Influence of MXene/MXene-Oxide Heterostructure Chemistry and Structure on Lithium-Ion Battery Anodes and Supercapacitor Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Ti3C2Tx MXene Synthesis
2.2. Mo2TiC2Tx MXene Synthesis
2.3. Multi-Layer Ti3C2Tx (ML-Ti3C2Tx) MXene Synthesis
2.4. V2CTx (Scrolls) MXene Synthesis
2.5. Electrode and Cell Fabrication
3. Results
3.1. Synthesis and Characterisation of MXenes
3.2. MXene Electrode Microstructure
3.3. Electrochemical Performance of MXene Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmaltz, T.; Hartmann, F.; Wicke, T.; Weymann, L.; Neef, C.; Janek, J. A Roadmap for Solid-State Batteries. Adv. Energy Mater. 2023, 13, 2301886. [Google Scholar] [CrossRef]
- Deshpande, V.; Doerrer, C.; Dyer, M.S.; El-shinawi, H.; Fleck, N.; Irvine, J.T.S.; Lee, H.J.; Li, G.; Liberti, E.; Mcclelland, I.; et al. 2020 Roadmap on Solid-State Batteries. J. Phys. Energy 2020, 2, 32008. [Google Scholar]
- Karuthedath Parameswaran, A.; Azadmanjiri, J.; Palaniyandy, N.; Pal, B.; Palaniswami, S.; Dekanovsky, L.; Wu, B.; Sofer, Z. Recent Progress of Nanotechnology in the Research Framework of All-Solid-State Batteries. Nano Energy 2023, 105, 107994. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Eslami-Farsani, R.; Castillo-Martinez, E. Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries. J. Energy Storage 2022, 47, 103572. [Google Scholar] [CrossRef]
- Xie, Y.; Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.; Nam, K.W.; Yang, X.Q.; Kolesnikov, A.I.; Kent, P.R.C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H.L.; Kent, P.R.C. Prediction and Characterization of Mxene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano 2014, 8, 9606–9615. [Google Scholar] [CrossRef]
- Sun, D.; Hu, Q.; Chen, J.; Zhang, X.; Wang, L.; Wu, Q.; Zhou, A. Structural Transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A First-Principles Investigation. ACS Appl. Mater. Interfaces 2016, 8, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Nyamdelger, S.; Ochirkhuyag, T.; Sangaa, D.; Odkhuu, D. First-Principles Prediction of a Two-Dimensional Vanadium Carbide (MXene) as the Anode for Lithium Ion Batteries. Phys. Chem. Chem. Phys. 2020, 22, 5807–5818. [Google Scholar] [CrossRef]
- Cheng, R.; Hu, T.; Zhang, H.; Wang, C.; Hu, M.; Yang, J.; Cui, C.; Guang, T.; Li, C.; Shi, C.; et al. Understanding the Lithium Storage Mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 2019, 123, 1099–1109. [Google Scholar]
- Zhang, H.; Xin, X.; Liu, H.; Huang, H.; Chen, N.; Xie, Y.; Deng, W.; Guo, C.; Yang, W. Enhancing Lithium Adsorption and Diffusion toward Extraordinary Lithium Storage Capability of Freestanding Ti3C2Tx MXene. J. Phys. Chem. C 2019, 123, 2792–2800. [Google Scholar] [CrossRef]
- Yan, B.; Lu, C.; Zhang, P.; Chen, J.; He, W.; Tian, W.; Zhang, W.; Sun, Z.M. Oxygen/Sulfur Decorated 2D MXene V2C for Promising Lithium Ion Battery Anodes. Mater. Today Commun. 2020, 22, 100713. [Google Scholar]
- Liu, F.; Zhou, J.; Wang, S.; Wang, B.; Shen, C.; Wang, L.; Hu, Q.; Huang, Q.; Zhou, A. Preparation of High-Purity V2C MXene and Electrochemical Properties as Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A709–A713. [Google Scholar]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2021, 33, 56. [Google Scholar]
- Maughan, P.A.; Bouscarrat, L.; Seymour, V.R.; Shao, S.; Haigh, S.J.; Dawson, R.; Tapia-Ruiz, N.; Bimbo, N. Pillared Mo2TiC2 MXene for High-Power and Long-Life Lithium and Sodium-Ion Batteries. Nanoscale Adv. 2021, 3, 3145–3158. [Google Scholar] [CrossRef]
- Zhang, Z.; Weng, L.; Rao, Q.; Yang, S.; Hu, J.; Cai, J.; Min, Y. Highly-Dispersed Iron Oxide Nanoparticles Anchored on Crumpled Nitrogen-Doped MXene Nanosheets as Anode for Li-Ion Batteries with Enhanced Cyclic and Rate Performance. J. Power Sources 2019, 439, 227107. [Google Scholar]
- Xia, M.; Chen, B.; Gu, F.; Zu, L.; Xu, M.; Feng, Y.; Wang, Z.; Zhang, H.; Zhang, C.; Yang, J. Ti3C2Tx MXene Nanosheets as a Robust and Conductive Tight on Si Anodes Significantly Enhance Electrochemical Lithium Storage Performance. ACS Nano 2020, 14, 5111–5120. [Google Scholar]
- Mu, G.; Mu, D.; Wu, B.; Ma, C.; Bi, J.; Zhang, L.; Yang, H.; Wu, F. Microsphere-Like SiO2/MXene Hybrid Material Enabling High Performance Anode for Lithium Ion Batteries. Small 2020, 16, 1905430. [Google Scholar]
- Li, X.; Chen, Z.; Li, A.; Yu, Y.; Chen, X.; Song, H. Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 48718–48728. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Feng, J.; Qian, Y. MXenes for Advanced Separator in Rechargeable Batteries. Mater. Today 2022, 57, 146–179. [Google Scholar] [CrossRef]
- Pan, Q.; Zheng, Y.; Kota, S.; Huang, W.; Wang, S.; Qi, H.; Kim, S.; Tu, Y.; Barsoum, M.W.; Li, C.Y. 2D MXene-Containing Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nanoscale Adv. 2019, 1, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhu, Q.; Wang, S.; Zhang, D.; Chen, H.; Du, Z.; Li, B.; Yang, S. Perpendicular MXene Arrays with Periodic Interspaces toward Dendrite-Free Lithium Metal Anodes with High-Rate Capabilities. Adv. Funct. Mater. 2020, 30, 1908075. [Google Scholar] [CrossRef]
- Wen, J.; Huang, L.; Huang, Y.; Luo, W.; Huo, H.; Wang, Z.; Zheng, X.; Wen, Z.; Huang, Y. A Lithium-MXene Composite Anode with High Specific Capacity and Low Interfacial Resistance for Solid-State Batteries. Energy Storage Mater. 2022, 45, 934–940. [Google Scholar] [CrossRef]
- Kou, W.; Zhang, Y.; Wu, W.; Guo, Z.; Hua, Q.; Wang, J.; Kou, W.; Zhang, Y.; Wu, W.; Guo, Z.; et al. Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy Environ. 2024, 9, 71–80. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Liu, Z.; Fan, L.; Li, J.; Ma, Z.; Qin, X.; Shao, G. Stable Electrochemical Li Plating/Stripping Behavior by Anchoring MXene Layers on Three-Dimensional Conductive Skeletons. ACS Appl. Mater. Interfaces 2020, 12, 37967–37976. [Google Scholar] [CrossRef]
- Chen, Q.; Wei, Y.; Zhang, X.; Yang, Z.; Wang, F.; Liu, W.; Zuo, J.; Gu, X.; Yao, Y.; Wang, X.; et al. Vertically Aligned MXene Nanosheet Arrays for High-Rate Lithium Metal Anodes. Adv. Energy Mater. 2022, 12, 2200072. [Google Scholar] [CrossRef]
- Wang, C.H.; Kurra, N.; Alhabeb, M.; Chang, J.K.; Alshareef, H.N.; Gogotsi, Y. Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries. ACS Omega 2018, 3, 12489–12494. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, P.; Ye, K.; Zhu, K.; Yan, J.; Wang, G.; Chen, G.; Cao, D. MXene-Modified Conductive Framework as a Universal Current Collector for Dendrite-Free Lithium and Zinc Metal Anode. J. Colloid Interface Sci. 2022, 625, 700–710. [Google Scholar] [CrossRef]
- Wei, C.; Tao, Y.; An, Y.; Tian, Y.; Zhang, Y.; Feng, J.; Qian, Y. Recent Advances of Emerging 2D MXene for Stable and Dendrite-Free Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004613. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, C.; Lian, R.; Yang, L.; Wang, Y.; Gao, Y.; Xiao, X.; Gogotsi, Y.; Wang, X.; Chen, G.; et al. Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti3C2Tx MXene Intermediate Layer. Adv. Funct. Mater. 2021, 31, 2010987. [Google Scholar] [CrossRef]
- Qian, X.; Fan, X.; Peng, Y.; Xue, P.; Sun, C.; Shi, X.; Lai, C.; Liang, J. Polysiloxane Cross-Linked Mechanically Stable MXene-Based Lithium Host for Ultrastable Lithium Metal Anodes with Ultrahigh Current Densities and Capacities. Adv. Funct. Mater. 2021, 31, 2008044. [Google Scholar] [CrossRef]
- Zhao, F.; Zhai, P.; Wei, Y.; Yang, Z.; Chen, Q.; Zuo, J.; Gu, X.; Gong, Y. Constructing Artificial SEI Layer on Lithiophilic MXene Surface for High-Performance Lithium Metal Anodes. Adv. Sci. 2022, 9, 2103930. [Google Scholar] [CrossRef]
- Yao, W.; He, S.; Xue, Y.; Zhang, Q.; Wang, J.; He, M.; Xu, J.; Chen, C.; Xiao, X. V2CTx MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes. ACS Sustain. Chem. Eng. 2021, 9, 9961–9969. [Google Scholar] [CrossRef]
- Han, X.; Chen, J.; Chen, M.; Zhou, W.; Zhou, X.; Wang, G.; Wong, C.P.; Liu, B.; Luo, L.; Chen, S.; et al. Induction of Planar Li Growth with Designed Interphases for Dendrite-Free Li Metal Anodes. Energy Storage Mater. 2021, 39, 250–258. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Li, B.; Gong, Y.; Yang, S. Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite-Free Metallic Lithium Anodes. Adv. Mater. 2019, 31, 1901820. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.; Du, Z.; Du, J.; Han, C.; Li, B. MXene-Ti3C2 Armored Layer for Aluminum Current Collector Enable Stable High-Voltage Lithium-Ion Battery. Adv. Mater. Interfaces 2022, 9, 2200856. [Google Scholar] [CrossRef]
- Zhou, H.; Cui, C.; Cheng, R.; Yang, J.; Wang, X. MXene Enables Stable Solid-Electrolyte Interphase for Si@MXene Composite with Enhanced Cycling Stability. ChemElectroChem 2021, 8, 3089–3094. [Google Scholar] [CrossRef]
- Tang, J.; Wu, F.; Dai, X.; Zhou, J.; Pang, H.; Duan, X.; Xiao, B.; Li, D.; Long, J. Robust MXene Adding Enables the Stable Interface of Silicon Anodes for High-Performance Li-Ion Batteries. Chem. Eng. J. 2023, 452, 139139. [Google Scholar] [CrossRef]
- Anasori, B.; Shi, C.; Moon, E.J.; Xie, Y.; Voigt, C.A.; Kent, P.R.C.; May, S.J.; Billinge, S.J.L.; Barsoum, M.W.; Gogotsi, Y. Control of Electronic Properties of 2D Carbides (MXenes) by Manipulating Their Transition Metal Layers. Nanoscale Horiz. 2016, 1, 227–234. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 11002. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Esfarjani, K.; Bogdanovski, D.; Dronskowski, R.; Yunoki, S. Insights into Exfoliation Possibility of MAX Phases to MXenes. Phys. Chem. Chem. Phys. 2018, 20, 8579. [Google Scholar] [CrossRef]
- Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Célérier, S.; Barsoum, M.W. Critical Analysis of the X-Ray Photoelectron Spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; et al. In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2008033. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.L.; Liu, R.S.; Han, C.P.; Li, Y.; Gogotsi, Y.; Wang, G. Single Platinum Atoms Immobilized on an MXene as an Efficient Catalyst for the Hydrogen Evolution Reaction. Nat. Catal. 2018, 1, 985–992. [Google Scholar] [CrossRef]
- Yang, W.; Byun, J.J.; Yang, J.; Moissinac, F.P.; Ma, Y.; Ding, H.; Sun, W.; Dryfe, R.A.W.; Barg, S. All-In-One MXene-Boron Nitride-MXene “OREO” with Vertically Aligned Channels for Flexible Structural Supercapacitor Design. ACS Appl. Energy Mater. 2021, 4, 7959–7972. [Google Scholar] [CrossRef]
- Yang, W.; Byun, J.J.; Yang, J.; Moissinac, F.P.; Peng, Y.; Tontini, G.; Dryfe, R.A.W.; Barg, S. Freeze-Assisted Tape Casting of Vertically Aligned MXene Films for High Rate Performance Supercapacitors. Energy Environ. Mater. 2020, 3, 380–388. [Google Scholar] [CrossRef]
- Pazniak, A.; Bazhin, P.; Shplis, N.; Kolesnikov, E.; Shchetinin, I.; Komissarov, A.; Polcak, J.; Stolin, A.; Kuznetsov, D. Ti3C2Tx MXene Characterization Produced from SHS-Ground Ti3AlC2. Mater. Des. 2019, 183, 108143. [Google Scholar] [CrossRef]
- Naslund, L.Å.; Persson, P.O.Å.; Rosen, J.J. X-ray Photoelectron Spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC Provides Evidence for the Electrostatic Interaction between Laminated Layers in Max-Phase Materials. Phys. Chem. C 2020, 124, 27732–27742. [Google Scholar] [CrossRef]
- Guan, Y.; Jiang, S.; Cong, Y.; Wang, J.; Dong, Z.; Zhang, Q.; Yuan, G.; Li, Y.; Li, X. A Hydrofluoric Acid-Free Synthesis of 2D Vanadium Carbide (V2C) MXene for Supercapacitor Electrodes. 2D Mater. 2020, 7, 025010. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Zhao, X.; Liu, K.; Yin, H.; Fan, L.Z. Prelithiated V2C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation. Small 2020, 16, 1906076. [Google Scholar] [CrossRef]
- Greaves, M.; Barg, S.; Bissett, M.A. MXene-Based Anodes for Metal-Ion Batteries. Batter. Supercaps 2020, 3, 214–235. [Google Scholar] [CrossRef]
- Yan, B.; Li, X.; Fu, X.; Zhang, L.; Bai, Z.; Yang, X. An Elaborate Insight of Lithiation Behavior of V2O5 Anode. Nano Energy 2020, 78, 105233. [Google Scholar] [CrossRef]
- He, G.; Li, L.; Manthiram, A.J. VO2/RGO Nanorods as a Potential Anode for Sodium- and Lithium-Ion Batteries. Mater. Chem. A Mater. 2015, 3, 14750–14758. [Google Scholar] [CrossRef]
- Yang, W.; Yang, J.; Byun, J.J.; Moissinac, F.P.; Xu, J.; Haigh, S.J.; Domingos, M.; Bissett, M.A.; Dryfe, R.A.W.; Barg, S. 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors. Adv. Mater. 2019, 31, 1902725. [Google Scholar] [CrossRef] [PubMed]
- Moissinac, P.F. The Influence of MXene Chemistry and Structure on Electrochemical Energy Storage Applications. Ph.D. Thesis, The University of Manchester, Manchester, UK, November 2023. [Google Scholar]
- Georgantas, Y. Innovative Approaches to the Synthesis and Characterisation of MXenes and Xanes. Ph.D. Thesis, The University of Manchester, Manchester, UK, June 2025. [Google Scholar]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moissinac, F.P.; Georgantas, Y.; Sha, Y.; Bissett, M.A. Influence of MXene/MXene-Oxide Heterostructure Chemistry and Structure on Lithium-Ion Battery Anodes and Supercapacitor Electrodes. Energy Storage Appl. 2025, 2, 16. https://doi.org/10.3390/esa2040016
Moissinac FP, Georgantas Y, Sha Y, Bissett MA. Influence of MXene/MXene-Oxide Heterostructure Chemistry and Structure on Lithium-Ion Battery Anodes and Supercapacitor Electrodes. Energy Storage and Applications. 2025; 2(4):16. https://doi.org/10.3390/esa2040016
Chicago/Turabian StyleMoissinac, Francis P., Yiannis Georgantas, Yang Sha, and Mark A. Bissett. 2025. "Influence of MXene/MXene-Oxide Heterostructure Chemistry and Structure on Lithium-Ion Battery Anodes and Supercapacitor Electrodes" Energy Storage and Applications 2, no. 4: 16. https://doi.org/10.3390/esa2040016
APA StyleMoissinac, F. P., Georgantas, Y., Sha, Y., & Bissett, M. A. (2025). Influence of MXene/MXene-Oxide Heterostructure Chemistry and Structure on Lithium-Ion Battery Anodes and Supercapacitor Electrodes. Energy Storage and Applications, 2(4), 16. https://doi.org/10.3390/esa2040016

