Previous Issue
Volume 34, ECAS-7
 
 

Environ. Earth Sci. Proc., 2025, COMECAP 2025

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Number of Papers: 1
Order results
Result details
Select all
Export citation of selected articles as:

Other

7 pages, 1589 KB  
Proceeding Paper
Modeling Smoke Emissions and Transport for Wildfire Using Satellite Observations and Lagrangian Dispersion Modeling
by Thanasis Kourantos, Anna Kampouri, Anna Gialitaki, Maria Tsichla, Eleni Marinou, Vassilis Amiridis and Ioannis Kioutsioukis
Environ. Earth Sci. Proc. 2025, 35(1), 2; https://doi.org/10.3390/eesp2025035002 (registering DOI) - 8 Sep 2025
Abstract
A significant wildfire event occurred in Korinthos, Greece, on 22 July 2020, releasing large amounts of smoke into the atmosphere. This episode provided the opportunity to develop and apply the methodology described in this work, where the synergistic use of ground data, satellite [...] Read more.
A significant wildfire event occurred in Korinthos, Greece, on 22 July 2020, releasing large amounts of smoke into the atmosphere. This episode provided the opportunity to develop and apply the methodology described in this work, where the synergistic use of ground data, satellite remote sensing data and dispersion modeling is utilized to demonstrate highly accurate source detection, emission transport, and dispersion of the smoke plumes. The Fire Radiative Power (FRP) data from SEVIRI, on board Meteosat Second Generation, are used to estimate hourly fire top-down emissions. These emissions are used as input for the FLEXPART Lagrangian particle dispersion model, driven by GFS meteorological data. Simulated smoke transport is compared with TROPOMI satellite CO observations and lidar profiles from the PANhellenic GEophysical observatory of Antikythera (PANGEA) station. The model includes key atmospheric processes such as advection and deposition, providing a framework for assessing wildfire impacts on air quality and transport. The results highlight the effectiveness of combining high temporal resolution FRP data with the WARM START configuration of FLEXPART versus the Standard FLEXPART Simulation. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop