Previous Issue
Volume 1, September
 
 

AI Sens., Volume 1, Issue 2 (December 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
32 pages, 4544 KB  
Review
A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling
by Zhan Shen, Jian Li, Hao Hu, Chentao Du, Xiaorong Ding, Tingrui Pan and Xinge Yu
AI Sens. 2025, 1(2), 8; https://doi.org/10.3390/aisens1020008 - 7 Nov 2025
Viewed by 1465
Abstract
Accurate and continuous, non-invasive blood pressure (BP) monitoring plays a vital role in the long-term management of cardiovascular diseases. Advances in wearable and flexible sensing technologies have facilitated the transition of non-invasive BP monitoring from clinical settings to ambulatory home environments. However, the [...] Read more.
Accurate and continuous, non-invasive blood pressure (BP) monitoring plays a vital role in the long-term management of cardiovascular diseases. Advances in wearable and flexible sensing technologies have facilitated the transition of non-invasive BP monitoring from clinical settings to ambulatory home environments. However, the measurement consistency and algorithm adaptability of existing devices have not yet reached the level required for routine clinical practice. To address these limitations, comprehensive innovations have been made in material development, sensor design, and algorithm optimization. This review examines the evolution of non-invasive continuous BP measurement, highlighting cutting-edge advances in flexible electronic devices and BP estimation algorithms. First, we introduce measurement principles, sensing devices and limitations of traditional non-invasive BP measurement, including arterial tonometry, arterial volume clamp, and ultrasound-based methods. Subsequently, we review the pulse wave analysis-based BP estimation methods from two perspectives: flexible sensors based on optical, mechanical, and electrical principles, and estimation models that use physiological features or raw waveforms as input. Finally, we conclude the existing challenges and future development directions of flexible electronic technology and intelligent estimation algorithms for non-invasive continuous BP measurement. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

40 pages, 29429 KB  
Review
Innovations in Multidimensional Force Sensors for Accurate Tactile Perception and Embodied Intelligence
by Jiyuan Chen, Meili Xia, Pinzhen Chen, Binbin Cai, Huasong Chen, Xinkai Xie, Jun Wu and Qiongfeng Shi
AI Sens. 2025, 1(2), 7; https://doi.org/10.3390/aisens1020007 - 29 Sep 2025
Viewed by 4915
Abstract
Multidimensional force sensors are key devices capable of simultaneously perceiving and analyzing force in multiple directions (normally triaxial forces). They are designed to provide intelligent systems with skin-like precision in environmental interaction, offering high sensitivity, spatial resolution, decoupling capability, and environmental adaptability. However, [...] Read more.
Multidimensional force sensors are key devices capable of simultaneously perceiving and analyzing force in multiple directions (normally triaxial forces). They are designed to provide intelligent systems with skin-like precision in environmental interaction, offering high sensitivity, spatial resolution, decoupling capability, and environmental adaptability. However, the inherent complexity of tactile information coupling, combined with stringent demands for miniaturization, robustness, and low cost in practical applications, makes high-performance and reliable multidimensional sensing and decoupling a major challenge. This drives ongoing innovation in sensor structural design and sensing mechanisms. Various structural strategies have demonstrated significant advantages in improving sensor performance, simplifying decoupling algorithms, and enhancing adaptability—attributes that are essential in scenarios requiring fine physical interactions. From this perspective, this article reviews recent advances in multidimensional force sensing technology, with a focus on the operating principles and performance characteristics of sensors with different structural designs. It also highlights emerging trends toward multimodal sensing and the growing integration with system architectures and artificial intelligence, which together enable higher-level intelligence. These developments support a wide range of applications, including intelligent robotic manipulation, natural human–computer interaction, wearable health monitoring, and precision automation in agriculture and industry. Finally, the article discusses remaining challenges and future opportunities in the development of multidimensional force sensors. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop