Molecular Detection of SARS-CoV-2 Viral Particles in Exhaled Breath Condensate via Engineered Face Masks
Abstract
:1. Introduction
2. Materials and Methods
2.1. EBC Collection Device
2.2. Study Design and Ethical Considerations
2.3. Sample Collection and Quantification of SARS-CoV-2 RNA
2.4. Biological Experiments
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meo, S.A.; Meo, A.S.; Klonoff, D.C. Omicron new variant BA.2.86 (Pirola): Epidemiological, biological, and clinical characteristics—A global data-based analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9470–9476. [Google Scholar] [CrossRef] [PubMed]
- Duval, D.; Palmer, J.C.; Tudge, I.; Pearce-Smith, N.; O’Connell, E.; Bennett, A.; Clark, R. Long distance airborne transmission of SARS-CoV-2: Rapid systematic review. BMJ 2022, 377, e068743. [Google Scholar] [CrossRef] [PubMed]
- Prather, K.A.; Marr, L.C.; Schooley, R.T.; McDiarmid, M.A.; Wilson, M.E.; Milton, D.K. Airborne transmission of SARS-CoV-2. Science 2020, 370, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Almstrand, A.C.; Ljungström, E.; Lausmaa, J.; Bake, B.; Sjövall, P.; Olin, A.-C. Airway monitoring by collection and mass spectrometric analysis of exhaled particles. Anal. Chem. 2009, 81, 662–668. [Google Scholar] [CrossRef]
- Dbouk, T.; Drikakis, D. On respiratory droplets and face masks. Phys. Fluid. 2020, 32, 063303. [Google Scholar] [CrossRef]
- Dhang, R.; Li, J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 651–659. [Google Scholar]
- Soto, F.; Ozen, M.O.; Guimaraes, C.F.; Wang, J.; Hokanson, K.; Ahmed, R.; Reis, R.L.; Paulmurugan, R.; Demirci, U. Wearable Collector for Noninvasive Sampling of SARS-CoV-2 from Exhaled Breath for Rapid Detection. ACS Appl. Mater. Interfaces 2021, 13, 41445–41453. [Google Scholar] [CrossRef]
- Nwanochie, E.; Linnes, J.C. Review of non-invasive detection of SARS-CoV-2 and other respiratory pathogens in exhaled breath condensate. J. Breath Res. 2022, 16, 024002. [Google Scholar] [CrossRef]
- Daniels, J.; Wadekar, S.; DeCubellis, K.; Jackson, G.W.; Chiu, A.S.; Pagneux, P.; Saada, H.; Engelmann, I.; Ogiez, J.; Loze-Warot, D.; et al. A mask-based diagnostic platform for point-of-care screening of COVID-19. Biosens. Bioelectron. 2021, 192, 113486. [Google Scholar] [CrossRef]
- Cavaleiro Rufo, J.; Paciencia, I.; Mendes, F.C.; Farraia, M.; Rodolfo, A.; Silva, D.; de Oliveira Fernandes, E.; Delgado, L.; Moreira, A. Exhaled breath condensate volatilome allows sensitive diagnosis of persistent asthma. Allergy 2019, 74, 527–534. [Google Scholar] [CrossRef]
- Cruickshank-Quinn, C.; Armstrong, M.; Powell, R.; Gomez, J.; Elie, M.; Reisdorph, N. Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir. Res. 2017, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Kazeminasab, S.; Ghanbari, R.; Emamalizadeh, B.; Jouyban-Gharamaleki, V.; Taghizadieh, A.; Jouyban, A.; Khoubnasabjafari, M. Exhaled breath condensate efficacy to identify mutations in patients with lung cancer: A pilot study. Nucleosides Nucleotides Nucleic Acids 2022, 41, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Beltran, S.; Carreto-Binaghi, L.E.; Carranza, C.; Torres, M.; Gonzalez, Y.; Munoz-Torrico, M.; Juarez, E. Oxidative Stress and Inflammatory Mediators in Exhaled Breath Condensate of Patients with Pulmonary Tuberculosis. A Pilot Study with a Biomarker Perspective. Antioxidants 2021, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Patsiris, S.; Papanikolaou, I.; Stelios, G.; Exarchos, T.P.; Vlamos, P. Exhaled Breath Condensate and Dyspnea in COPD. Adv. Exp. Med. Biol. 2021, 1337, 339–344. [Google Scholar] [CrossRef]
- Ryan, D.J.; Toomey, S.; Madden, S.F.; Casey, M.; Breathnach, O.S.; Morris, P.G.; Grogan, L.; Branagan, P.; Costello, R.W.; De Barra, E. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-CoV-2 (COVID-19). Thorax 2021, 76, 86–88. [Google Scholar] [CrossRef]
- Ilhamsyah, R.; Dimandja, J.-M.D.; Hesketh, P.J. Design and Analysis of Exhaled Breath Condenser System for Rapid Collection of Breath Condensate. J. Electrochem. Soc. 2021, 168, 107503. [Google Scholar] [CrossRef]
- Sol, J.A.; Quindry, J.C. Application of a Novel Collection of Exhaled Breath Condensate to Exercise Settings. Int. J. Environ. Res. Public Health 2022, 19, 3948. [Google Scholar] [CrossRef]
- Szunerits, S.; Dӧrfler, H.; Pagneux, Q.; Daniel, J.; Wadekar, S.; Woitrain, E.; Ladage, D.; Montaigne, D.; Boukherroub, R. Exhaled breath condensate as bioanalyte: From collection considerations to biomarker sensing. Anal. Bioanal. Chem. 2023, 415, 27–34. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, H.; Park, J.; Abbas, N.; Kang, S.; Hyun, H.; Seong, H.; Yoon, J.G.; Noh, J.Y.; Kim, W.J.; et al. Collection and detection of SARS-CoV-2 in exhaled breath using face mask. PLoS ONE 2022, 17, e0270765. [Google Scholar] [CrossRef]
- Xue, Q.; Kan, X.; Pan, Z.; Li, Z.; Pan, W.; Zhou, F.; Duan, X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 2021, 186, 113286. [Google Scholar] [CrossRef]
- Khorshid, M.; Bakhshi Sichani, S.; Barbosa Estrada, D.L.; Neefs, W.; Clement, A.; Pohlmann, G.; Epaud, R.; Lanone, S.; Wagner, P. An Efficient Low-Cost Device for Sampling Exhaled Breath Condensate EBC. Adv. Sens. Res. 2024, 3, 2400020. [Google Scholar] [CrossRef]
- Williams, C.M.; Cheah, E.S.; Malkin, J.; Patel, H.; Otu, J.; Mlaga, K.; Sutherland, J.S.; Antonio, M.; Perera, N.; Woltmann, G.; et al. Face mask sampling for the detection of Mycobacterium tuberculosis in expelled aerosols. PLoS ONE 2014, 9, e104921. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef]
- Duan, C.; Buerer, L.; Wang, J.; Kaplan, S.; Sabalewski, G.; Jay, G.D.; Monaghan, S.F.; Arena, A.E.; Fairbrother, W.G. Efficient Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Exhaled Breath. J. Mol. Diagn. 2021, 23, 1661–1670. [Google Scholar] [CrossRef]
- Tanno, L.K.; Casale, T.; Demoly, P. Coronavirus Disease (COVID)-19: World Health Organization Definitions and Coding to Support the Allergy Community and Health Professionals. J. Allergy Clin. Immunol. Pract. 2020, 8, 2144–2148. [Google Scholar] [CrossRef]
- Hayes, S.A.; Haefliger, S.; Harris, B.; Pavlakis, N.; Clarke, S.J.; Molloy, M.P.; Howell, V.M. Exhaled breath condensate for lung cancer protein analysis: A review of methods and biomarkers. J. Breath Res. 2016, 10, 034001. [Google Scholar] [CrossRef]
- Lin, X.F.; Zhang, L.; Shi, S.Y.; Fan, Y.C.; Wu, Z.L.; Zhang, X.; Sun, D.Q. Expression of surfactant protein-A in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Mol. Med. Rep. 2016, 13, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Muccilli, V.; Saletti, R.; Cunsolo, V.; Ho, J.; Gili, E.; Conte, E.; Sichili, S.; Vancheri, C.; Foti, S. Protein profile of exhaled breath condensate determined by high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2015, 105, 134–149. [Google Scholar] [CrossRef]
- Beccaria, M.; Mellors, T.R.; Petion, J.S.; Rees, C.A.; Nasir, M.; Systrom, H.K.; Sairistil, J.W.; Jean-Juste, M.-A.; Rivera, V.; Lavoile, K.; et al. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography—Time of flight mass spectrometry and machine learning. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1074–1075, 46–50. [Google Scholar] [CrossRef]
- Yuan, Z.-C.; Li, W.; Wu, L.; Huang, D.; Wu, M.; Hu, B. Solid-Phase Microextraction Fiber in Face Mask for In Vivo Sampling and Direct Mass Spectrometry Analysis of Exhaled Breath Aerosol. Anal. Chem. 2020, 92, 11543–11547. [Google Scholar] [CrossRef]
- Canas, L.S.; Sudre, C.H.; Capdevila Pujol, J.; Polidori, L.; Murray, B.; Molteni, E.; Graham, M.S.; Klaser, K.; Antonelli, M.; Berry, S.; et al. Early detection of COVID-19 in the UK using self-reported symptoms: A large-scale, prospective, epidemiological surveillance study. Lancet Digit. Health 2021, 3, e587–e598. [Google Scholar] [CrossRef] [PubMed]
- Rea, I.M.; Alexander, H.D. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res. Rev. 2022, 73, 101494. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Total Cohort (n = 60) | Presence of Viral RNA in Nasopharyngeal Samples | Presence of Viral RNA in EBC | ||
---|---|---|---|---|---|
Sex | 32 females, 28 males | 30/30 (16 females, 14 males) | 25 */30 (16 females, 14 males) | ||
Age (years) | |||||
Median | 27 | 71 | 65 | ||
Mean | 45.7 | 66.2 | 63.4 | ||
Average time from COVID-19 symptoms onset to test (days) | 6.7 | 6.7 | 4.7 | ||
Nasopharyngeal sampling | EBC/mask sampling | ||||
ORF1a/b | E-gene | ORF1a/b | E-gene | ||
Sensitivity | 1 | 1 | 0.9 | 0.8 | |
Specifity | 1 | 1 | 1 | 1 | |
Positive predictive value | 1 | 1 | 1 | 1 | |
Negative predictive value | 1 | 1 | 0.91 | 0.83 | |
Negative likelihood ratio | 0 | 0 | 0.1 | 0.2 | |
Accuracy | 1 | 1 | 0.95 | 0.9 |
Hospitalized Patient No. | Age (Years) | Ct ORF1a/b Nasopharyngeal | Ct E-Gene Nasopharyngeal | Ct ORF1a/b EBC (Mask) | Ct E-Gene EBC (Mask) |
---|---|---|---|---|---|
1 | 21 | 30.4 | 30.5 | 36.3 | 38.8 |
2 | 83 | 16.2 | 16.8 | 30.7 | 31.8 |
3 | 36 | 25.0 | 26.0 | 28.7 | 29.4 |
4 | 83 | 22.0 | 22.6 | - | - |
5 | 58 | 19.1 | 19.6 | 32.4 | 34.0 |
6 | 77 | 24.6 | 25.4 | 27.6 | 28.5 |
7 | 75 | 19.6 | 20.7 | 34.7 | 37.0 |
8 | 83 | 22.8 | 23.4 | - | 37.5 |
9 | 89 | 19.5 | 20.3 | - | - |
10 | 71 | 36.1 | 37.9 | - | - |
11 | 62 | 22.2 | 23.1 | 28.1 | 29.0 |
12 | 71 | 29.8 | 32.0 | 34.0 | 35.5 |
13 | 88 | 29.2 | 30.9 | 36.6 | - |
14 | 42 | 16.4 | 17.1 | 29.1 | 29.2 |
15 | 80 | 30.5 | 31.9 | - | - |
16 | 57 | 21.1 | 22.2 | 27.3 | 28.1 |
17 | 74 | 22.2 | 22.7 | 34.3 | 35.6 |
18 | 66 | 21.7 | 22.4 | 33.1 | 35.8 |
19 | 38 | 21.1 | 21.2 | 31.0 | 32.2 |
20 | 92 | 19.1 | 19.2 | 35.8 | 38.4 |
21 | 64 | 26.6 | 27.4 | 34.2 | 35.8 |
22 | 61 | 21.8 | 21.8 | 27.4 | 27.9 |
23 | 24 | 19.9 | 20.3 | 32.4 | 33.5 |
24 | 53 | 20.1 | 20.4 | 30.3 | 30.4 |
25 | 63 | 23.8 | 24.2 | 34.0 | 34.9 |
26 | 82 | 29.6 | 30.5 | 36.0 | 36.7 |
27 | 75 | 24.9 | 25.4 | 34.9 | 37.2 |
28 | 51 | 39.9 | 34.7 | 34.7 | 36.9 |
29 | 77 | 32.7 | 34.5 | - | - |
30 | 90 | 27.4 | 28.3 | - | 37.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dörfler, H.; Daniels, J.; Wadekar, S.; Pagneux, Q.; Ladage, D.; Greiner, G.; Assadian, O.; Boukherroub, R.; Szunerits, S. Molecular Detection of SARS-CoV-2 Viral Particles in Exhaled Breath Condensate via Engineered Face Masks. LabMed 2024, 1, 22-32. https://doi.org/10.3390/labmed1010005
Dörfler H, Daniels J, Wadekar S, Pagneux Q, Ladage D, Greiner G, Assadian O, Boukherroub R, Szunerits S. Molecular Detection of SARS-CoV-2 Viral Particles in Exhaled Breath Condensate via Engineered Face Masks. LabMed. 2024; 1(1):22-32. https://doi.org/10.3390/labmed1010005
Chicago/Turabian StyleDörfler, Hannes, John Daniels, Shekhar Wadekar, Quentin Pagneux, Dennis Ladage, Georg Greiner, Ojan Assadian, Rabah Boukherroub, and Sabine Szunerits. 2024. "Molecular Detection of SARS-CoV-2 Viral Particles in Exhaled Breath Condensate via Engineered Face Masks" LabMed 1, no. 1: 22-32. https://doi.org/10.3390/labmed1010005
APA StyleDörfler, H., Daniels, J., Wadekar, S., Pagneux, Q., Ladage, D., Greiner, G., Assadian, O., Boukherroub, R., & Szunerits, S. (2024). Molecular Detection of SARS-CoV-2 Viral Particles in Exhaled Breath Condensate via Engineered Face Masks. LabMed, 1(1), 22-32. https://doi.org/10.3390/labmed1010005