Target the Heart: A New Axis of Alzheimer’s Disease Prevention
Abstract
:1. Introduction
2. Methods
2.1. Animal Handling and Husbandry
2.2. Pharmacological Treatment
2.3. Behavioral Assay and Z-LaP Tracker
2.4. Statistical Analysis
2.5. Cluster Analysis
2.6. Ingenuity Pathway Analysis
3. Results
3.1. Behavioral Parameters
3.2. Cluster Analysis
3.3. Ingenuity Pathway Analysis
4. Discussion
4.1. Mechanisms of Action of Cyclosporine and Links to Alzheimer’s Disease
4.2. Alzheimer’s Disease and Cardiovascular Disease
4.3. Heart Drugs of Select Interest
4.4. Statins
4.5. Angiotensin Receptor Blockers
4.6. Alpha-Adrenergic Antagonists
4.7. Beta-Adrenergic Antagonists
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Hogan, D.B.; Smith, E.E.; Frolkis, A.; Cohen, A.; Kirk, A.; Pearson, D.; Pringsheim, T.; et al. The Prevalence and Incidence of Dementia Due to Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Can. J. Neurol. Sci. 2016, 43 (Suppl. S1), S51–S82. [Google Scholar] [CrossRef] [PubMed]
- Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 2013, 80, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Dineley, K.T.; Kayed, R.; Neugebauer, V.; Fu, Y.; Zhang, W.; Reese, L.C.; Taglialatela, G. Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. J. Neurosci. Res. 2010, 88, 2923–2932. [Google Scholar] [CrossRef]
- Norris, C.M. Calcineurin: Directing the damage in Alzheimer disease: An Editorial for ‘Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain’ on page 24. J. Neurochem. 2018, 147, 8–11. [Google Scholar] [CrossRef]
- Reese, L.C.; Taglialatela, G. A role for calcineurin in Alzheimer’s disease. Curr. Neuropharmacol. 2011, 9, 685–692. [Google Scholar] [CrossRef]
- Taglialatela, G.; Rastellini, C.; Cicalese, L. Reduced Incidence of Dementia in Solid Organ Transplant Patients Treated with Calcineurin Inhibitors. J. Alzheimer’s Dis. 2015, 47, 329–333. [Google Scholar] [CrossRef]
- Gore, S.V.; Kakodkar, R.; Del Rosario Hernandez, T.; Edmister, S.T.; Creton, R. Zebrafish Larvae Position Tracker (Z-LaP Tracker): A high-throughput deep-learning behavioral approach for the identification of calcineurin pathway-modulating drugs using zebrafish larvae. Sci. Rep. 2023, 13, 3174. [Google Scholar] [CrossRef]
- Del Rosario Hernandez, T.; Gore, S.V.; Kreiling, J.A.; Creton, R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed. Pharmacother. 2024, 171, 116096. [Google Scholar] [CrossRef]
- Saleem, S.; Kannan, R.R. Zebrafish: An emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018, 4, 45. [Google Scholar] [CrossRef]
- Leszek, J.; Mikhaylenko, E.V.; Belousov, D.M.; Koutsouraki, E.; Szczechowiak, K.; Kobusiak-Prokopowicz, M.; Mysiak, A.; Diniz, B.S.; Somasundaram, S.G.; Kirkland, C.E.; et al. The Links between Cardiovascular Diseases and Alzheimer’s Disease. Curr. Neuropharmacol. 2021, 19, 152–169. [Google Scholar] [CrossRef]
- Clift, D.; Richendrfer, H.; Thorn, R.J.; Colwill, R.M.; Creton, R. High-throughput analysis of behavior in zebrafish larvae: Effects of feeding. Zebrafish 2014, 11, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Xiao, J.; Liu, J.; Yang, D.; Wang, Y.; Liu, J.; Huang, L.; Liu, F.; Xiong, G.; Liao, X.; et al. Cyclosporine A induces hepatotoxicity in zebrafish larvae via upregulating oxidative stress. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 266, 109560. [Google Scholar] [CrossRef] [PubMed]
- Ivery, M.T. A proposed molecular model for the interaction of calcineurin with the cyclosporin A-cyclophilin A complex. Bioorg. Med. Chem. 1999, 7, 1389–1402. [Google Scholar] [CrossRef]
- Mukherjee, A.; Soto, C. Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress. Curr. Opin. Cell Biol. 2011, 23, 223–230. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, S.C.; Cardenas, M.E.; Heitman, J. Calcium-Calmodulin-Calcineurin Signaling: A Globally Conserved Virulence Cascade in Eukaryotic Microbial Pathogens. Cell Host Microbe 2019, 26, 453–462. [Google Scholar] [CrossRef]
- Russell, G.; Graveley, R.; Seid, J.; al-Humidan, A.K.; Skjodt, H. Mechanisms of action of cyclosporine and effects on connective tissues. Semin. Arthritis Rheum. 1992, 21 (Suppl. S3), 16–22. [Google Scholar] [CrossRef]
- Silva, J.D.; Taglialatela, G.; Jupiter, D.C. Reduced Prevalence of Dementia in Patients Prescribed Tacrolimus, Sirolimus, or Cyclosporine. J. Alzheimers Dis. 2023, 95, 585–597. [Google Scholar] [CrossRef]
- Tapia-Monsalves, C.; Olesen, M.A.; Villavicencio-Tejo, F.; Quintanilla, R.A. Cyclosporine A (CsA) prevents synaptic impairment caused by truncated tau by caspase-3. Mol. Cell Neurosci. 2023, 125, 103861. [Google Scholar] [CrossRef]
- Nicholls, S.B.; DeVos, S.L.; Commins, C.; Nobuhara, C.; Bennett, R.E.; Corjuc, D.L.; Maury, E.; Eftekharzadeh, B.; Akingbade, O.; Fan, Z.; et al. Characterization of TauC3 antibody and demonstration of its potential to block tau propagation. PLoS ONE 2017, 12, e0177914. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, T.; Jiang, L.; Ma, G.; Tan, S.; Li, J.; Gao, J.; Liu, K.; Zhang, Y. Diazoxide and cyclosporin A protect primary cholinergic neurons against beta-amyloid (1-42)-induced cytotoxicity. Neurol. Res. 2013, 35, 529–536. [Google Scholar] [CrossRef]
- Van Den Heuvel, C.; Donkin, J.J.; Finnie, J.W.; Blumbergs, P.C.; Kuchel, T.; Koszyca, B.; Manavis, J.; Jones, N.R.; Reilly, P.L.; Vink, R. Downregulation of amyloid precursor protein (APP) expression following post-traumatic cyclosporin-A administration. J. Neurotrauma 2004, 21, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.; Deshpande, L.S.; Blair, R.E.; Carter, D.S.; Sombati, S.; DeLorenzo, R.J. Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci. Lett. 2007, 418, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Green, K.N. Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology. J. Cell Mol. Med. 2009, 13, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Abdul, H.M.; Sama, M.A.; Furman, J.L.; Mathis, D.M.; Beckett, T.L.; Weidner, A.M.; Patel, E.S.; Baig, I.; Murphy, M.P.; LeVine, H., 3rd; et al. Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J. Neurosci. 2009, 29, 12957–12969. [Google Scholar] [CrossRef]
- Rippin, I.; Eldar-Finkelman, H. Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021, 10, 262. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Feigin, V.L.; Forouzanfar, M.H.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.M.; Truelsen, T.; et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob Health 2013, 1, e259–e281. [Google Scholar] [CrossRef]
- Lee, S.; Shafe, A.C.; Cowie, M.R. UK stroke incidence, mortality and cardiovascular risk management 1999-2008: Time-trend analysis from the General Practice Research Database. BMJ Open 2011, 1, e000269. [Google Scholar] [CrossRef]
- Tini, G.; Scagliola, R.; Monacelli, F.; La Malfa, G.; Porto, I.; Brunelli, C.; Rosa, G.M. Alzheimer’s Disease and Cardiovascular Disease: A Particular Association. Cardiol. Res. Pract. 2020, 2020, 2617970. [Google Scholar] [CrossRef]
- Attems, J.; Jellinger, K.A. The overlap between vascular disease and Alzheimer’s disease-lessons from pathology. BMC Med. 2014, 12, 206. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Capuano, A.W.; Leurgans, S.E.; Bennett, D.A.; Schneider, J.A. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: A cross-sectional study. Lancet Neurol. 2016, 15, 934–943. [Google Scholar] [CrossRef]
- van Gennip, A.C.E.; van Sloten, T.T.; Fayosse, A.; Sabia, S.; Singh-Manoux, A. Age at cardiovascular disease onset, dementia risk, and the role of lifestyle factors. Alzheimers Dement. 2024, 20, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.R.; Leggett, R.W. Reference values for resting blood flow to organs of man. Clin. Phys. Physiol. Meas. 1989, 10, 187–217. [Google Scholar] [CrossRef] [PubMed]
- Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci. 2009, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Fantini, S.; Sassaroli, A.; Tgavalekos, K.T.; Kornbluth, J. Cerebral blood flow and autoregulation: Current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 2016, 3, 031411. [Google Scholar] [CrossRef]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; Decarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef]
- Stampfer, M.J. Cardiovascular disease and Alzheimer’s disease: Common links. J. Intern. Med. 2006, 260, 211–223. [Google Scholar] [CrossRef]
- Stamatelopoulos, K.; Pol, C.J.; Ayers, C.; Georgiopoulos, G.; Gatsiou, A.; Brilakis, E.S.; Khera, A.; Drosatos, K.; de Lemos, J.A.; Stellos, K. Amyloid-Beta (1–40) Peptide and Subclinical Cardiovascular Disease. J. Am. Coll. Cardiol. 2018, 72, 1060–1061. [Google Scholar] [CrossRef]
- Stamatelopoulos, K.; Sibbing, D.; Rallidis, L.S.; Georgiopoulos, G.; Stakos, D.; Braun, S.; Gatsiou, A.; Sopova, K.; Kotakos, C.; Varounis, C.; et al. Amyloid-beta (1-40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J. Am. Coll. Cardiol. 2015, 65, 904–916. [Google Scholar] [CrossRef]
- Saeed, A.; Lopez, O.; Cohen, A.; Reis, S.E. Cardiovascular Disease and Alzheimer’s Disease: The Heart-Brain Axis. J. Am. Heart Assoc. 2023, 12, e030780. [Google Scholar] [CrossRef]
- Mathys, H.; Peng, Z.; Boix, C.A.; Victor, M.B.; Leary, N.; Babu, S.; Abdelhady, G.; Jiang, X.; Ng, A.P.; Ghafari, K.; et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 2023, 186, 4365–4385.e4327. [Google Scholar] [CrossRef]
- Cortes-Canteli, M.; Iadecola, C. Alzheimer’s Disease and Vascular Aging: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; McKee, M.; Rangarajan, S.; Bangdiwala, S.; Rosengren, A.; Gupta, R.; Kutty, V.R.; Wielgosz, A.; Lear, S.; AlHabib, K.F.; et al. Association of Symptoms of Depression With Cardiovascular Disease and Mortality in Low-, Middle-, and High-Income Countries. JAMA Psychiatry 2020, 77, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Castillo, E.F.; Valencia, I.; Ibarra, M.; Bobadilla, R.A. Droperidol interacts with vascular serotonin receptors and alpha-adrenoceptors. Arch. Int. Pharmacodyn. Ther. 1995, 330, 53–65. [Google Scholar] [PubMed]
- van Nueten, J.M.; Reneman, R.S.; Janssen, P.A. Specific alpha-adrenoceptor blocking effect of droperidol on isolated smooth muscles. Eur. J. Pharmacol. 1977, 44, 1–8. [Google Scholar] [CrossRef]
- Pruneau, D.; Mainguy, Y.; Roy, F. Trifluoperazine antagonizes postsynaptic alpha 1-but not alpha 2-adrenoceptor-mediated pressor responses in the rat. Eur. J. Pharmacol. 1984, 105, 343–346. [Google Scholar] [CrossRef]
- Otani, H.; Engelman, R.M.; Rousou, J.A.; Breyer, R.H.; Clement, R.; Prasad, R.; Klar, J.; Das, D.K. Improvement of myocardial function by trifluoperazine, a calmodulin antagonist, after acute coronary artery occlusion and coronary revascularization. J. Thorac. Cardiovasc. Surg. 1989, 97, 267–274. [Google Scholar] [CrossRef]
- de Boer, T.; Ruigt, G.S.F. The Selective α2-Adrenoceptor Antagonist Mirtazapine (Org 3770) Enhances Noradrenergic and 5-HT1A-Mediated Serotonergic Neurotransmission. CNS Drugs 1995, 4, 29–38. [Google Scholar] [CrossRef]
- Wang, T.J. Vitamin D and Cardiovascular Disease. Annu. Rev. Med. 2016, 67, 261–272. [Google Scholar] [CrossRef]
- Miller, M.; Quimby, J.; Langston, C.; Ames, M.; Parker, V.J. Effect of calcifediol supplementation on renin-angiotensin-aldosterone system mediators in dogs with chronic kidney disease. J. Vet. Intern. Med. 2022, 36, 1693–1699. [Google Scholar] [CrossRef]
- Weintraub, W.S. The vascular effects of cilostazol. Can. J. Cardiol. 2006, 22 (Suppl. B), 56b–60b. [Google Scholar] [CrossRef]
- Umebayashi, R.; Uchida, H.A.; Kakio, Y.; Subramanian, V.; Daugherty, A.; Wada, J. Cilostazol Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysms but Not Atherosclerosis in Apolipoprotein E-Deficient Mice. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, K.; Nishida, M.; Ariyoshi, M.; Jian, Z.; Saiki, S.; Hirano, M.; Nakaya, M.; Sato, Y.; Kita, S.; Iwamoto, T.; et al. Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
- Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Mach, F.; Ray, K.K.; Wiklund, O.; Corsini, A.; Catapano, A.L.; Bruckert, E.; De Backer, G.; Hegele, R.A.; Hovingh, G.K.; Jacobson, T.A.; et al. Adverse effects of statin therapy: Perception vs. the evidence-focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur. Heart J. 2018, 39, 2526–2539. [Google Scholar] [CrossRef]
- Lee, Y.; Siddiqui, W.J. Cholesterol Levels. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Zhang, H.; Jiang, M.; Hou, H.; Li, Q. Efficacy of simvastatin on carotid atherosclerotic plaque and its effects on serum inflammatory factors and cardiocerebrovascular events in elderly patients. Exp. Ther. Med. 2021, 22, 819. [Google Scholar] [CrossRef]
- Xie, B.; Shi, X.; Xing, Y.; Tang, Y. Association between atherosclerosis and Alzheimer’s disease: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01601. [Google Scholar] [CrossRef]
- Garcia-Alloza, M.; Gregory, J.; Kuchibhotla, K.V.; Fine, S.; Wei, Y.; Ayata, C.; Frosch, M.P.; Greenberg, S.M.; Bacskai, B.J. Cerebrovascular lesions induce transient β-amyloid deposition. Brain 2011, 134 Pt 12, 3697–3707. [Google Scholar] [CrossRef]
- Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 2004, 5, 347–360. [Google Scholar] [CrossRef]
- Koike, M.A.; Green, K.N.; Blurton-Jones, M.; Laferla, F.M. Oligemic hypoperfusion differentially affects tau and amyloid-{beta}. Am. J. Pathol. 2010, 177, 300–310. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Yang, D.; Luo, G.; Chen, S.; Le, W. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol. Aging 2009, 30, 1091–1098. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Kanekiyo, T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1965. [Google Scholar] [CrossRef] [PubMed]
- Chaitanya, G.V.; Cromer, W.; Wells, S.; Jennings, M.; Mathis, J.M.; Minagar, A.; Alexander, J.S. Metabolic modulation of cytokine-induced brain endothelial adhesion molecule expression. Microcirculation 2012, 19, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Fassbender, K.; Simons, M.; Bergmann, C.; Stroick, M.; Lutjohann, D.; Keller, P.; Runz, H.; Kuhl, S.; Bertsch, T.; von Bergmann, K.; et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 5856–5861. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, S.M.; Wilkinson, B.L.; Golde, T.E.; Landreth, G. Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J. Biol. Chem. 2007, 282, 26832–26844. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Valizadeh, P.; Balabandian, M. Does statin use affect amyloid beta deposition and brain metabolism? CNS Neurosci. Ther. 2023, 29, 1434–1443. [Google Scholar] [CrossRef]
- Reiss, A.B. Cholesterol and apolipoprotein E in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2005, 20, 91–96. [Google Scholar] [CrossRef]
- Petek, B.; Häbel, H.; Xu, H.; Villa-Lopez, M.; Kalar, I.; Hoang, M.T.; Maioli, S.; Pereira, J.B.; Mostafaei, S.; Winblad, B.; et al. Statins and cognitive decline in patients with Alzheimer’s and mixed dementia: A longitudinal registry-based cohort study. Alzheimers Res. Ther. 2023, 15, 220. [Google Scholar] [CrossRef]
- Sano, M.; Bell, K.L.; Galasko, D.; Galvin, J.E.; Thomas, R.G.; van Dyck, C.H.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology 2011, 77, 556–563. [Google Scholar] [CrossRef]
- Feldman, H.H.; Doody, R.S.; Kivipelto, M.; Sparks, D.L.; Waters, D.D.; Jones, R.W.; Schwam, E.; Schindler, R.; Hey-Hadavi, J.; DeMicco, D.A.; et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 2010, 74, 956–964. [Google Scholar] [CrossRef]
- Torrandell-Haro, G.; Branigan, G.L.; Vitali, F.; Geifman, N.; Zissimopoulos, J.M.; Brinton, R.D. Statin therapy and risk of Alzheimer’s and age-related neurodegenerative diseases. Alzheimers Dement. 2020, 6, e12108. [Google Scholar] [CrossRef]
- Jackson, S.E. Hsp90: Structure and function. Top. Curr. Chem. 2013, 328, 155–240. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, B.S.; Saseen, J.J.; Page, R.L., 2nd; Reed, B.N.; Sneed, K.; Kostis, J.B.; Lanfear, D.; Virani, S.; Morris, P.B. Recommendations for Management of Clinically Significant Drug-Drug Interactions With Statins and Select Agents Used in Patients With Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e468–e495. [Google Scholar] [CrossRef]
- Darwish, I.A.; Darwish, H.W.; Bakheit, A.H.; Al-Kahtani, H.M.; Alanazi, Z. Irbesartan (a comprehensive profile). Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 185–272. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, F.; Fonseca, C.; Silva, A.; Camins, A.; Teresa Cruz, M.; Ettcheto, M.; Fortuna, A. Intranasal irbesartan reverts cognitive decline and activates the PI3K/AKT pathway in an LPS-induced neuroinflammation mice model. Int. Immunopharmacol. 2024, 128, 111471. [Google Scholar] [CrossRef]
- Li, N.C.; Lee, A.; Whitmer, R.A.; Kivipelto, M.; Lawler, E.; Kazis, L.E.; Wolozin, B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis. BMJ 2010, 340, b5465. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; He, Q.; Yuan, Y.; Mu, Q. The protective effects of Irbesartan in cognitive impairment in hypertension. Aging 2024, 16, 5065–5076. [Google Scholar] [CrossRef]
- Jiang, Q.J.; Xu, G.; Mao, F.F.; Zhu, Y.F. Effects of combination of irbesartan and perindopril on calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity in rat cardiac pressure-overload hypertrophy. J. Zhejiang Univ. Sci. B 2006, 7, 228–234. [Google Scholar] [CrossRef]
- Shang, Q. Expression of Na+-K+-ATPase and calcineurin mRNA of myocardial tissue in renovascular hypertensive rats and irbesartan intervention. Int. J. Cardiol. 2011, 152, S49. [Google Scholar] [CrossRef]
- Shi, M.Q.; Su, F.F.; Xu, X.; Liu, X.T.; Wang, H.T.; Zhang, W.; Li, X.; Lian, C.; Zheng, Q.S.; Feng, Z.C. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells. Mol. Med. Rep. 2016, 13, 2597–2605. [Google Scholar] [CrossRef]
- Ono, K.; Tsuji, M. Pharmacological Potential of Cilostazol for Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 559. [Google Scholar] [CrossRef]
- Tai, S.Y.; Chen, C.H.; Chien, C.Y.; Yang, Y.H. Cilostazol as an add-on therapy for patients with Alzheimer’s disease in Taiwan: A case control study. BMC Neurol. 2017, 17, 40. [Google Scholar] [CrossRef]
- Jung, W.K.; Lee, D.Y.; Park, C.; Choi, Y.H.; Choi, I.; Park, S.G.; Seo, S.K.; Lee, S.W.; Yea, S.S.; Ahn, S.C.; et al. Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. Br. J. Pharmacol. 2010, 159, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Gokce, M.; Yuzbasioglu, M.F.; Bulbuloglu, E.; Oksuz, H.; Yormaz, S.; Altınoren, O.; Kutlucan, M.; Coskuner, I.; Silay, E.; Kale, I.T. Cilostazol and diltiazem attenuate cyclosporine-induced nephrotoxicity in rats. Transplant. Proc. 2012, 44, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Badiwala, M.; Tumiati, L.; Delgado, D.; Ross, H.; Rao, V. 489: Cilostazol as an Adjunct to Cyclosporine Prevents Neointimal Hyperplasia after Vascular Injury. J. Heart Lung Transplant. 2010, 29, S160. [Google Scholar] [CrossRef]
- Smith, C.; Koola, M.M. Evidence for Using Doxazosin in the Treatment of Posttraumatic Stress Disorder. Psychiatr. Ann. 2016, 46, 553–555. [Google Scholar] [CrossRef]
- Reid, J.L. Alpha-adrenergic receptors and blood pressure control. Am. J. Cardiol. 1986, 57, 6e–12e. [Google Scholar] [CrossRef]
- Remaley, A.T. Old drug, new tricks: The unexpected effect of doxazosin on high-density lipoprotein. Circ. Res. 2007, 101, 116–118. [Google Scholar] [CrossRef]
- Insel, P.A. Structure and function of alpha-adrenergic receptors. Am. J. Med. 1989, 87, 12s–18s. [Google Scholar] [CrossRef]
- Coelho, B.P.; Gaelzer, M.M.; Dos Santos Petry, F.; Hoppe, J.B.; Trindade, V.M.T.; Salbego, C.G.; Guma, F. Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer’s Disease. Neuroscience 2019, 404, 314–325. [Google Scholar] [CrossRef]
- Mohamed, R.; Ahmad Ahmad, E.; Amin, D.M.; Abdo, S.A.; Ibrahim, I.; Mahmoud, M.F.; Abdelaal, S. Adrenergic receptors blockade alleviates dexamethasone-induced neurotoxicity in adult male Wistar rats: Distinct effects on β-arrestin2 expression and molecular markers of neural injury. Daru 2024, 32, 97–108. [Google Scholar] [CrossRef]
- Weiss, R. Nebivolol: Novel beta-blocker with nitric oxide-induced vasodilation. Future Cardiol. 2006, 2, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ågesen, F.N.; Weeke, P.E.; Tfelt-Hansen, P.; Tfelt-Hansen, J. Pharmacokinetic variability of beta-adrenergic blocking agents used in cardiology. Pharmacol. Res. Perspect. 2019, 7, e00496. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.; Jain, S. Protective effects of nebivolol from oxidative stress to prevent hypertension-related target organ damage. J. Hum. Hypertens. 2017, 31, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Barroso, H.C.; Graton, M.E.; Potje, S.R.; Troiano, J.A.; Silva, L.X.; Nakamune, A.; Antoniali, C. Data of Nebivolol on oxidative stress parameters in hypertensive patients. Data Brief. 2022, 41, 107913. [Google Scholar] [CrossRef]
- Heeba, G.H.; El-Hanafy, A.A. Nebivolol regulates eNOS and iNOS expressions and alleviates oxidative stress in cerebral ischemia/reperfusion injury in rats. Life Sci. 2012, 90, 388–395. [Google Scholar] [CrossRef]
- Wang, J.; Wright, H.M.; Vempati, P.; Li, H.; Wangsa, J.; Dzhuan, A.; Habbu, K.; Knable, L.A.; Ho, L.; Pasinetti, G.M. Investigation of nebivolol as a novel therapeutic agent for the treatment of Alzheimer’s disease. J. Alzheimers Dis. 2013, 33, 1147–1156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller, L.I.; Lowe, A.S.; Del Rosario Hernández, T.; Gore, S.V.; Chatterjee, M.; Creton, R. Target the Heart: A New Axis of Alzheimer’s Disease Prevention. J. Dement. Alzheimer's Dis. 2025, 2, 10. https://doi.org/10.3390/jdad2020010
Heller LI, Lowe AS, Del Rosario Hernández T, Gore SV, Chatterjee M, Creton R. Target the Heart: A New Axis of Alzheimer’s Disease Prevention. Journal of Dementia and Alzheimer's Disease. 2025; 2(2):10. https://doi.org/10.3390/jdad2020010
Chicago/Turabian StyleHeller, Lawrence I., Allison S. Lowe, Thaís Del Rosario Hernández, Sayali V. Gore, Mallika Chatterjee, and Robbert Creton. 2025. "Target the Heart: A New Axis of Alzheimer’s Disease Prevention" Journal of Dementia and Alzheimer's Disease 2, no. 2: 10. https://doi.org/10.3390/jdad2020010
APA StyleHeller, L. I., Lowe, A. S., Del Rosario Hernández, T., Gore, S. V., Chatterjee, M., & Creton, R. (2025). Target the Heart: A New Axis of Alzheimer’s Disease Prevention. Journal of Dementia and Alzheimer's Disease, 2(2), 10. https://doi.org/10.3390/jdad2020010