Analyzing and Forecasting Laboratory Energy Consumption Patterns Using Autoregressive Integrated Moving Average Models
Abstract
1. Introduction
2. Literature Review
3. Methods
3.1. Data Collection
3.2. Data Sources
3.3. Machine Learning Models
- The AR component represents the relationship between observations and a certain number of lagged observations;
- The I component represents the degree of differencing required to make the series smooth;
- The MA component captures the dependence between observations and the residual errors of lagged observations.
3.4. Evaluation Metrics
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krechowicz, M. Effective Risk Management in Innovative Projects: A Case Study of the Construction of Energy-Efficient, Sustainable Building of the Laboratory of Intelligent Building in Cracow. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 062006. [Google Scholar] [CrossRef]
- Kaplowitz, M.D.; Thorp, L.; Coleman, K.; Kwame Yeboah, F. Energy Conservation Attitudes, Knowledge, and Behaviors in Science Laboratories. Energy Policy 2012, 50, 581–591. [Google Scholar] [CrossRef]
- Joint Research Centre (European Commission); Blasco, A.; Dupoux, M.; Tarantola, S.; Contini, S.; Castello, P.; Di Ianni, P.; Pirinu, L. Energy Efficiency and Energy Savings in Scientific Laboratories; Publications Office of the European Union: Luxembourg, 2024; ISBN 978-92-68-15420-5. [Google Scholar]
- Kitzberger, T.; Kotik, J.; Pröll, T. Energy Savings Potential of Occupancy-Based HVAC Control in Laboratory Buildings. Energy Build. 2022, 263, 112031. [Google Scholar] [CrossRef]
- Wrons, R. Importance of Energy Efficiency in the Design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM); Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1998.
- Zaltash, A.; Petrov, A.Y.; Rizy, D.T.; Labinov, S.D.; Vineyard, E.A.; Linkous, R.L. Laboratory R&D on Integrated Energy Systems (IES). Appl. Therm. Eng. 2006, 26, 28–35. [Google Scholar] [CrossRef]
- Lopez, J.B.; Jackson, D.; Gammie, A.; Badrick, T. Reducing the Environmental Impact of Clinical Laboratories. Clin. Biochem. Rev. 2017, 38, 3. [Google Scholar]
- Group, I.S. Professional Development: Theoretical Basis and Innovative Technologies; International Science Group: New York, NY, USA, 2024; ISBN 979-8-89292-748-2. [Google Scholar]
- Paul, M.; Sartor, D.; Van Geet, O. Rating Energy Efficiency and Sustainability in Laboratories: Results and Lessons from the Labs21 Program. May 2004. Available online: https://www.osti.gov/servlets/purl/835809 (accessed on 25 December 2024).
- Malik, S.; Malik, S.; Singh, I.; Gupta, H.V.; Prakash, S.; Jain, R.; Acharya, B.; Hu, Y.-C. Deep Learning Based Predictive Analysis of Energy Consumption for Smart Homes. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Bourhnane, S.; Abid, M.R.; Lghoul, R.; Zine-Dine, K.; Elkamoun, N.; Benhaddou, D. Machine Learning for Energy Consumption Prediction and Scheduling in Smart Buildings. SN Appl. Sci. 2020, 2, 297. [Google Scholar] [CrossRef]
- Mathumitha, R.; Rathika, P.; Manimala, K. Intelligent Deep Learning Techniques for Energy Consumption Forecasting in Smart Buildings: A Review. Artif. Intell. Rev. 2024, 57, 35. [Google Scholar] [CrossRef]
- Jain, N.; Sharma, S.; Thakur, V.; Nutakki, M.; Mandava, S. Prediction and Analysis of Household Energy Consumption Integrated with Renewable Energy Sources Using Machine Learning Algorithms in Energy Management. Int. J. Renew. Energy Res. 2024, 14, 354–362. [Google Scholar]
- Joshua, S.R.; Yeon, A.N.; Park, S.; Kwon, K. A Hybrid Machine Learning Approach: Analyzing Energy Potential and Designing Solar Fault Detection for an AIoT-Based Solar–Hydrogen System in a University Setting. Appl. Sci. 2024, 14, 8573. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Olawumi, M.A.; Omigbodun, F.T. Machine Learning for Optimising Renewable Energy and Grid Efficiency. Atmosphere 2024, 15, 1250. [Google Scholar] [CrossRef]
- Cano, A.I.P.; Liu, H. A Comparative Study of Machine Learning Models in Predicting Energy Consumption. In Proceedings of the AI and Analytics for Smart Cities and Service Systems; Qiu, R., Lyons, K., Chen, W., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 154–161. [Google Scholar]
- Shahcheraghian, A.; Ilinca, A. Advanced Machine Learning Techniques for Energy Consumption Analysis and Optimization at UBC Campus: Correlations with Meteorological Variables. Energies 2024, 17, 4714. [Google Scholar] [CrossRef]
- Huotari, M.; Malhi, A.; Främling, K. Machine Learning Applications for Smart Building Energy Utilization: A Survey. Arch. Comput. Methods Eng. 2024, 31, 2537–2556. [Google Scholar] [CrossRef]
- Mathew, P. Metrics and Benchmarks for Energy Efficiency in Laboratories. ASHRAE J. 2007. Available online: https://www.osti.gov/servlets/purl/919399-B7F24o/ (accessed on 25 December 2024).
- Mathew, P.; Farmer, A.; Werner, J. Best Practices Guide: Benchmarking Energy Efficiency in Laboratories; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2021. [CrossRef]
- Kirkeby, A.; Romero, R.; Van Geet, O.; Belmont, S. Ushering in the New Age of Laboratories: Smart Labs in Practice; National Renewable Energy Lab. (NREL), Golden, CO (United States): Pacific Grove, CA, USA, 2022; Volume 3, pp. 544–575.
- Doukas, H.; Marinakis, V.; Sarmas, E. (Eds.) Machine Learning Applications for Intelligent Energy Management: Invited Chapters from Experts on the Energy Field; Learning and Analytics in Intelligent Systems; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 35, ISBN 978-3-031-47908-3. [Google Scholar]
- Shi, Q.; Liu, C.; Xiao, C. Machine learning in building energy management: A critical review and future directions. Front. Eng. Manag. 2022, 9, 239–256. [Google Scholar] [CrossRef]
- Yin, Q.; Han, C.; Li, A.; Liu, X.; Liu, Y. A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks. Sustainability 2024, 16, 7805. [Google Scholar] [CrossRef]
- Valencia-Arias, A.; García-Pineda, V.; González-Ruiz, J.D.; Medina-Valderrama, C.J.; Bao García, R. Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda. Designs 2023, 7, 71. [Google Scholar] [CrossRef]
- Pegalajar, M.C.; Ruiz, L.G.B. Time Series Forecasting for Energy Consumption. Energies 2022, 15, 773. [Google Scholar] [CrossRef]
- Krome, C.; Höft, J.; Sander, V. Clustering Time Series Applied to Energy Markets. Energy Inform. 2019, 2, 17. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Jain, P.K.; Quamer, W.; Pamula, R. Electricity Consumption Forecasting Using Time Series Analysis. In Proceedings of the Advances in Computing and Data Sciences; Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Eds.; Springer: Singapore, 2018; pp. 327–335. [Google Scholar]
- Jabbar, M.A.; Raoof, S.S. Applications of Machine Learning for Renewable Energy: Issues, Challenges, and Future Directions. In Handbook of Smart Energy Systems; Fathi, M., Zio, E., Pardalos, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–13. ISBN 978-3-030-72322-4. [Google Scholar]
Equipment Type | Voltage (V) | Current (A) | Rated Power (W) | Quantity | Total Power (W) |
---|---|---|---|---|---|
Centrifuge | 240 | 1.2 | 288 | 2 | 576 |
PCR Machine | 240 | 0.8 | 192 | 1 | 192 |
Refrigerator | 240 | 1.0 | 240 | 1 | 240 |
Fume Hood | 240 | 0.6 | 144 | 1 | 144 |
Air Conditioner | 240 | 2.5 | 600 | 1 | 600 |
Total | 1752 |
Equipment Type | Voltage (V) | Current (A) | Rated Power (W) | Quantity | Total Power (W) |
---|---|---|---|---|---|
Laboratory Mixer | 12 | 1.5 | 18 | 3 | 54.0 |
Incubator (DC-powered) | 5 | 2.0 | 10 | 2 | 20.0 |
Gel Electrophoresis System | 3.3 | 3.0 | 9.9 | 2 | 19.8 |
Power Supply for Small Equipment | 0–32 | 3.2 | 102.4 | 1 | 102.4 |
Laboratory Mixer | 12 | 1.5 | 18 | 3 | 54.0 |
Total | 196.2 |
Variable | Differencing Order | t-Statistic | p-Value | AIC | Critical Value | ||
---|---|---|---|---|---|---|---|
1% | 5% | 10% | |||||
Total Power Usage | 0 | −8.332 | 0.000 *** | −39,326.282 | −3.431 | −2.862 | −2.567 |
1 | −25.576 | 0.000 *** | −39,259.07 | −3.431 | −2.862 | −2.567 | |
2 | −28.622 | 0.000 *** | −39,014.79 | −3.431 | −2.862 | −2.567 |
Item | Symbol | Value |
---|---|---|
Df Residuals | 8350 | |
Sample size | N | 8353 |
Q statistic | Q6 (p value) | 0.066 (0.798) |
Q12 (p value) | 3.566 (0.735) | |
Q18 (p value) | 35.582 (0.000 ***) | |
Q24 (p value) | 52.994 (0.000 ***) | |
Q30 (p value) | 62.055 (0.000 ***) | |
Information criterion | AIC | −39,514.144 |
BIC | −39,486.022 | |
Goodness of fit | R2 | 0.69 |
Coefficient | Standard | t | p > |t| | 0.025 | 0.975 | |
---|---|---|---|---|---|---|
constant | 0 | 0 | 1.163 | 0.245 | 0 | 0.001 |
ar.L1 | 0.986 | 0.003 | 291.653 | 0 | 0.979 | 0.993 |
ma.L1 | −0.738 | 0.005 | −161.364 | 0 | −0.747 | −0.729 |
sigma2 | 0.001 | 0 | 98.882 | 0 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Jia, X.; Lee, C.K.; Jiang, H.; Leh, C.P. Analyzing and Forecasting Laboratory Energy Consumption Patterns Using Autoregressive Integrated Moving Average Models. Laboratories 2025, 2, 2. https://doi.org/10.3390/laboratories2010002
Niu Y, Jia X, Lee CK, Jiang H, Leh CP. Analyzing and Forecasting Laboratory Energy Consumption Patterns Using Autoregressive Integrated Moving Average Models. Laboratories. 2025; 2(1):2. https://doi.org/10.3390/laboratories2010002
Chicago/Turabian StyleNiu, Yitong, Xiongjie Jia, Chee Keong Lee, Haoran Jiang, and Cheu Peng Leh. 2025. "Analyzing and Forecasting Laboratory Energy Consumption Patterns Using Autoregressive Integrated Moving Average Models" Laboratories 2, no. 1: 2. https://doi.org/10.3390/laboratories2010002
APA StyleNiu, Y., Jia, X., Lee, C. K., Jiang, H., & Leh, C. P. (2025). Analyzing and Forecasting Laboratory Energy Consumption Patterns Using Autoregressive Integrated Moving Average Models. Laboratories, 2(1), 2. https://doi.org/10.3390/laboratories2010002