Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of the Essential Oils
2.2. Antioxidant Activity
2.3. Antimicrobial Activity
3. Experimental Section
3.1. Plant Materials
3.2. Solvent and Chemicals
3.3. Extraction of Essential Oils
3.4. Gas Chromatography (GC)
3.5. Gas Chromatography-Mass Spectrometry (GC-MS)
3.6. Identification of Constituents
3.7. Antioxidant Activity
3.7.1. β-Carotene-Linoleic acid Assay
3.7.2. DPPH Radical Scavenging Assay
3.7.3. Total Phenolic Content
3.8. Antimicrobial Activity
3.8.1. Microbial Strains
3.8.2. Disc Diffusion Assay
3.8.3. Minimum Inhibitory Concentration (MIC)
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E.; et al. Phytochemistry of the genus Piper. Phytochemistry 1997, 46, 597–673. [Google Scholar]
- Kato, M.J.; Furlan, M. Chemistry and evolution of Piperaceae. Pure Appl. Chem 2007, 79, 529–538. [Google Scholar]
- Dasgupta, N.; De, B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem 2004, 88, 219–224. [Google Scholar]
- Yamaguchi, L.; Lago, J.H.G.; Tanizaki, T.M.; Mascio, P.D.; Kato, M.J. Antioxidant activity of prenylated hydroquinone and benzoic acid derivatives from Piper crassinervium Kunth. Phytochemistry 2006, 67, 1838–1843. [Google Scholar]
- Regasini, L.O.; Cotinguiba, F.; Morandim, A.A.; Kato, M.J.; Scorzoni, L.; Mendes-Giannini, M.J.; Bolzani, V.S.; Furlan, M. Radical scavenging capacity of Piper arboretum and Piper tuberculatum (Piperaceae). Lat. Am. J. Pharm 2008, 27, 900–903. [Google Scholar]
- Masuda, T.; Inazumi, A.; Yamada, Y.; Padolina, W.G.; Kikuzaki, H.; Nakatani, N. Antimicrobial phenylpropanoids from Piper sarmentosum. Phytochemistry 1991, 30, 3227–3228. [Google Scholar]
- Costantin, M.B.; Sartorelli, P.; Limberger, R.; Henriques, A.T.; Steppe, M.; Ferreira, M.J.; Ohara, M.T.; Emerenciano, V.P.; Kato, M.J. Essential oils from Piper cernuum and Piper regnellii: Antimicrobial activities and analysis by GC/MS and 13C-NMR. Planta Med 2001, 67, 771–773. [Google Scholar]
- Silva, D.R.; Endo, E.H.; Filho, B.P.D.; Nakamura, C.V.; Svidzinski, T.I.E.; Souza, A.; Young, M.C.M.; Ueda-Nakamura, T.; Cortez, D.A.G. Chemical composition and antimicrobial properties of Piper ovatum Vahl. Molecules 2009, 14, 1171–1182. [Google Scholar]
- Choi, E.M.; Hwang, J.K. Investigations of anti-inflammatory and antinociceptive activities of Piper cubeba, Physalis angulata and Rosa hybrid. J. Ethnopharmacol 2003, 89, 171–175. [Google Scholar]
- Rajudin, E.; Ahmad, F.; Sirat, H.M.; Jamaluddin, F.; Mustapha, N.M.; Ali, R.M.; Arbain, D. Anti-inflammatory activity of Piper magnibaccum (Piperaceae). Nat. Prod. Commun 2008, 3, 1719–1721. [Google Scholar]
- Rodrigues Silva, D.; Baroni, S.; Svidzinski, A.E.; Bersani-Amado, C.A.; Cortez, D.A. Anti-inflammatory activity of the extracts, fractions and amides from the leaves of Piper ovatum Vahl. (Piperaceae). J. Ethnopharmacol 2008, 116, 569–573. [Google Scholar]
- Zakaria, Z.A.; Patahuddin, H.; Mohamad, A.S.; Israf, D.A.; Sulaiman, M.R. In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum. J. Ethnopharmacol 2010, 128, 42–48. [Google Scholar]
- Terreaux, C.; Gupta, M.P.; Hostettmann, K. Antifungal benzoic acid derivatives from Piper dilatatum. Phytochemistry 1998, 49, 461–464. [Google Scholar]
- Lago, J.H.; Ramos, C.S.; Casanova, D.C.; Morandim Ade, A.; Bergamo, D.C.; Cavalheiro, A.J.; Bolzani Vda, S.; Furlan, M.; Guimaraes, E.F.; Young, M.J.; et al. Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. J. Nat. Prod 2004, 67, 1783–1788. [Google Scholar]
- Pessini, G.L.; Filho, B.P.D.; Nakamura, C.V.; Cortez, D.A.G. Antifungal activity of the extracts and neoligans from Piper regnelli (Miq.) C.DC. var. pallescens (C. DC.) Yunck. J. Brazil Chem. Soc 2005, 16, 1130–1133. [Google Scholar]
- Burkill, H.I. A Dictionary of Economic Pproducts of the Malay Peninsula; Ministry of Agriculture and Co-operative: Kuala Lumpur, Malaysia, 1966; Volume 2, pp. 1772–1773. [Google Scholar]
- tawan, C.S.; Ipor, I.B.; Fasihuddin, B.A.; Sani, H. A brief account on the wild Piper (Piperaceae) of the crocker range, Sabah. ASEAN Rev. Biodivers. Environ. Conserv 2002, 1–11. [Google Scholar]
- Gupta, M.P.; Arias, T.D.; Williams, N.H.; Bos, R.; Tattje, D.H.E. Safrole, the main component of the essential oil from Piper auritum of Panama. J. Nat. Prod 1985, 48, 330–330. [Google Scholar]
- Maia, J.G.S.; Silva, M.H.L.; Luz, A.I.R.; Zoghbi, M.G.B.; Ramos, L.S. Especies de Piper da Amazonia ricas. Quim. Nova 1987, 10, 200–204. [Google Scholar]
- Hwang, L.S.; Wang, C.K.; Sheu, M.J.; Kao, L.S. Phenolic compounds of Piper betle flower as flavoring and neuronal activity modulating agents. ACS Symp. Ser 1992, 506, 200–213. [Google Scholar]
- Abreu, A.M.; Sevegnani, L.; Machicado, A.R.; Zimermann, D.; Rebelo, R.A. Piper mikanianum (Kunth) Steudel from Santa Catarina, Brazil—A new souce of safrole. J. Essent. Oil Res 2002, 14, 361–363. [Google Scholar]
- Ferraz, A.; Balbino, J.M.; Zini, C.A.; Ribeiro, V.L.; Bordignon, S.A.; Poser, G. Acaricidal activity and chemical composition of the essential oil from three Piper species. Parasitology Res 2010, 107, 243–248. [Google Scholar]
- Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. Quim. Nova 2009, 32, 595–622. [Google Scholar]
- Sivasothy, Y.; Chong, W.K.; Hamid, A.; Eldeen, I.M.; Sulaiman, S.F.; Awang, K. Essential oils of Zingiber officinale var. rubrum Theilade and their antibacterial activities. Food Chem 2011, 124, 514–517. [Google Scholar]
- Ebrahimabadi, A.H.; Ebrahimabadi, E.H.; Djafari-Bidgoli, Z.; Kashi, F.J.; Mazoochi, A.; Batooli, H. Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stchys inflata Benth from Iran. Food Chem 2010, 119, 452–458. [Google Scholar]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 2003, 81, 249–255. [Google Scholar]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 2009, 69, 167–174. [Google Scholar]
- Khayyat, S.A.; Al-Zahrani, S.H. Thermal, photosynthesis and antibacterial studies of bioactive safrole derivative as precursor for natural flavor and fragrance. Arab. J. Chem 2011. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Friedl, S.M.; Jirovetz, L.; Buchbauer, G.; Wanner, J.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Geissler, M. Antimicrobial activities of single aroma compounds. Nat. Prod. Commun 2010, 5, 1365–1368. [Google Scholar]
- Hanamanthagouda, M.S.; Kakkalameli, S.B.; Naik, P.M.; Nagella, P.; Seetharamareddy, H.R.; Murthy, H.N. Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chem 2010, 118, 836–839. [Google Scholar]
- Randrianarivelo, R.; Sarter, S.; Odoux, E.; Brat, P.; Lebrun, M.; Romestand, B.; Menut, C.; Andrianoelisoa, H.S.; Raherimandimby, M.; Danthu, P. Composition and antimicrobial activity of essential oils of Cinnamosma fragrans. Food Chem 2009, 114, 680–684. [Google Scholar]
- Adams, R.P. Identification of Essential Oil by Gas Chromatography/quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- Miraliakbari, H.; Shahidi, F. Antioxidant activity of minor components of tree nut oils. Food Chem 2008, 111, 421–427. [Google Scholar]
- Loo, A.Y.; Jain, K.; Darah, I. Antioxidant activity of compounds isolated from the pyroligneus acid Rhizopora apiculata. Food Chem 2008, 107, 1151–1160. [Google Scholar]
- Murray, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, R.H. Manual of Clinical Microbiology, 7th ed.; ASM: Washington, DC, USA, 1999. [Google Scholar]
- Gulluce, M.; Ozer, H.; Baris, O.; Daferera, D.; Sahin, F.; Polissiou, M. Chemical composition of the essential oils of Salvia aethiopis L. Turk. J. Biol. 2004, 30, 231–233. [Google Scholar]
Components | KI b | Percentage a | |
---|---|---|---|
Leaves | Stems | ||
α-Pinene | 932 | 4.0 ± 0.15 | 1.6 ± 0.08 |
Camphene | 946 | 0.2 ± 0.14 | 0.6 ± 0.12 |
β-Pinene | 974 | 8.9 ± 0.09 | 4.9 ± 0.11 |
Myrcene | 988 | 0.9 ± 0.10 | − |
Limonene | 1024 | 3.9 ± 0.18 | 2.7 ± 0.08 |
(Z)-β-Ocimene | 1032 | 3.4 ± 0.06 | 0.2 ± 0.12 |
γ-Terpinene | 1054 | 0.1 ± 0.09 | − |
α-Terpinolene | 1086 | 0.4 ± 0.17 | − |
2-Nonanone | 1087 | 1.2 ± 0.05 | − |
Linalool | 1095 | 7.0 ± 0.07 | 2.9 ± 0.15 |
Camphor | 1141 | − | 0.3 ± 0.08 |
Pinocarvone | 1160 | 0.1 ± 0.15 | − |
Terpinen-4-ol | 1174 | 0.2 ± 0.12 | 0.5 ± 0.05 |
α-Terpineol | 1186 | 0.3 ± 0.10 | 1.0 ± 0.14 |
n-Decanal | 1201 | 0.2 ± 0.15 | 0.8 ± 0.12 |
Safrole | 1285 | 17.1 ± 0.07 | 25.5 ± 0.07 |
2-Undecanone | 1293 | 2.0 ± 0.14 | 1.1 ± 0.12 |
δ-Elemene | 1335 | 1.8 ± 0.11 | 4.1 ± 0.16 |
α-Cubebene | 1345 | − | 0.5 ± 0.15 |
Eugenol | 1356 | − | 2.4 ± 0.08 |
Cyclosativene | 1369 | 0.2 ± 0.14 | − |
α-Ylangene | 1373 | 0.2 ± 0.04 | − |
α-Copaene | 1374 | 0.5 ± 0.06 | 0.9 ± 0.06 |
β-Cubebene | 1387 | − | 0.3 ± 0.12 |
β-Bourbonene | 1387 | 1.1 ± 0.08 | |
β-Elemene | 1389 | 2.1 ± 0.14 | 2.4 ± 0.14 |
α-Gurjunene | 1409 | 0.3 ± 0.08 | 0.9 ± 0.08 |
β-Caryophyllene | 1417 | 6.7 ± 0.12 | 9.8 ± 0.09 |
β-Gurjunene | 1431 | 0.2 ± 0.04 | − |
Aromadendrene | 1439 | − | 0.8 ± 0.15 |
α-Humulene | 1452 | 1.0 ± 0.13 | 1.6 ± 0.12 |
allo-Aromadendrene | 1458 | − | 0.3 ± 0.07 |
Germacrene D | 1484 | 4.9 ± 0.12 | 7.8 ± 0.14 |
Zingiberene | 1493 | 0.4 ± 0.07 | 0.6 ± 0.21 |
Bicyclogermacrene | 1502 | 1.1 ± 0.04 | 2.3 ± 0.14 |
(E,E)-α-Farnesene | 1505 | 0.9 ± 0.08 | − |
α-Bisabolene | 1506 | − | 0.4 ± 0.08 |
δ-Cadinene | 1522 | 0.4 ± 0.04 | 1.0 ± 0.05 |
Chavibetol | 1524 | 0.9 ± 0.11 | − |
Elemol | 1548 | 0.2 ± 0.14 | − |
Germacrene B | 1559 | − | 1.1 ± 0.11 |
(E)-Nerolidol | 1561 | 3.9 ± 0.09 | 1.6 ± 0.17 |
Caryophyllene oxide | 1582 | 0.2 ± 0.12 | 0.4 ± 0.07 |
Globulol | 1590 | − | 0.3 ± 0.12 |
t-Muurolol | 1644 | − | 2.4 ± 0.09 |
β-Eudesmol | 1649 | 0.9 ± 0.06 | − |
α-Cadinol | 1652 | − | 1.0 ± 0.06 |
Farnesyl acetate | 1845 | − | 1.2 ± 0.15 |
Group components | |||
Phenylpropanoids | 18.0 ± 0.21 | 27.9 ± 0.22 | |
Monoterpene Hydrocarbons | 21.8 ± 0.19 | 10.0 ± 0.18 | |
Oxygenated Monoterpenes | 7.5 ± 0.24 | 4.7 ± 0.16 | |
Sesquiterpene Hydrocarbons | 21.9 ± 0.18 | 35.2 ± 0.29 | |
Oxygenated Sesquiterpenes | 5.2 ± 0.21 | 6.9 ± 0.18 | |
Others | 3.5 ± 0.24 | 2.3 ± 0.12 | |
Identified Components (%) | 77.9 ± 0.24 | 87.0 ± 0.26 |
Samples | β-carotene/linoleic acid (%) | DPPH IC50 (mg/mL) | Total phenolic content Gallic acid equivalent (mg GA/g) |
---|---|---|---|
Leaves oil | 103.5 ± 0.35 | 187.6 ± 0.45 | 27.4 ± 0.54 |
Stems oil | 114.9 ± 0.42 | 452.4 ± 0.55 | 19.8 ± 0.42 |
BHT | 95.5 ± 0.30 | 43.5 ± 0.25 | ND |
Leaves oil | Stems oil | Antibiotics SS | Nystatin | |||||
---|---|---|---|---|---|---|---|---|
Test microorganisms | DD b | MIC c | DD | MIC | DD | MIC | DD | MIC |
Bacillus subtilis | 12.2 ± 0.4 | 250 | 10.4 ± 0.5 | 250 | 17.6 ± 0.2 | 7.81 | ND | ND |
Staphylococcus aureus | 7.2 ± 0.4 | 250 | 7.0 ± 0.5 | 125 | 17.8 ± 0.2 | 7.81 | ND | ND |
Pseudomonas aeruginosa | 8.2 ± 0.4 | 250 | 8.8 ± 0.4 | 250 | 17.2 ± 0.2 | 7.81 | ND | ND |
Pseudomonas putida | 7.8 ± 0.5 | 125 | 7.5 ± 0.4 | 250 | 17.3 ± 0.2 | 7.81 | ND | ND |
Escherichia coli | 7.2 ± 0.4 | 62.5 | 7.8 ± 0.5 | 125 | 17.5 ± 0.2 | 7.81 | ND | ND |
Candida albicans | 7.0 ± 0.3 | >1000 | 7.8 ± 0.3 | 500 | ND | ND | 15.2 ± 0.2 | 7.81 |
Aspergillus niger | 7.5 ± 0.3 | >1000 | 8.0 ± 0.3 | 500 | ND | ND | 15.3 ± 0.2 | 7.81 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Salleh, W.M.N.H.W.; Ahmad, F.; Yen, K.H.; Sirat, H.M. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume. Int. J. Mol. Sci. 2011, 12, 7720-7731. https://doi.org/10.3390/ijms12117720
Salleh WMNHW, Ahmad F, Yen KH, Sirat HM. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume. International Journal of Molecular Sciences. 2011; 12(11):7720-7731. https://doi.org/10.3390/ijms12117720
Chicago/Turabian StyleSalleh, Wan Mohd Nuzul Hakimi Wan, Farediah Ahmad, Khong Heng Yen, and Hasnah Mohd Sirat. 2011. "Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume" International Journal of Molecular Sciences 12, no. 11: 7720-7731. https://doi.org/10.3390/ijms12117720
APA StyleSalleh, W. M. N. H. W., Ahmad, F., Yen, K. H., & Sirat, H. M. (2011). Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume. International Journal of Molecular Sciences, 12(11), 7720-7731. https://doi.org/10.3390/ijms12117720