.3390/sym11111354
Chicago/Turabian StyleAlmusawa, Hassan, Ryad Ghanam, and Gerard Thompson. 2019. "Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras" Symmetry 11, no. 11: 1354. https://doi.org/10.3390/sym11111354
APA StyleAlmusawa, H., Ghanam, R., & Thompson, G. (2019). Classification of Symmetry Lie Algebras of the Canonical Geodesic Equations of Five-Dimensional Solvable Lie Algebras. Symmetry, 11(11), 1354. https://doi.org/10.3390/sym11111354