Insights into Air Quality Index (AQI) Variability with Explainable Machine Learning Techniques †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observational Dataset
2.3. Methodological Approach
2.3.1. XGBoost
2.3.2. SHAP
3. Results and Discussion
3.1. Explorative AQI Analysis
3.2. XGBoost Model Performances
3.3. SHAP Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plaia, A.; Ruggieri, M. Air Quality Indices: A Review. Rev. Env. Sci. Biotechnol. 2011, 10, 165–179. [Google Scholar] [CrossRef]
- Dimitriou, K.; Paschalidou, A.K.; Kassomenos, P.A. Assessing Air Quality with Regards to Its Effect on Human Health in the European Union through Air Quality Indices. Ecol. Indic. 2013, 27, 108–115. [Google Scholar] [CrossRef]
- European Union. EU Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe (Recast); European Union: Luxembourg, 2024. [Google Scholar]
- Karavas, Z.; Karayannis, V.; Moustakas, K. Comparative Study of Air Quality Indices in the European Union towards Adopting a Common Air Quality Index. Energy Environ. 2021, 32, 959–980. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale. Legislative Decree 155-13-8-2010 Attuazione Della Direttiva 2008/50/CE Relativa Alla Qualità Dell’aria Ambiente e per Un’aria Più Pulita in Europa; Gazzetta Ufficialen.216 del 15-09-2010—Suppl. Ordinario 217; Gazzetta Ufficiale: Rome, Italy, 2010. [Google Scholar]
- Tan, X.; Han, L.; Zhang, X.; Zhou, W.; Li, W.; Qian, Y. A Review of Current Air Quality Indexes and Improvements under the Multi-Contaminant Air Pollution Exposure. J. Environ. Manag. 2021, 279, 111681. [Google Scholar] [CrossRef]
- Adebayo-Ojo, T.C.; Wichmann, J.; Arowosegbe, O.O.; Probst-Hensch, N.; Schindler, C.; Künzli, N. A New Global Air Quality Health Index Based on the WHO Air Quality Guideline Values with Application in Cape Town. Int. J. Public Health. 2023, 68, 1606349. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Z. A Novel Air Quality Index Prediction Model Based on Variational Mode Decomposition and SARIMA-GA-TCN. Process Saf. Environ. Prot. 2024, 184, 961–992. [Google Scholar] [CrossRef]
- Das, R.; Middya, A.I.; Roy, S. High Granular and Short Term Time Series Forecasting of PM 2.5 Air Pollutant—A Comparative Review. Artif. Intell. Rev. 2022, 55, 1253–1287. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, W.Y.; Hu, T.; Wu, C.H. Comparison of Time Series Forecasting Based on Statistical ARIMA Model and LSTM with Attention Mechanism. J. Phys. Conf. Ser. 2020, 1631, 012141. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Peng, Z.; Zhang, B.; Wang, D.; Niu, X.; Sun, J.; Xu, H.; Cao, J.; Shen, Z. Application of Machine Learning in Atmospheric Pollution Research: A State-of-Art Review. Sci. Total Environ. 2024, 910, 168588. [Google Scholar] [CrossRef]
- Chakraborty, S.; Misra, B.; Dey, N. Explainable Artificial Intelligence (XAI) for Air Quality Assessment. Des. Stud. Intell. Eng. 2024, 383, 333–341. [Google Scholar]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access. 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data. 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardino, A.; Iannarelli, A.M.; Casadio, S.; Pisacane, G.; Siani, A.M. Spatial-Temporal Assessment of Air Quality in Rome (Italy) Based on Anemological Clustering. Atmos. Pollut. Res. 2023, 14, 101670. [Google Scholar] [CrossRef]
- Gobbi, G.P.; Angelini, F.; Barnaba, F.; Costabile, F.; Baldasano, J.M.; Basart, S.; Sozzi, R.; Bolignano, A. Changes in Particulate Matter Physical Properties during Saharan Advections over Rome (Italy): A Four-Year Study, 2001–2004. Atmos. Chem. Phys. 2013, 13, 7395–7404. [Google Scholar] [CrossRef]
- ARPA Lazio. Qualità Dell’aria Nella Regione Lazio. Analisi Delle Serie Storiche Dei Principali Inquinanti 2013–2022; ARPA Lazio: Rieti, Italy, 2023; Available online: https://www.arpalazio.it/web/guest/pubblicazioni (accessed on 7 March 2025).
- Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Tan, Y.; Gan, V.J.L.; Wan, Z. Identification of High Impact Factors of Air Quality on a National Scale Using Big Data and Machine Learning Techniques. J. Clean. Prod. 2020, 244, 118955. [Google Scholar] [CrossRef]
- Ponce-Bobadilla, A.V.; Schmitt, V.; Maier, C.S.; Mensing, S.; Stodtmann, S. Practical Guide to SHAP Analysis: Explaining Supervised Machine Learning Model Predictions in Drug Development. Clin. Transl. Sci. 2024, 17, e70056. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Yu, D.; Gu, Y. Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms. Appl. Sci. 2019, 9, 4069. [Google Scholar] [CrossRef]
- He, J.; Wang, T.; Li, H.; Zhou, Y.; Liu, Y.; Xu, A. Synergistic Toxicity of Fine Particulate Matter and Ozone and Their Underlying Mechanisms. Toxics. 2025, 13, 236. [Google Scholar] [CrossRef]
- Pusede, S.E.; Steiner, A.L.; Cohen, R.C. Temperature and Recent Trends in the Chemistry of Continental Surface Ozone. Chem. Rev. 2015, 115, 3898–3918. [Google Scholar] [CrossRef]
- Xie, J.; Sun, T.; Liu, C.; Li, L.; Xu, X.; Miao, S.; Lin, L.; Chen, Y.; Fan, S. Quantitative Evaluation of Impacts of the Steadiness and Duration of Urban Surface Wind Patterns on Air Quality. Sci. Total Environ. 2022, 850, 157957. [Google Scholar] [CrossRef] [PubMed]
- Peshev, Z.; Deleva, A.; Vulkova, L.; Dreischuh, T. Large-Scale Saharan Dust Episode in April 2019: Study of Desert Aerosol Loads over Sofia, Bulgaria, Using Remote Sensing, In Situ, and Modeling Resources. Atmosphere 2022, 13, 981. [Google Scholar] [CrossRef]
Eta. | Max_Depth | Min_Child_Weight | Subsample | Colsample_Bytree | Gamma |
---|---|---|---|---|---|
0.2 | 8 | 8 | 0.5 | 0.9 | 1.73 |
Statistical Indicator | Castel di Guido | Villa Ada |
---|---|---|
R2 | 0.88 | 0.88 |
MBE | −0.13 | 0.30 |
RMSE | 5.96 | 6.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andenna, C.; Gagliardi, R.V. Insights into Air Quality Index (AQI) Variability with Explainable Machine Learning Techniques. Environ. Earth Sci. Proc. 2025, 34, 1. https://doi.org/10.3390/eesp2025034001
Andenna C, Gagliardi RV. Insights into Air Quality Index (AQI) Variability with Explainable Machine Learning Techniques. Environmental and Earth Sciences Proceedings. 2025; 34(1):1. https://doi.org/10.3390/eesp2025034001
Chicago/Turabian StyleAndenna, Claudio, and Roberta Valentina Gagliardi. 2025. "Insights into Air Quality Index (AQI) Variability with Explainable Machine Learning Techniques" Environmental and Earth Sciences Proceedings 34, no. 1: 1. https://doi.org/10.3390/eesp2025034001
APA StyleAndenna, C., & Gagliardi, R. V. (2025). Insights into Air Quality Index (AQI) Variability with Explainable Machine Learning Techniques. Environmental and Earth Sciences Proceedings, 34(1), 1. https://doi.org/10.3390/eesp2025034001