Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop System and Treatments
2.2. Measurements and Analysis
2.3. Statistical Analysis
3. Results
3.1. Strawberry Yield and Morphological Traits
3.2. Nutritional and Nutraceutical Qualities
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biswas, M.K.; Islam, R.; Hossain, M. Micropropagation and field evaluation of strawberry in Bangladesh. J. Agric. Tech. 2008, 4, 167–182. [Google Scholar]
- D’Anna, F.; Caracciolo, G.; Moncada, A.; Prinzivalli, C.; Palermo, M.L.; Amato, F.; Angileri, G.; Fici, G.; Mezzapelle, V.; Signorino, G. Alternatives to methylbromide in strawberry cultivation. Acta Hortic. 2009, 807, 745–750. [Google Scholar] [CrossRef]
- D’Anna, F.; Iapichino, G.; D’Anna, E. Effects of soil solarization with different plastic films on yield performance of strawberry protected plantations in Sicily. Acta Hortic. 2014, 1015, 53–58. [Google Scholar] [CrossRef]
- Hannum, S.M. Potential impact of strawberries on human health: A review of the science. Crit. Rev. Food SciNutr. 2004, 44, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.C.; Cao, K.Q.; Dai, L.; Hu, T.L. Management of strawberry (Fragria ananassa Duch) replanting problem by soil amendments of medicinal herbs. Sci. Agric. Sin. 2005, 38, 730–735. (In Chinese) [Google Scholar]
- UNEP (United Nations Environment Programme). Handbook for the Montreal Protocol on Substance that Deplete the Ozone Layer; Secretariat of The Vienna Convention for the Protection of the Ozone Layer & The Montreal Protocol on Substances that Deplete the Ozone Layer: Nairobi, Kenya, 2006. [Google Scholar]
- Medina-Minguez, J.J. Soil solarization and biofumigation in strawberries in Spain. In Proceedings of the International Conference on Alternatives to Methyl Bromide, Sevilla, Spain, 5–8 March 2002; pp. 123–125. [Google Scholar]
- Pullman, G.S.; DeVay, J.E.; Garber, R.H. Soil solarization and thermal death: A logarithmic relationship between time and temperature for four soilborne plant pathogens. Phytopathology 1981, 71, 959–964. [Google Scholar] [CrossRef]
- Ciancio, A.; Mukerji, K.G. Integrated Management of Plant Pests and Diseases; Springer science+Business Media, B.V.: Berlin, Germany, 2009; p. 346. [Google Scholar]
- Davino, S.; Panno, S.; Iacono, G.; Sabatino, L.; D’Anna, F.; Iapichino, G.; Olmos, A.; Scuderia, G.; Rubio, L.; Tomassoli, L.; et al. Genetic variation and evolutionary analysis of Pepino mosaic virus in Sicily: Insights into the dispersion and epidemiology. Plant Pathol. 2017, 66, 368–375. [Google Scholar] [CrossRef]
- Ling, K.S. Effectiveness of Chemo- and Thermotherapeutic Treatments on Pepino mosaic virus in Tomato Seed. Plant Dis. 2010, 94, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Kodama, T.; Fukai, T. Solar heating in closed plastic house for control of soil-borne diseases. V. Application for control of Fusarium wilt of strawberry. Ann. Phytopat. Soc. Japn. 1982, 48, 570–577. [Google Scholar] [CrossRef]
- Lijing, W.; Tongle, H.U.; Lijing, J.I.; Keqiang, C. Inhibitory efficacy of calcium cyanamide on the pathogens of replant diseases in strawberry. Front. Agric. China 2007, 1, 183–187. [Google Scholar]
- Bletsos, F.A. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. J. Phytopathol. 2005, 153, 155–161. [Google Scholar] [CrossRef]
- Zhu, B.L.; Ma, J.W.; Ye, X.Z.; Xia, Z.M. Effects of lime-nitrogen on soil ameliorate and vegetables production. J. Zhejiang Univ. (Agric. Life Sci.) 2001, 27, 339–342. (In Chinese) [Google Scholar]
- Sabatino, L.; De Pasquale, C.; Aboud, F.; Martinelli, F.; Busconi, M.; D’Anna, E.; Panno, S.; Iapichino, G.; D’Anna, F. Properties of new strawberry lines compared with well-known cultivars in winter planting system conditions. Not. Bot. HortiAgrobo. 2017, 45, 9–16. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Leonard, S.W.; Traber, M. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biol. Technol. 2004, 33, 67–78. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. AJEV 1997, 28, 49–55. [Google Scholar]
- Rabino, I.; Mancinell, A. Light, temperature, and anthocyanins production. J. Plant Physiol. 1986, 81, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebenson. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sorrenti, V.; Salerno, L.; Di Giacomo, C.; Acquaviva, R.; Siracusa, M.A.; Vanella, A. Imidazole derivatives as antioxidants and selective inhibitors of nNOS. Nitric Oxide 2006, 14, 45–50. [Google Scholar] [CrossRef]
- Gams, W.; Bissett, J. Morphology and Identification of Trichoderma. In Trichoderma and Gliocladium: Basic Biology, Taxonomy and Genetics; Kubicek, C.P., Harman, G.E., Eds.; Taylor and Francis: London, UK, 1998; pp. 3–34. [Google Scholar]
- Washington, W.S.; Engleitner, S.; Boontjes, G.; Shanmuganathan, N. Effect of fungicides, eaweed extracts, tea tree oil, and fungal agents on fruit rot and yield in strawberry. Aust. J. Exp. Agric. 1999, 39, 487–494. [Google Scholar] [CrossRef]
- Howell, C.R. Relevance of mycoparasitism in the biological control of Rhizoctoniasolaniby Gliocladiumvirens. Phytopathology 1987, 77, 992–994. [Google Scholar] [CrossRef]
- Gamliel, A.; Katan, J. Soil Solarization: Theory and Practice; The American Phytopathological Society (APS): St. Paul, MN, USA, 2012; p. 266. [Google Scholar]
- Samtani, J.B.; Derr, J.; Conway, M.A.; Flanagan, R.D. Evaluating soil solarization for weed control and strawberry (Fragaria × ananassa) yield in annual plasticulture production. Weed Technol. 2017, 31, 455–463. [Google Scholar] [CrossRef]
- Iapichino, G.; Prinzivalli, C.; D’Anna, F. Soil Solarization as an Alternative to Methyl Bromide Fumigation for Annual Strawberry Production in a Mediterranean Area. J. Sustain. Agric. 2008, 32, 365–375. [Google Scholar] [CrossRef]
- Kelling, K.A.; Wolkowski, R.P.; Ruark, M.D. Potato response to nitrogen form and nitrification inhibitors. Am. J. Potato Res. 2011, 88, 459–469. [Google Scholar] [CrossRef]
- Kaushal, T.; Onda, M.; Ito, S.; Yamazaki, A.; Fujikake, H.; Ohtake, N.; Sueyoshi, K.; Takahashi, Y.; Ohyama, T. Effect of deep placement of slow-release fertilizer (lime nitrogen) applied at different rates on growth, N2 fixation and yield of soya bean (Glycine max L. Merr.). J. Agron. Crop. Sci. 2006, 192, 417–426. [Google Scholar] [CrossRef]
- Ball-Coelho, B.R.; Roy, R.C. Enhanced ammonium sources to reduce nitrate leaching. Nutr. Cycl. Agroecosyst. 1999, 54, 73–80. [Google Scholar] [CrossRef]
- Sharma, S.N.; Kumar, R. Effects of dicyandiamide (DCD) blended with urea on growth, yield and nutrient uptake of wheat. J. Agric. Sci. 1998, 131, 389–394. [Google Scholar] [CrossRef]
- Hu, Y.; Schraml, M.; von Tucher, S.; Li, F.; Schmidhalter, U. Influence of nitrification inhibitors on yields of arable crops: A meta–analysis of recent studies in Germany. Int. J. Plant Prod. 2014, 8, 33–50. [Google Scholar]
- Frye, W. Nitrification inhibition for N efficiency and environment protection. In Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005; IFA: Paris, France, 2005; pp. 1–8. [Google Scholar]
- Montemurro, F.; Capotorti, G.; Lacertosa, G.; Palazzo, D. Effects of urease and nitrification inhibitors application on urea fate in soil and nitrate accumulation in lettuce. J. Plant Nutr. 1998, 21, 245–252. [Google Scholar] [CrossRef]
- Di Gioia, F.; Gonnella, M.; Buono, V.; Ayala, O.; Cacchiarelli, J.; Santamaria, P. Calcium Cyanamide Effects on Nitrogen Use Efficiency, Yield, Nitrates, and Dry Matter Content of Lettuce. Agron. J. 2017, 109, 354–362. [Google Scholar] [CrossRef]
- Zabetakis, I.; Delphine, L.; Kajda, P. Effect of high hydrostatic pressure on the strawberry anthocyanins. J. Agric. Food Chem. 2000, 48, 2749–2754. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. IFSET 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Bianchi, G.; Lucchi, P.; Maltoni, L.; Fagherazzi, A.F.; Baruzzi, G. Analysis of aroma compounds in new strawberry advanced genotypes. Acta Hortic. 2017, 1156, 673–678. [Google Scholar] [CrossRef]
- Cocco, C.; Magnani, S.; Maltoni, M.L.; Quacquarelli, I.; Cacchi, M.; Antunes, L.E.C.; D’antuono, L.F.; Faedi, W.; Baruzzi, G. Effects of site and genotype on strawberry fruits quality traits and bioactive compounds. J. Berry Res. 2015, 5, 145–155. [Google Scholar] [CrossRef] [Green Version]
- D’Anna, F.; Caracciolo, G.; Parrinello, A.; Baruzzi, G. Effects of Pre-Plant soil treatments on strawberry in sicily. Acta Hortic. 2014, 1049, 929–932. [Google Scholar] [CrossRef]
- Mercelle, R.D. Mineral nutrition and fruit quality. Acta Hortic. 1995, 383, 219–226. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D.; Herbert, L. Nitrogen fertigation concentration and timing of application affect nitrogen nutrition, yield, firmness, and color of apples grown at high density. HortScience 2009, 44, 1425–1431. [Google Scholar] [CrossRef]
- Tahir, I.I.; Johansson, E.; Olsson, M.E. Improving the productivity, quality, and storability of ‘Katja’ apple by better orchard management procedures. HortScience 2008, 43, 725–729. [Google Scholar] [CrossRef]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Richardson, S.J.; Hardgrave, M. Effect of temperature, carbon dioxide enrichment, nitrogen form and rate of nitrogen fertilizer on the yield and nitrate content of two varieties of glasshouse lettuce. J. Sci. Food Agric. 1992, 59, 345–349. [Google Scholar] [CrossRef]
Treatments | Monthly Marketable Yield (g plant−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | Total | |||||||||
No Solarization × 0 kg ha−1 of CaCN2 | 5.7 | b | 22.0 | e | 30.0 | b | 130.0 | e | 268.3 | e | 195.1 | f | 83.6 | f | 677.0 | f |
No Solarization × 500 kg ha−1 of CaCN2 | 11.7 | a | 51.0 | d | 33.7 | a | 154.0 | c | 354.0 | b | 294.7 | d | 126 | d | 929.0 | d |
No Solarization × 1000 kg ha−1 of CaCN2 | 10.0 | a | 50.3 | d | 30.7 | b | 145.0 | d | 315.7 | d | 278.1 | e | 119 | e | 858.0 | e |
Solarization × 0 kg ha−1 of CaCN2 | 11.3 | a | 55.0 | c | 30.0 | b | 173.3 | b | 340.0 | c | 310.6 | c | 133 | c | 957.0 | c |
Solarization × 500 kg ha−1 of CaCN2 | 11.7 | a | 71.3 | a | 22.0 | c | 182.7 | a | 366.0 | a | 341.1 | a | 146 | a | 1036.0 | a |
Solarization × 1000 kg ha−1 of CaCN2 | 11.0 | a | 64.0 | b | 24.7 | d | 171.7 | b | 360.7 | a | 319.9 | b | 137 | b | 989.3 | b |
Significance | ||||||||||||||||
Solarization | ** | *** | *** | *** | *** | *** | *** | *** | ||||||||
Calcium cyanamide (CaCN2) | ** | *** | NS | *** | *** | *** | *** | *** | ||||||||
Solarization × CaCN2 | ** | *** | ** | ** | *** | *** | *** | *** |
Treatments | Plant Height (cm) | No. of Shoots Plant−1 | No. of Leaves Plant−1 | Root Collar Diameter (mm) | Plant Visual Quality | |||||
---|---|---|---|---|---|---|---|---|---|---|
Solarization | ||||||||||
No solarization | 18.5 | b | 4.4 | b | 29.2 | b | 19.6 | b | 6.3 | b |
Solarization | 25.5 | a | 5.1 | a | 32.3 | a | 22.2 | a | 8.5 | a |
Calcium cyanamide dosage (kg ha−1) | ||||||||||
0 | 15.8 | c | 3.9 | b | 25.3 | b | 16.3 | c | 5.8 | b |
500 | 23.4 | b | 5.2 | a | 32.5 | a | 21.5 | b | 8.2 | a |
1000 | 27.8 | a | 5.3 | a | 35.0 | a | 24.8 | a | 8.2 | a |
Significance | ||||||||||
Solarization | *** | *** | ** | *** | *** | |||||
Calcium cyanamide (CaCN2) | *** | *** | *** | *** | *** | |||||
Solarization × CaCN2 | NS | NS | NS | NS | NS |
Treatments | TSS (Brix°) | Firmness (N) | Ascorbic Acid (mg L−1) | Phenolic Content (mg 100 g−1) | a* | L* | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No Solarization × 0 kg ha−1 of CaCN2 | 8.5 | c | 8.0 | c | 33.8 | f | 457.3 | d | 36.3 | d | 35.5 | d |
No Solarization × 500 kg ha−1 of CaCN2 | 9.4 | a | 8.4 | b | 40.3 | e | 479.2 | c | 42.2 | a | 40.3 | b |
No Solarization × 1000 kg ha−1 of CaCN2 | 9.0 | b | 8.8 | a | 51.7 | c | 498.9 | b | 35.4 | d | 36.6 | d |
Solarization × 0 kg ha−1 of CaCN2 | 9.1 | b | 8.6 | ab | 47.0 | d | 460.9 | d | 38.8 | c | 41.2 | ab |
Solarization × 500 kg ha−1 of CaCN2 | 9.1 | b | 8.9 | a | 54.5 | b | 502.2 | b | 40.7 | b | 42.2 | a |
Solarization × 1000 kg ha−1 of CaCN2 | 9.1 | b | 8.6 | ab | 60.0 | a | 518.2 | a | 38.7 | c | 38.4 | c |
Significance | ||||||||||||
Solarization | NS | *** | *** | *** | ** | *** | ||||||
Calcium cyanamide (CaCN2) | ** | *** | *** | *** | *** | *** | ||||||
Solarization × CaCN2 | ** | *** | ** | ** | *** | ** |
Treatments | TA (% of Citric Acid) | N (g 100 g−1 of dw) | Anthocyanins (mg of Cya-3-glucoside per 100 g) | Antioxidant Capacity (% Inhibition) | b* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Solarization | ||||||||||
No solarization | 0.4 | 9.0 | 99.8 | b | 82.1 | b | 22.3 | |||
Solarization | 0.4 | 9.2 | 108.5 | a | 86.1 | a | 21.7 | |||
Calcium cyanamide dosage (kg ha−1) | ||||||||||
0 | 0.5 | a | 9.8 | a | 90.2 | c | 79.1 | c | 22.0 | |
500 | 0.4 | b | 9.3 | b | 108.4 | b | 85.1 | b | 21.9 | |
1000 | 0.4 | b | 8.2 | c | 114.0 | a | 88.0 | a | 22.1 | |
Significance | ||||||||||
Solarization | NS | NS | *** | *** | NS | |||||
Calcium cyanamide (CaCN2) | *** | *** | *** | *** | NS | |||||
Solarization × CaCN2 | NS | NS | NS | NS | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatino, L.; D’Anna, F.; Prinzivalli, C.; Iapichino, G. Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System. Agronomy 2019, 9, 513. https://doi.org/10.3390/agronomy9090513
Sabatino L, D’Anna F, Prinzivalli C, Iapichino G. Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System. Agronomy. 2019; 9(9):513. https://doi.org/10.3390/agronomy9090513
Chicago/Turabian StyleSabatino, Leo, Fabio D’Anna, Carlo Prinzivalli, and Giovanni Iapichino. 2019. "Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System" Agronomy 9, no. 9: 513. https://doi.org/10.3390/agronomy9090513
APA StyleSabatino, L., D’Anna, F., Prinzivalli, C., & Iapichino, G. (2019). Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System. Agronomy, 9(9), 513. https://doi.org/10.3390/agronomy9090513