Temporal Relationships Between Occupational Exposure to High Molecular Weight Allergens and Associated Short Latency Respiratory Health Outcomes: Laboratory Animal Allergens
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of Health Outcomes
3.2. Regression Analyses
3.2.1. Mus m 1 Exposure Data
3.2.2. Rat n 1 Exposure Data
3.2.3. Health Outcomes
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SWORD | Surveillance of Work-related and Occupational Respiratory Disease |
THOR | The Health and Occupation Research Network |
EMDB | Environmental Monitoring Database |
HSE | Health and Safety Executive |
LAA | Laboratory animal allergens |
RPE | Respiratory protective equipment |
References
- Newman Taylor, A.; Gordon, S. Laboratory Animal and Insect Allergy. In Asthma in the Workplace; Bernstein, I., Chan-Yeung, M., Malo, J.-L., Bernstein, D., Eds.; Marcel Dekker: New York, NY, USA, 1993; pp. 399–414. [Google Scholar]
- Wood, R. Laboratory animal allergens. ILAR J. 2001, 42, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Jeal, H.; Jones, M. Allergy to rodents: An update. Clin. Exp. Allergy 2010, 40, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Schofield, S.; Jeal, H.; Cullinan, P. Respiratory protective equipment reduces occurrence of sensitization to laboratory animals. Occup. Med. 2014, 642, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.; Jones, K. Airborne exposure to laboratory animal allergens: 2005–2022. AIMS Allergy Immunol. 2024, 8, 18–33. [Google Scholar] [CrossRef]
- Filon, F.; Drusian, A.; Mauro, M.; Negro, C. Laboratory animal allergy reduction from 2001 to 2016: An intervention study. Respir. Med. 2018, 136, 71–76. [Google Scholar] [CrossRef]
- Renström, A.; Karlsson, A.; Malmberg, P.; Larsson, P.; van Hage-Hamsten, M. Working with male rodents may increase risk of allergy to laboratory animals. Allergy 2001, 56, 964–970. [Google Scholar] [CrossRef]
- Schweitzer, I.; Smith, E.; Harrison, D.; Myers, D.; Eggleston, P.; Stockwell, J.; Paigen, B.; Smith, A. Reducing Exposure to Laboratory Animal Allergens. Comp. Med. 2003, 53, 487492. [Google Scholar] [CrossRef]
- Zahradnik, E.; Raulf, M. Allergens in laboratory animal facilities. Allergologie 2016, 39, 86–95. [Google Scholar] [CrossRef]
- Feary, J.; Schofield, S.; Canizales, J.; Fitzgerald, B.; Potts, J.; Jones, M.; Cullinan, P. Laboratory animal allergy is preventable in modern research facilities. Eur. Respir. J. 2019, 53, 1900171. [Google Scholar] [CrossRef]
- Home Office. Annual Statistics of Scientific Procedures on Living Animals, Great Britain, 2018; Home Office: London, UK, 2018; pp. 1–32.
- Mason, H.; Willerton, L. Airborne exposure to laboratory animal allergens. AIMS Allergy Immunol. 2017, 1, 78–88. [Google Scholar] [CrossRef]
- Iskandar, I.; Carder, M.; Barradas, A.; Byrne, L.; Gittins, M.; Seed, M.; van Tongeren, M. Time Trends in the Incidence of Work-Related Ill-Health in the UK, 1996–2019: Estimation from THOR Surveillance Data; The University of Manchester: Manchester, UK, 2020. [Google Scholar]
- Home Office. Annual Statistics of Scientific Procedures on Living Animals Great Britain 2020; Home Office: London, UK, 2020; pp. 1–30. Available online: https://www.gov.uk/government/statistics/statistics-of-scientific-procedures-on-living-animals-great-britain-2020 (accessed on 3 March 2025).
- Home Office. Annual Statistics of Scientific Procedures on Living Animals Great Britain 2014; Home Office: London, UK, 2015; pp. 1–62.
- Cocker, J.; Jones, K. Biological Monitoring Without Limits. Ann. Work Expo. Health 2017, 61, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Cocker, J.; Cain, J.; Baldwin, P.; McNally, K.; Jones, K. A Survey of Occupational Exposure to 4,4methylene-bis (2-chloroaniline) (MbOCA) in the UK. Ann. Occup. Hyg. 2009, 53, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Jeal, H.; Harris, J.; Draper, A.; Newman Taylor, A.; Cullinan, P.; Jones, M. Dual sensitization to rat and mouse urinary allergens reflects cross-reactive molecules rather than atopy. Allergy 2009, 64, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Health and Safety Executive. Work-Related Asthma Statistics, 2024; HSE: Bootle, UK, 2024. Available online: https://www.hse.gov.uk/statistics/assets/docs/asthma.pdf (accessed on 26 September 2025).
- Kruize, H.; Post, W.; Heederik, D.; Martens, B.; Hollander, A.; van der Beek, E. Respiratory allergy in laboratory animal workers: A retrospective cohort study using pre-employment screening data. Occup. Environ. Med. 1997, 54, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Feary, J.; Fitzgerald, B.; Banya, W.; Jones, M.; Cullinan, P.; Schofield, S. Cross-sectional survey of sensitisation to mouse allergens in contemporary laboratory animal workers: The SPIRAL study. Allergy 2016, 71, 15. [Google Scholar]
- Muzembo, B.; Eitoku, M.; Inaoka, Y.; Oogiku, M.; Kawakubo, M.; Tai, R.; Takechi, M.; Hirabayashi, K.; Yoshida, N.; Ngatu, N.; et al. Prevalence of Occupational Allergy in Medical Researchers Exposed to Laboratory Animals. Ind. Health 2014, 52, 256–261. [Google Scholar] [CrossRef]
- Feary, J.; Fitzgerald, B.; Schofield, S.; Jones, M.; Cullinan, P. Sensitisation to mouse allergens in contemporary laboratory animal workers: The Spiral study. Eur. Respir. J. 2016, 48, PA392. [Google Scholar] [CrossRef]
- Canizales, J.; Jones, M.; Semple, S.; Feary, J.; Cullinan, P. To determine mus m 1 personal exposure in laboratory animal workers where mice are housed in open cages and individually ventilated cages. Thorax 2015, 70 (Suppl. 3), A106. [Google Scholar] [CrossRef]
- Renstrom, A.; Bjoring, G.; Hoglund, A. Evaluation of individually ventilated cage systems for laboratory rodents: Occupational health aspects. Lab. Anim. 2001, 35, 42–50. [Google Scholar] [CrossRef]
- Mason, H.; Carder, M.; Money, A.-M.; Evans, G.; Seed, M.; Agius, R.; van Tongeren, M. Occupational Asthma and Its Causation in the UK Seafood Processing Industry. Ann. Work Expo. Health 2020, 64, 817–825. [Google Scholar] [CrossRef]
- Jeebhay, M.; Robins, T.; Miller, M.; Bateman, E.; Smuts, M.; Baatjies, R.; Lopata, A. Occupational Allergy and Asthma among Salt Water Fish Processing Workers. Am. J. Ind. Med. 2008, 51, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Rother, D.; Schlüter, U. Occupational Exposure to Diisocyanates in the European Union. Ann. Work Expo. Health 2021, 65, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, D.; Pechter, E.; Fitzsimmons, K.; Lumia, M.; Stephens, A.; Davis, L.; Flattery, J.; Weinberg, J.; Harrison, R.; Reilly, M.; et al. Isocyanates and Work-Related Asthma: Findings from California, Massachusetts, Michigan, and New Jersey, 1993–2008. Am. J. Ind. Med. 2015, 58, 1138–1149. [Google Scholar] [CrossRef]
- Patouchas, D.; Sampsonas, F.; Papantrinopoulou, D.; Tsoukalas, P.; Karkoulias, K.; Spiropoulos, K. Determinants of specific sensitization in flour allergens in workers in bakeries with use of skin prick tests. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 407–411. [Google Scholar]
- Baur, X.; Posch, A. Characterized allergens causing bakers’ asthma. Allergy 1998, 53, 562–566. [Google Scholar] [CrossRef]
- Wisnewski, A.; Jones, M. Pro/Con Debate: Is Occupational Asthma Induced by Isocyanates an IgE-Mediated Disease? Clin. Exp. Allergy 2010, 40, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
Mus m 1 | Rat n1 | Health Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Period | Year | N | Medn | P75 | P90 | N | Medn | P75 | P90 | OA | Rhinitis |
2006–2008 | 1 | 124 | 6.34 | 34.0 | 128.3 | 109 | 0.70 | 2.15 | 12.94 | 6.66 | 7.77 |
2007–2009 | 2 | 162 | 5.71 | 21.7 | 92.1 | 111 | 0.423 | 3.21 | 17.06 | 6.0 | 8.33 |
2008–2010 | 3 | 190 | 4.26 | 12.9 | 48.8 | 129 | 0.20 | 2.41 | 9.96 | 5.33 | 10.0 |
2009–2011 | 4 | 203 | 3.47 | 12.2 | 41.9 | 149 | 0.46 | 2.20 | 15.0 | 4.33 | 10.67 |
2010–2012 | 5 | 279 | 3.81 | 17.5 | 81.1 | 159 | 0.91 | 2.98 | 10.9 | 4.0 | 11.0 |
2011–2013 | 6 | 329 | 4.90 | 25.8 | 93.2 | 187 | 0.95 | 4.12 | 12.05 | 4.0 | 10.33 |
2012–2014 | 7 | 375 | 2.54 | 18.8 | 80.4 | 198 | 1.08 | 3.51 | 14.26 | 3.66 | 8.66 |
2013–2015 | 8 | 298 | 2.12 | 15.4 | 53.1 | 154 | 0.74 | 2.78 | 16.65 | 3.66 | 9.0 |
2014–2016 | 9 | 318 | 1.29 | 6.49 | 28.1 | 100 | 0.67 | 2.64 | 15.77 | 4.0 | 11.66 |
2015–2017 | 10 | 323 | 2.02 | 14.8 | 75.5 | 78 | 1.29 | 6.63 | 17.77 | 3.33 | 10.66 |
2016–2018 | 11 | 366 | 1.97 | 11.1 | 49.2 | 108 | 0.73 | 2.74 | 7.80 | 3.0 | 9.0 |
2017–2019 | 12 | 326 | 1.98 | 11.0 | 41.3 | 111 | 1.77 | 4.80 | 27.0 | 5.33 | 9.33 |
2018–2020 | 13 | 267 | 1.08 | 4.1 | 17.4 | 80 | 0.63 | 1.92 | 12.3 | 5.33 | 11.0 |
2019–2021 | 14 | 250 | 0.83 | 3.3 | 17.1 | 60 | 0.50 | 2.87 | 9.85 | 5.333 | 10.33 |
2020–2022 | 15 | 235 | 1.04 | 5.4 | 31.9 | 79 | 1.45 | 5.80 | 23.73 | 2.0 | 6.0 |
2021–2023 | 16 | 230 | 1.11 | 5.9 | 23.8 | 74 | 0.79 | 4.09 | 12.31 | 2.0 | 3.33 |
Asthma | Rhinitis | Asthma & Rhinitis | |
---|---|---|---|
Mice | 29 | 39 | 28 |
Rats | 20 | 17 | 26 |
Mice and Rats | 36 | 36 | 38 |
Mice and other animals | 0 | <1 | 0 |
Rats and other animals | 0 | 0 | 3 |
Mice, rats and other animals | 0 | 0 | 3 |
Other specified animals | 2 | 0 | 3 |
Other unspecified animals | 9 | 0 | 0 |
Parameter | % Annual Change | Confidence Interval | p-Value |
---|---|---|---|
Exposure mus m 1 | |||
Median Exposure Mus m 1 | −5.97% | −7.55 to −4.39 | <0.0001 |
P75 Exposure Mus m 1 | −5.45% | −7.87 to −3.02 | 0.0003 |
P90 Exposure Mus m 1 | −5.10% | −7.64 to −2.56 | 0.0007 |
Exposure rat n 1 | |||
Median Exposure Rat n 1 | +7.04% | −1.48 to 15.56 | 0.11 |
P75 Exposure Rat n 1 | +4.89% | −1.12 to 10.97 | 0.22 |
P90 Exposure Rat n 1 | +1.83% | −2.89 to 6.55 | 0.36 |
Health outcomes | |||
Asthma | −2.86% | −5.22 to −0.50 | 0.021 |
Rhinitis | −1.41% | −3.72 to 0.91 | 0.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mason, H.; Jones, K.; Byrne, L. Temporal Relationships Between Occupational Exposure to High Molecular Weight Allergens and Associated Short Latency Respiratory Health Outcomes: Laboratory Animal Allergens. Laboratories 2025, 2, 19. https://doi.org/10.3390/laboratories2040019
Mason H, Jones K, Byrne L. Temporal Relationships Between Occupational Exposure to High Molecular Weight Allergens and Associated Short Latency Respiratory Health Outcomes: Laboratory Animal Allergens. Laboratories. 2025; 2(4):19. https://doi.org/10.3390/laboratories2040019
Chicago/Turabian StyleMason, Howard, Kate Jones, and Laura Byrne. 2025. "Temporal Relationships Between Occupational Exposure to High Molecular Weight Allergens and Associated Short Latency Respiratory Health Outcomes: Laboratory Animal Allergens" Laboratories 2, no. 4: 19. https://doi.org/10.3390/laboratories2040019
APA StyleMason, H., Jones, K., & Byrne, L. (2025). Temporal Relationships Between Occupational Exposure to High Molecular Weight Allergens and Associated Short Latency Respiratory Health Outcomes: Laboratory Animal Allergens. Laboratories, 2(4), 19. https://doi.org/10.3390/laboratories2040019