Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with Ergosterol
Abstract
:1. Introduction
2. Results and Discussion
Fungal strain | Sensitivity to antifungal drugs (diameter of inhibition zone in mm) | ||||
---|---|---|---|---|---|
AMB | ICZ | FLU | 5-FC | MCZ | |
LM-03 | 0 | 0 | 0 | 0 | 0 |
LM-04 | 10 | 0 | 0 | 0 | 0 |
LM-25 | 7 | 0 | 0 | 0 | 0 |
LM-29 | 0 | 0 | 0 | 0 | 0 |
LM-508 | 10 | 0 | 0 | 0 | 0 |
LM-766 | 0 | 0 | 0 | 0 | 0 |
LM-810 | 0 | 0 | 0 | 0 | 0 |
RO-5786 | 0 | 0 | 0 | 0 | 0 |
RO-4692 | 0 | 0 | 0 | 0 | 0 |
RO-4565 | 0 | 0 | 0 | 0 | 0 |
RO-4557 | 0 | 0 | 0 | 0 | 0 |
Essential oil | Sensitivity to essential oils (diameter of inhibition zone in mm) | ||||||
---|---|---|---|---|---|---|---|
LM-03 | LM-04 | LM-28 | LM-29 | LM-508 | LM-766 | LM-810 | |
C. citratus | 25 | 18 | 28 | 23 | 24 | 0 | 24 |
C. martini | 17 | 16 | 17 | 16 | 18 | 20 | 0 |
C. winterianus | 16 | 17 | 18 | 16 | 22 | 20 | 24 |
T. vulgaris | 29 | 32 | 28 | 28 | 31 | 38 | 36 |
C. zeylanicum | 24 | 23 | 23 | 26 | 25 | 26 | 27 |
O. vulgare | 33 | 33 | 31 | 31 | 30 | 38 | 30 |
O. basilicum | 15 | 16 | 13 | 0 | 0 | 0 | 0 |
C. sativum | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H. suaveolens | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
O. majorana | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R. oryzae | Essential oil (µg/mL) | Thymol (µg/mL) | p-Cymene (µg/mL) | AMB (µg/mL) | ||
---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MIC | |
LM-03 | 256 | 512 | 128 | 128 | >1024 | 4 |
LM-04 | 256 | ND | 128 | ND | >1024 | 4 |
LM-25 | 256 | 1024 | 128 | 256 | >1024 | 4 |
LM-28 | 256 | 1024 | 128 | 256 | >1024 | 4 |
LM-29 | 256 | 1024 | 128 | 256 | >1024 | 4 |
LM-508 | 256 | >1024 | 128 | 128 | >1024 | 4 |
LM-766 | 256 | 512 | 128 | 256 | >1024 | 4 |
LM-810 | 256 | 1024 | 128 | 256 | >1024 | 4 |
RO-5786 | 512 | 1024 | 256 | 256 | >1024 | 4 |
RO-4692 | 512 | 1024 | 256 | 1024 | >1024 | 4 |
RO-4565 | 256 | >1024 | 128 | 512 | >1024 | 2 |
RO-4557 | 256 | 1024 | 128 | 256 | >1024 | 4 |
Constituent | % |
---|---|
α-Pinene | 3.3 |
Camphene | 1.0 |
β-Pinene | 0.6 |
Myrcene | 1.7 |
p-Cymene | 38.9 |
Limonene | 0.8 |
1,8-Cineole | 1.2 |
γ-Terpinene | 0.3 |
Linalool | 3.8 |
Thymol | 46.6 |
Drug | MIC (µg/mL) | ||||
---|---|---|---|---|---|
Absence of sterols | Presence of ergosterol | Presence of cholesterol | |||
200 µg/mL | 400 µg/mL | 200 µg/mL | 400 µg/mL | ||
EO | 256 | 1024 | 2048 | 1024 | 1024 |
Thymol | 128 | 512 | 1024 | 512 | 512 |
AMB | 4 | 1024 | 1024 | 512 | 1024 |
3. Experimental
3.1. Plant Essential Oil and Drugs
3.2. Essential Oil Analysis
3.3. Mold Strains
3.4. Inoculum
3.5. Disk Diffusion Assay
3.6. Determination of MIC and MFC
3.7. Effects on Mycelial Growth
3.8. Sporangiospore Germination Assay
3.9. Membrane Sterols Assay
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Kauffman, C.A. Fungal Infections. Proc. Am. Thorac. Soc. 2006, 3, 35–40. [Google Scholar] [CrossRef]
- Enoch, D.A.; Ludlam, H.A.; Brown, N.M. Invasive fungal infections: A review of epidemiology and management options. J. Med. Microbiol. 2006, 55, 809–818. [Google Scholar] [CrossRef]
- Cruz, M.C.S.; Santos, P.O.; Barbosa, A.M., Jr.; Mélo, D.L.F.M.; Alviano, C.S.; Antoniolli, A.R.; Alviano, D.S.; Trindade, R.C. Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. J. Ethnopharmacol. 2007, 111, 409–412. [Google Scholar] [CrossRef]
- Hennequin, C. Épidemiologie des mycoses invasives. L’expérience d’un centre hospitalo-universitaire parisien. Rev. Med. Interne 1996, 17, 754–760. [Google Scholar]
- Singh, N. Impact of current transplantation practices on the changing epidemiology of infections in transplant recipients. Lancet Infect Dis. 2003, 3, 156–161. [Google Scholar] [CrossRef]
- Prabhu, R.M.; Patel, R. Mucormycosis and entomophthoramycosis: A review of the clinical manifestations, diagnosis and treatment. Clin. Microbiol. Infect. 2004, 10, 31–47. [Google Scholar] [CrossRef]
- Ribes, J.A.; Vanover-Sams, C.L.; Baker, D.J. Zygomycetes in human disease. Clin. Microbiol. Rev. 2000, 13, 236–301. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Edwards, J.E.J.; Filler, S.G. Zygomycosis. In Clinical Mycology; Dismukes, W.E., Pappas, P.G., Sobel, J.D., Eds.; Oxford University Press: New York, NY, USA, 2003; pp. 241–251. [Google Scholar]
- Roden, M.M.; Zaoutis, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiou, C.C.; Chu, J.H.; et al. Epidemiology and Outcome of Zygomycosis: A Review of 929 Reported Cases. Clin. Infect. Dis. 2005, 41, 634–653. [Google Scholar] [CrossRef]
- Lewis, R.E.; Lortholary, O.; Spellberg, B.; Roilides, E.; Kontoyiannis, D.P.; Walsh, T.J. How Does Antifungal Pharmacology Differ for Mucormycosis Versus Aspergillosis? Clin. Infect. Dis. 2012, 54, S67–S72. [Google Scholar] [CrossRef]
- Walsh, T.J.; Groll, A.; Hiemenz, J.; Fleming, R.; Roilides, E.; Anaissie, E. Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. 2004, 10, 48–66. [Google Scholar] [CrossRef]
- Rogers, T.R. Treatment of zygomycosis: current and new options. J. Antimicrob. Chemother. 2008, 61, 35–39. [Google Scholar] [CrossRef]
- Greenberg, R.N.; Scott, L.J.; Vaughn, H.H.; Ribes, J.A. Zygomycosis (mucormycosis): Emerging clinical importance and new treatments. Curr. Opin. Infect. Dis. 2004, 17, 517–525. [Google Scholar] [CrossRef]
- Chayakulkeeree, M.; Ghannoum, M.A.; Perfect, J.R. Zygomycosis: the Re-emerging fungal infection. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 215–229. [Google Scholar] [CrossRef]
- Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P.; Edwards, J.R., Jr.; Ibrahim, A.S. Recent advances in the management of mucormycosis: from bench to bedside. Clin. Infect. Dis. 2009, 48, 1743–1751. [Google Scholar] [CrossRef]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Frag J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Sanchez, M.E.; Turina, A.; Garcia, D.A.; Veronica -Nolan, M.; Perillo, M.A. Surface activity of thymol: Implications for an eventual pharmacological activity. Colloids Sur. B Biointerfaces 2004, 34, 77–86. [Google Scholar] [CrossRef]
- Braga, P.C.; Alfieri, M.; Culici, M.; Dal Sasso, M. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses 2007, 50, 502–506. [Google Scholar] [CrossRef]
- Mondello, F.; Bernardis, F.; Girolamo, A.; Salvatore, G.; Cassone, A. In vitro and in vivo activity of tea tree oil against azole-susceptible and resistant human pathogenic yeasts. J. Antimicrob. Chemother. 2003, 51, 1223–1229. [Google Scholar] [CrossRef]
- Lima, I.O.; Oliveira, R.A.G.; Lima, E.O.; Farias, N.M.P.; Souza, E.L. Atividade antifúngica de óleos essenciais sobre espécies de Candida. Rev. Bras. Farmacogn. 2006, 16, 197–201. [Google Scholar] [CrossRef]
- Bansod, S.; Rai, M. Antifungal Activity of Essential Oils from Indian Medicinal Plants Against Human Pathogenic Aspergillus fumigatus and A. niger. World J. Med. Sci. 2008, 3, 81–88. [Google Scholar]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum (Eugenia caryophyllus) on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef]
- Amber, K.; Aijaz, A.; Immaculata, X.; Luqman, K.A.; Nikhat, M. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 2010, 17, 921–925. [Google Scholar] [CrossRef]
- Pereira, F.O.; Wanderley, P.A.; Viana, F.A.C.; Lima, R.B.; Sousa, F.B.; Santos, S.G.; Lima, E.O. Effects of Cymbopogon winterianus Jowitt ex Bor essential oil on the growth and morphogenesis of Trichophyton mentagrophytes. Braz. J. Pharm. Sci. 2011, 47, 145–153. [Google Scholar] [CrossRef]
- Oliveira, W.A.; Pereira, F.O.; Luna, G.C.D.G.; Lima, I.O.; Wanderley, P.A.; Lima, R.B.; Lima, E.O. Antifungal activity of Cymbopogon winterianus Jowitt Ex Bor against Candida albicans. Braz. J. Microbiol. 2011, 42, 433–441. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, A.; Ahmad, I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Tricophyton rubrum. Appl. Microbiol. Biotechnol. 2011, 90, 1083–1094. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41–50. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A. In vitro antifungal activities of anidulafungin and micafungin, Licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal isolates: Review of the literature. Rev. Iberoam. Micology 2003, 20, 121–136. [Google Scholar]
- Dannaoui, E.; Meletiadis, J.; Mouton, J.W.; Meis, J.F.; Verweij, P.E. In vitro susceptibilities of zygomycetes to conventional and new antifungals. J. Antimicrob. Chemother. 2003, 51, 45–52. [Google Scholar] [CrossRef]
- Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; Mcnicholas, P.M. In Vitro Activities of Posaconazole, Fluconazole, Itraconazole, Voriconazole, and Amphotericin B against a Large Collection of Clinically Important Molds and Yeasts. Antimicrob. Agents Chemother. 2006, 50, 2009–2015. [Google Scholar]
- Sienkiewicz, M.; Lysakowska, M.; Denys, P.; Kowalczyk, E. The Antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb. Drug Resis. 2012, 18, 137–148. [Google Scholar] [CrossRef]
- Santoro, G.F.; Cardoso, M.G.; Guimarães, L.G.L.; Salgado, A.P.S.P.; Menna-Barreto, R.F.S.; Soares, M.J. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol. Res. 2007, 100, 783–790. [Google Scholar]
- Pina-Vaz, C.; Rodrigues, A.G.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez‑de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef]
- Rasooli, I.; Abyaneh, M.R. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control 2004, 15, 479–483. [Google Scholar] [CrossRef]
- Tullio, V.; Nostro, A.; Mandras, N.; Dugo, P.; Banche, G.; Cannatelli, M.A.; Cuffini, A.M.; Alonzo, V.; Carlone, N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007, 102, 1544–1550. [Google Scholar] [CrossRef]
- Klaric, M.S.; Kosalec, I.; Mastelic, J.; Pieckova, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef]
- Sokeman, A.; Gulluce, M.; Akpulat, H.A.; Daferera, D.; Tepe, B.; Polissiou, M.; Sokmen, M.; Sahin, F. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 2004, 15, 627–634. [Google Scholar] [CrossRef]
- Giordani, R.; Regli, P.; Kaloustian, J.; Mikaïl, C.; Abou, L.H. Portugal, Antifungal Effect of Various Essential Oils against Candida albicans. Potentiation of Antifungal Action of Amphotericin B by Essential Oil from Thymus vulgaris. Phytother. Res. 2004, 18, 990–995. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Yousuf, S.; Khan, L.A.; Manzoor, N. Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 2010, 81, 1157–1162. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Spellberg, B.; Edwards, J., Jr.; Ibrahim, A. Novel Perspectives on Mucormycosis: Pathophysiology, Presentation, and Management. Clin. Microbiol. Rev. 2005, 18, 556–569. [Google Scholar] [CrossRef]
- Osherov, N.; May, G.S. The molecular mechanisms of conidial germination. Fems Microbiol. Lett. 2001, 199, 153–160. [Google Scholar] [CrossRef]
- Carmo, E.S.; Lima, E.O.; Souza, E.L.; Sousa, F.B. Effect of Cinnamomum zeylanicum Blume essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species. Braz. J. Microbiol. 2008, 39, 91–97. [Google Scholar] [CrossRef]
- Lukács, G.Y.; Papp, T.; Nyilasi, I.; Nagy, E.; Vágvolgyi, C.S. Differentiation of Rhizomucor species on the basis of their different sensitivities to lovastatin. J. Clin. Microbiol. 2004, 42, 5400–5402. [Google Scholar] [CrossRef]
- Galgóczy, L.; Papp, T.; Kovács, L.; Leiter, E.; Pócsi, I.; Vágvolgyi, C. Interactions between statins and Penicillium chrysogenum antifungal protein(PAF) to inhibit the germination of sporangiospores of different sensitive Zygomycetes. FEMS Microbiol. Lett. 2007, 270, 109–115. [Google Scholar] [CrossRef]
- Galgóczy, L.; Kovács, L.; Krizsa, K.; Papp, T.; Vágvolgyi, C. Inhibitory Effects of Cysteine and Cysteine Derivatives on Germination of Sporangiospores and Hyphal Growth of Different Zygomycetes. Mycopathologia 2009, 168, 125–134. [Google Scholar] [CrossRef]
- Lupetti, A.; Danesi, R.; Campa, M.; Del Tacca, M.; Kelly, S. Molecular basis of resistance to azole antifungals. Trends Mol. Med. 2002, 8, 76–81. [Google Scholar] [CrossRef]
- Escalante, A.; Gattuso, M.; Pérez, P.; Zacchino, S. Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman. J. Nat. Prod. 2008, 71, 1720–1725. [Google Scholar]
- Rasooli, I.; Owlia, P. Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production. J. Am. Mosq. Control. Assoc. 2005, 21, 80–83. [Google Scholar] [CrossRef]
- Baginski, M.; Sternal, K.; Czub, J.; Borowski, E. Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. Acta Biochim. Pol. 2005, 52, 655–658. [Google Scholar]
- Baran, M.; Borowski, E.; Mazerski, J. Molecular modeling of amphotericin B—Ergosterol primary complex in water II. Biophys. Chem. 2009, 141, 162–168. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Espinel-Ingroff, A.; Bartlett, M.; Bowden, R.; Chin, N.X.; Cooper, C., Jr.; Fothergill, A.; Mcginnis, M.R.; Menezes, P.; Messer, S.A.; Nelson, P.W.; et al. Multicenter Evaluation of Proposed Standardized Procedure for Antifungal Susceptibility Testing of Filamentous Fungi. J. Clin. Microbiol. 1997, 15, 139–143. [Google Scholar]
- Adam, K.; Sivropouou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifólia and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745. [Google Scholar]
- Hadacek, F.; Greger, H. Testing of antifungal natural products: Methodologies, Comparability of results and assay choice. Phytochem. Anal. 2000, 11, 137–147. [Google Scholar] [CrossRef]
- Rasooli, I.; Rezaei, M.B.; Allameh, A. Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control 2006, 17, 359–364. [Google Scholar] [CrossRef]
- Sharma, N.; Tripathi, A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol. Res. 2006, 163, 337–344. [Google Scholar]
- Shiosaki, R.K.; Albuquerque, C.D.C.; Okada, K.; Fukushima, K.; Campos-Takaki, G.M. Monitoring the Effect of Pyrene on the Germination and Radial Growth of the Wild and Mutant Strains of Rhizopus arrhizus UCP402. Braz. Arch. Biol. Technol. 2008, 51, 613–621. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds thymol and p-cymene are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Lira Mota, K.S.; De Oliveira Pereira, F.; De Oliveira, W.A.; Lima, I.O.; De Oliveira Lima, E. Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with Ergosterol. Molecules 2012, 17, 14418-14433. https://doi.org/10.3390/molecules171214418
De Lira Mota KS, De Oliveira Pereira F, De Oliveira WA, Lima IO, De Oliveira Lima E. Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with Ergosterol. Molecules. 2012; 17(12):14418-14433. https://doi.org/10.3390/molecules171214418
Chicago/Turabian StyleDe Lira Mota, Kelly Samara, Fillipe De Oliveira Pereira, Wylly Araújo De Oliveira, Igara Oliveira Lima, and Edeltrudes De Oliveira Lima. 2012. "Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with Ergosterol" Molecules 17, no. 12: 14418-14433. https://doi.org/10.3390/molecules171214418
APA StyleDe Lira Mota, K. S., De Oliveira Pereira, F., De Oliveira, W. A., Lima, I. O., & De Oliveira Lima, E. (2012). Antifungal Activity of Thymus vulgaris L. Essential Oil and Its Constituent Phytochemicals against Rhizopus oryzae: Interaction with Ergosterol. Molecules, 17(12), 14418-14433. https://doi.org/10.3390/molecules171214418