Next Article in Journal
Efficacy of Glycyrrhiza glabra in the Treatment of Recurrent Aphthous Stomatitis: A Systematic Review of Randomized Controlled Trials
Previous Article in Journal
Antiprotozoal Activity and Cytotoxicity Screening of Lippia adoensis (Hochst.) Extracts: Growth Inhibition of Plasmodium, Leishmania, and Trypanosoma Parasites
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Clinical Application of the EOS Imaging System—The Broader Horizon

1
Education of Radiography, UCL University College, 5230 Odense, Denmark
2
Health Sciences Research Centre, UCL University College, 5230 Odense, Denmark
3
Research and Innovation Unit of Radiology, University of Southern Denmark, 5000 Odense, Denmark
4
Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
5
Department of Radiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark
6
Department of Radiology, University Hospital of Southern Denmark, 7100 Vejle, Denmark
7
Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
8
Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, T12 YN60 Cork, Ireland
9
Emergency Department, Zealand University Hospital, 4600 Køge, Denmark
10
Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden
11
Centre for Clinical Artificial Intelligence (CAI-X), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
*
Author to whom correspondence should be addressed.
J. Oman Med. Assoc. 2025, 2(1), 7; https://doi.org/10.3390/joma2010007
Submission received: 9 December 2024 / Revised: 19 March 2025 / Accepted: 16 May 2025 / Published: 29 May 2025

Abstract

Purpose: The purpose of this scoping review was to systematically identify and summarize the existing literature on non-spinal clinical applications of EOS imaging and identify related evidence gaps. Method: The study followed the PRISMA-ScR guidelines. A systematic literature search was conducted in Embase, MEDLINE, CINAHL, Scopus, Cochrane, Academic Search Premier, and OpenGrey databases in November 2022 and updated in December 2023. Original research from 2003 to 2023 was eligible if in English, Danish, French, German, Norwegian, or Swedish. Two authors screened articles by title and abstract, while data extraction from full texts was performed by seven authors using a structured template. Results: A total of 8176 articles were identified, with 1350 selected for full-text review and 268 included in data extraction. Among adults, 187 articles were included, with 88 focused on surgical applications like hip arthroplasty or osteotomy. In pediatrics, 68 general and 13 surgery-related articles were included. Lower extremity analysis was the most frequent topic, with other uses identified, such as rib cage geometry, patellar dislocation, and X-linked hypophosphatemia. Conclusions: Key clinical applications of EOS imaging include lower extremity analysis, e.g., leg length assessment and knee/hip arthroplasty planning), pelvic and spinal alignment studies, and emerging uses in rib cage geometry. Evidence gaps include limited research on the diagnostic accuracy of EOS for cerebral shunt placement, reliability in bone age estimation, and an unclear role in foot and ankle morphology.

1. Introduction

The EOS imaging system was originally designed to capture full-body radiographs with a focus on the spine, hips, and knees obtained in the weight-bearing position. The system depicts anatomical structures at their true size using slot scanning technology and allows for the simultaneous acquisition of two orthogonal radiographs [1]. The slot scanning technology used in the EOS imaging system is self-collimated and minimizes scattered radiation, which improves image quality and reduces the radiation dose compared to conventional X-ray [2,3,4]. The lower dose, in combination with high image quality, makes EOS a popular modality, particularly in pediatric and adolescent populations [5].
The EOS imaging system is particularly valuable in the evaluation of scoliosis, providing high-resolution, low-dose radiographs at a true size, enabling accurate assessment of spinal curvature [6]. Additionally, its ability to capture orthogonal images simultaneously allows for a comprehensive understanding of the three-dimensional nature of the deformity by subsequent three-dimensional modeling of the spine and individual vertebrae [6,7,8]. EOS has also become an important tool in presurgical planning for total hip arthroplasty (THA), allowing for optimized component positioning, potentially enhancing stability and minimizing wear-related complications [9].
A systematic review and economic evaluation of EOS systems concluded that, due to the higher cost compared to traditional radiographic systems, the key determinant of cost-effectiveness lies in optimal utilization [3]. This underscores the importance of optimizing EOS machine utilization to maximize efficiency and cost-effectiveness.
The low-dose aspect of the EOS system raises questions about whether this modality has additional clinical applications that could benefit patients through reduced radiation exposure, thereby improving patient safety. The potential for a broader clinical use of EOS technology has been discussed, for instance, in connection with chest radiography [10] and in the confirmation of the integrity of cerebral shunts [11]. To the best of our knowledge, there are no ongoing or published scientific reviews comprehensively addressing the broader clinical applications of the EOS system.
Therefore, the objective of this scoping review is to map and summarize the existing literature on non-spinal clinical applications of EOS imaging. Specifically, the objectives of this review were to do the following:
Identify the range of clinical applications of EOS imaging beyond spinal conditions.
Summarize the key areas where EOS has been utilized, including musculoskeletal imaging, surgical planning, and functional assessment.
Highlight gaps in the existing literature and provide recommendations for future research directions.

2. Materials and Methods

2.1. Methodology

The scoping review was conducted following the Joanna Briggs Institute (JBI) methodology for scoping reviews [12,13] and adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [14]. The review protocol is reported in Open Science Framework (https://osf.io/yc85j/, accessed on 19 March 2025) and published as a scoping review protocol in JBI Evidence Synthesis [15].

2.2. Amendment to Protocol

The planned forward and backward citation searches, as well as author searching, were not executed due to the substantial number of articles retrieved. Secondly, it was initially planned to investigate whether EOS was in clinical use. However, due to inconsistencies in how EOS is reported across different settings, determining its clinical status proved uncertain. To maintain reliability, we decided to exclude this question from our analysis.

2.3. Search Strategy

The search strategy adhered to JBI’s 3-phased process [13]. The objective of the search strategy was to find both published and unpublished original articles. The search was developed with input from a science librarian using the following keywords: biplanar X-ray, biplanar radiograph, biplanar imaging, EOS imaging, and slot scanning (Appendix A). The literature databases Embase (Elsevier, Amsterdam, The Netherlands), MEDLINE (PubMed, U.S. National Library of Medicine, Bethesda, MD, USA), CINAHL Complete (EBSCO, Ipswich, MA, USA), Scopus (Elsevier, Amsterdam, The Netherlands), The Cochrane Library (The Cochrane Collaboration, London, UK), Academic Search Premier (EBSCO, Ipswich, MA, USA), and OpenGrey (INIST-CNRS, Vandoeuvre-lès-Nancy, France) were searched on 11 November 2022 and updated on 14 December 2023.

2.4. Eligibility Criteria

Although the EOS system was initially implemented in clinical settings in 2007 [1], the search filter included articles from 2003 onwards, as the prototype was tested in the years leading up to 2007. Quantitative articles describing the use of the EOS in a clinical setting were eligible for inclusion. Articles published in English, Danish, Norwegian, Swedish, French, and German were eligible for inclusion, given the proficiency of the author team in these languages. Language filters were incorporated into the search strategy, and the included languages were verified during the screening process. Non-original research was excluded.

2.5. Study Selection

All identified articles were uploaded into EndNote v.x20 (Clarivate Analytics, Philadelphi, PA, USA) where duplicates were removed from the dataset. The remaining articles were imported into Covidence (Veritas Health Innovation, Melbourne, Australia), where a second duplicate search was made. Two authors (KB and JJ) independently screened articles for applicability based on title and abstract. Subsequently, articles potentially eligible for inclusion were screened by full text. Exclusion reasons for full-text articles failing to meet the inclusion criteria were documented, such as lack of EOS modality usage, focus on spine-related research, absence of original research, and articles based on cadavers or within experimental frameworks. In cases where disagreements occurred between the reviewers at any stage of the selection process, they were resolved through discussion or with the involvement of a third reviewer. The screening process is presented in the PRISMA flow diagram [16] (Figure 1).

2.6. Data Extraction

Data extraction from included articles was carried out by pairs of two authors from a group of six (KB, JJ, BRM, MRP, SDM, MN), while validation was later performed by one of three authors (KB, JJ, and OB) using a data extraction tool developed by the authors [15].
Through various pilot tests, encompassing data extraction from a total of 50 articles, the original extraction sheet underwent a series of iterative modifications and revisions. These adjustments were made with the objective of augmenting the reliability and validity of the extracted data and, furthermore, to ensure the readability of the tables. Data were extracted on author and publication, clinical endpoints, age group and number of study participants, study type, and study design. Included articles were organized into four subcategories: Adult, Adult Surgery, Pediatric (including studies with mixed-age populations), and Pediatric Surgery (including studies with mixed-age populations). The articles within each table were organized under relevant headings and subheadings for easier navigation and reference. The categories were established after the completion of all data extraction processes. While all articles have been assigned a category, not all articles have been designated a subcategory.

3. Results

3.1. Search and Screening

A comprehensive search of the selected databases identified 8176 articles for potential inclusion. After applying the inclusion criteria and conducting title/abstract screening, 1350 articles were selected for full-text review. From these articles, 268 articles underwent data extraction. The included articles were primarily from Europe (n = 141), with France being the top contributor (n = 91), North America (n = 66), and Asia (n = 56). Additionally, articles were obtained from Oceania (n = 4) and South America (n = 1). The number of published articles grew substantially from 2004 to 2023, with a marked increase starting in 2012. The publication rate peaked at 41 articles in 2022, followed by a slight decline in 2023 (Figure 2).
Out of 268 articles included, 138 were prospective, 117 were retrospective, and 10 were both prospective and retrospective, while the methodology of 3 articles was unclear. The included articles encompassed various study designs, including 120 case–control/cohort/non-RCTs, 113 cross-sectional/case-series/case-reports, 107 articles that included reliability and/or accuracy, and two RCTs.

3.2. Adults

For the adult category, a total of 99 articles were found. The majority were on the lower extremity (34 articles), of which three specifically focused on leg length, followed by 31 articles that combined pelvis and lower extremity analysis, 11 of which focused on gait. The most prevalent subcategories were imaging comparison, followed by spine-related research. Rarer topics were subjects such as osteoarthritis, economics, obstructive sleep apnea syndrome, pain syndrome, and shoulder morphology (Appendix B).

3.3. Adult Surgery

For the adult surgery category, 88 articles were included. Articles focused predominantly on hip arthroplasty, totaling 53, and knee arthroplasty, with 21 articles. Additionally, there were articles on topics such as shoulder arthroplasty, tibial osteotomy, and femoral shaft fractures. The most common subcategory was risk factors and safety, followed by imaging comparison (Appendix C).

3.4. Pediatric

In the pediatric group, a total of 68 articles were included. The most examined topic was lower extremity analysis, with 29 articles, of which five focused specifically on gait and four on leg length. Rib cage geometry and thoracic analysis were covered in eight articles, and articles on maturity totaled six. Rarer topics were machine learning and foot and ankle analysis. In terms of subcategories for the pediatric group, the most common category was scoliosis, followed by cerebral palsy. The less frequent topics covered were patellar dislocation, X-linked hypophosphatemia, and cerebral shunt status (Appendix D).

3.5. Pediatric Surgery

Thirteen articles were included in the pediatric surgery category, six of which focused on rib cage geometry and thoracic analysis. In the subcategories for the pediatric surgery category, scoliosis was the most extensively studied area, followed by fracture, imaging comparison, Down’s syndrome, and shoulder (Appendix E).

4. Discussion

This scoping review provides a comprehensive overview of the non-spinal clinical applications of EOS imaging. Our findings indicate that EOS has been widely utilized in lower extremity analysis, particularly for assessing leg length discrepancies, knee and hip arthroplasty planning, and gait analysis. It also plays a role in pelvic and spinal alignment studies, offering precise weight-bearing assessments that contribute to surgical planning and biomechanical evaluations. Additionally, EOS has shown promise in rib cage geometry and thoracic assessments, including applications in pulmonary function evaluation and postural compensation analysis. Emerging uses have been identified in cerebral shunt assessment and bone age estimation, though these areas remain underexplored and warrant further research. The low radiation dose and high imaging precision of EOS make it particularly valuable in pediatric and orthopedic settings, where minimizing exposure while maintaining diagnostic accuracy is crucial. These findings highlight the diverse and expanding role of EOS imaging in clinical practice, with opportunities for further investigation into its full diagnostic potential.
To the best of our knowledge, this scoping review is the first to collate topics beyond spinal conditions that have been investigated or assessed in clinical articles using the EOS imaging modality. Providing a keyword summary of existing articles on non-spinal topics facilitates easy access, enabling practitioners and researchers to explore the current state of knowledge within these areas.
We included 268 articles that explored applications of the EOS system with a primary focus on non-spinal uses. As expected, many articles focused on topics such as leg length or knee and hip arthroplasty. Nonetheless, our search also identified several lesser-explored areas that could have a substantial clinical impact on further investigation. As an example, the use of EOS in diagnosing myeloma showed promising results; however, when the body mass index exceeded 30, diagnostic performance diminished significantly [17]. The upcoming updated EOS system with a photon-counting detector may improve noise reduction and potentially address this issue [18]. On the other hand, computed tomography is a well-established method for diagnosing myeloma, offering true 3D reconstruction and cross-sectional images. Another less explored topic is that of shunt control in children with hydrocephalus, where the diagnostic potential of EOS has been examined, showing promising results [11,19]. However, the limited number of articles, their retrospective designs, and their small sample sizes underscore the need for additional research. Nonetheless, given that many shunt patients are young and often undergo repeated follow-up imaging, additional exploration of this topic is warranted, as this group of patients could benefit from the reduced radiation dose provided by EOS imaging compared with conventional digital radiography. The low-dose capability of EOS imaging has been confirmed in multiple articles [20,21,22,23]. For instance, with the use of the Microdose feature in EOS, it has been shown that leg length can be measured accurately in an adolescent population [5], while EOS imaging for the pelvis delivered approximately half the radiation dose of conventional radiography [24].
Radiostereometric analysis (RSA) is a research method used to estimate micromotion between an orthopedic implant and the surrounding bone or between fracture fragments [25,26,27]. Traditionally, RSA involves the use of a setup with two X-ray tubes for simultaneous exposure [28]. The biplane simultaneous exposure capability of the EOS imaging system makes it a promising modality for exploring its capabilities in relation to RSA. A recent study found that when assessing knee implant motion, the precision of EOS was comparable to that of the traditional RSA method [29]. Additionally, the potential of using EOS and RSA for evaluating fracture stability has been investigated in relation to slipped capital femoral epiphysis with accuracy and precision comparable to that obtained with the traditional RSA system [30].
Within the adult population, the EOS system has demonstrated promising results, especially in the context of orthopedic procedures, with a particular focus on total hip arthroplasty (THA). One study introduced the “femur first” technique using EOS imaging for intraoperative guidance during THA, eliminating the need for computer-based navigation and highlighting its potential for real-time assistance and streamlined surgical procedures [31]. The use of EOS for analyzing THA component positioning in a standing position has been explored, utilizing the system’s capability to capture weight-bearing images, thus enhancing our understanding of implant behavior under typical loading conditions [32]. Exploring the post-surgical alignment, posture, and balance following THA are also topics of interest in recent EOS articles [33,34,35]. The 3D modeling abilities were used after surgery to check the placement of the femoral stem in hip replacements, offering a non-invasive alternative to CT scans that could lower radiation exposure [36]. This method might be useful for tracking how well hip prostheses work as patients move from standing to sitting [37]. The three-dimensional capabilities of the EOS system have also been explored to reconstruct the rib cage before and after surgery, enhancing the understanding of pulmonary function in patients with adolescent idiopathic scoliosis [38,39,40]. The ability to visualize rib cage alignment in a weight-bearing position may improve our understanding of thoracic biomechanics and respiratory function, but further research is needed to integrate EOS findings into routine clinical practice for pulmonary assessments. Additionally, the three-dimensional capabilities of the EOS system were explored regarding shoulder morphology [40,41] and kinematics [42,43,44], with the system showing promise as a low-dose supplement and/or alternative to existing imaging.
Despite the strengths of EOS imaging, this review identifies several key evidence gaps. The lack of standardized protocols for certain applications, such as bone age estimation and cerebral shunt assessment, limits its widespread adoption. Additionally, while EOS has been validated for reliability and accuracy in orthopedic applications, fewer studies have evaluated its diagnostic efficacy in comparison to gold-standard imaging modalities like MRI and CT.
Furthermore, the economic feasibility of implementing EOS in diverse clinical settings remains an important consideration. The relatively high initial cost of EOS systems raises questions about their cost-effectiveness, particularly in hospitals with limited imaging resources. However, its ability to reduce radiation dose and potentially replace multiple imaging sessions could lead to long-term cost savings, a hypothesis that warrants further economic evaluation studies.
Unlike systematic reviews, scoping reviews do not synthesize results through a formal quality appraisal of evidence, as their primary objective is to map the breadth of existing research rather than critically evaluate study validity [13]. While systematic reviews provide deeper analysis with specific criteria, they might miss broader ongoing research. This scoping review, however, identified key research areas and gaps, paving the way for future, more focused, systematic articles. The study’s comprehensive methodology is evident as it adhered to the JBI methodology for scoping reviews and followed the PRISMA-ScR guidelines, ensuring a rigorous and systematic approach [14]. The quality control measures applied in the data extraction, which involved iterative modifications and pilot tests of the data extraction tool, enhanced the reliability and validity of the data.
Resource limitations and time constraints led to deviations from the established protocol, such as omitting forward and backward citation searches and author searching. This approach could risk missing relevant articles and introduce potential biases in the study selection. However, the inclusion of more than 250 articles in this review is substantial, providing ample coverage of existing trends and developments in the field. The process of determining if articles were included in this article, i.e., non-spinal focus, was guided by their principal focus. In cases where articles touched upon themes pertinent to both the spine and broader applications, the decision necessitated a nuanced evaluation, where the decision to include or exclude was made to the best of our knowledge and judgment.

5. Conclusions

This review examined the literature on clinical applications of the EOS imaging system. The articles included demonstrate a consistent increase in research publications over time, with significant contributions from various global regions. We identified insights into its use across various areas. Key clinical applications of EOS imaging include lower extremity analysis, e.g., leg length assessment and knee/hip arthroplasty planning), pelvic and spinal alignment studies, and emerging uses in rib cage geometry. Evidence gaps include limited research on the diagnostic accuracy of EOS for cerebral shunt placement, reliability in bone age estimation, and an unclear role in foot and ankle morphology.
The relatively high economic break-even of the EOS system cannot be ignored. However, a broader application of the system may lead to more efficient planning and, consequently, lower costs per examination. This is, however, speculative and requires further economic evaluation.

Author Contributions

Conceptualization, K.B., J.J. and B.M.; methodology, K.B., J.J., P.L., M.G. and B.M.; validation, K.B. and J.J.; formal analysis, K.B. and J.J.; investigation, K.B., J.J., M.R.P., M.N., O.B., S.D.M., M.G. and B.M.; writing—original draft preparation, K.B. and J.J.; writing—review and editing, K.B., J.J., M.R.P., M.N., O.B., S.D.M., M.G., P.L. and B.M.; project administration, K.B., J.J. and B.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. Search Strings

MEDLINE (PubMed)Embase (Elsevier)The Cochrane LibraryScopusCINAHL Complete (EBSCO)Academic Search Premier (EBSCO)OpenGrey
((((((((((((((((((((Biplanar x-ray) OR (Biplanar x ray)) OR (Biplanar xray)) OR (Biplanar radiograph)) OR (Biplanar radiography)) OR (Biplanar imaging)) OR (Biplane x-ray)) OR (Biplane x ray)) OR (Biplane radiograph)) OR (Biplane radiography)) OR (Biplane imaging)) OR (eos imaging)) OR (eos image)) OR (Eos images)) OR (eos radiography)) OR (Eos system)) OR (eos x-ray)) OR (eos x ray)) OR (slot scanner)) OR (slot scanners)) OR (slot scanning)‘biplanar x ray’ OR (biplanar AND x AND ray) OR ‘biplanar xray’ OR (biplanar AND xray) OR ‘biplanar radiograph’ OR (biplanar AND (‘radiograph’/exp OR radiograph)) OR ‘biplanar radiography’/exp OR ‘biplanar radiography’ OR (biplanar AND (‘radiography’/exp OR radiography)) OR ‘biplanar imaging’ OR (biplanar AND (‘imaging’/exp OR imaging)) OR ‘biplane x ray’ OR ((‘biplane’/exp OR biplane) AND x AND ray) OR ‘biplane xray’ OR ((‘biplane’/exp OR biplane) AND xray) OR ‘biplane radiograph’ OR ((‘biplane’/exp OR biplane) AND (‘radiograph’/exp OR radiograph)) OR ‘biplane radiography’ OR ((‘biplane’/exp OR biplane) AND (‘radiography’/exp OR radiography)) OR ‘biplane imaging’ OR ((‘biplane’/exp OR biplane) AND (‘imaging’/exp OR imaging)) OR ‘eos imaging’/exp OR ‘eos imaging’ OR ((‘eos’/exp OR eos) AND (‘imaging’/exp OR imaging)) OR ‘eos image’ OR ((‘eos’/exp OR eos) AND (‘image’/exp OR image)) OR ‘eos images’ OR ((‘eos’/exp OR eos) AND images) OR ‘eos radiography’ OR ((‘eos’/exp OR eos) AND (‘radiography’/exp OR radiography)) OR ‘eos system’/exp OR ‘eos system’ OR ((‘eos’/exp OR eos) AND system) OR ‘eos x ray’ OR ((‘eos’/exp OR eos) AND x AND ray) OR ‘eos xray’ OR ((‘eos’/exp OR eos) AND xray) OR ‘slot scanner’ OR (slot AND (‘scanner’/exp OR scanner)) OR ‘slot scanners’ OR (slot AND scanners) OR ‘slot scanning’ OR (slot AND scanning)Biplanar x-ray OR Biplanar x ray OR Biplanar xray OR Biplanar radiograph OR Biplanar radiography OR Biplanar imaging OR Biplane x-ray OR Biplane x ray OR Biplane xray OR Biplane radiograph OR Biplane radiography OR Biplane imaging OR eos imaging OR eos image OR Eos images OR Eos system OR eos x-ray OR eos x ray OR eos xray OR slot scanner OR slot scanners OR slot scanning(TITLE-ABS-KEY (biplanar W/3 x-ray) OR TITLE-ABS-KEY (biplanar W/3 x AND ray) OR TITLE-ABS-KEY (biplanar W/3 radiograph) OR TITLE-ABS-KEY (biplanar W/3 radiography) OR TITLE-ABS-KEY (biplanar W/3 imaging) OR TITLE-ABS-KEY (biplane W/3 x-ray) OR TITLE-ABS-KEY (biplane W/3 x AND ray) OR TITLE-ABS-KEY (biplane W/3 radiograph) OR TITLE-ABS-KEY (biplane W/3 radiography) OR TITLE-ABS-KEY (biplane W/3 imaging) OR TITLE-ABS-KEY (eos W/3 imaging) OR TITLE-ABS-KEY (eos W/3 image) OR TITLE-ABS-KEY (eos W/3 images) OR TITLE-ABS-KEY (eos W/3 radiography) OR TITLE-ABS-KEY (eos W/3 system) OR TITLE-ABS-KEY (eos W/3 x-ray) OR TITLE-ABS-KEY (eos W/3 x AND ray) OR TITLE-ABS-KEY (slot W/3 scanner) OR TITLE-ABS-KEY (slot W/3 scanners) OR TITLE-ABS-KEY (slot W/3 scanning)) Biplanar x-ray OR Biplanar x ray OR Biplanar radiograph OR Biplanar radiography OR Biplanar imaging OR Biplane x-ray OR Biplane x ray OR Biplane xray OR Biplane radiograph OR Biplane radiography OR Biplane imaging OR eos imaging OR eos image OR Eos images OR eos radiography OR Eos system OR eos x-ray OR eos x ray OR slot scanner OR slot scanners OR slot scanning Eos images OR eos radiography OR Eos system OR eos x-ray OR eos x ray OR slot scanner OR slot scanners OR slot scanning OR
Biplanar x-ray OR Biplanar x ray OR Biplanar radiograph OR Biplanar radiography OR Biplanar imaging OR Biplane x-ray OR Biplane x ray OR Biplane radiograph OR Biplane radiography OR Biplane imaging OR eos imaging OR eos image OR eos images OR eos radiography OR eos system OR eos x-ray OR eos x ray OR slot scanner OR slot scanners OR slot scanning
(biplane AND x-ray) OR (biplane AND x ray) OR (biplane AND xray) OR (biplane AND imaging) OR (eos AND imaging) OR (eos AND image) OR (eos AND images) OR (eos AND system)

Appendix B. Adult Imaging Using the EOS Imaging System

Author, Year, CountryTitleClinical Endpoints
(Parameters)
Total nTimelineStudy Type
Center of mass analysis
Amabile, 2015, FR [45]Alignment of centers of mass of body segments with the gravity lineSpinal/balance20Joma 02 00007 i001Joma 02 00007 i002
Head analysis
Berg, 2020, CH [46]Experiences with a new biplanar low-dose X-ray device for imaging the facial skeleton: a feasibility studyCephalometric angles/distances12Joma 02 00007 i003Joma 02 00007 i004
Kerbrat, 2021, FR [47]Biplanar low-dose radiograph is suitable for cephalometric analysis in patients requiring 3D evaluation of the whole skeletonCephalometric angles/distances13Joma 02 00007 i005Joma 02 00007 i006Joma 02 00007 i007
Lower extremity analysis
Buck, 2012, CH [48]Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurementsFemoral; Tibial 35Joma 02 00007 i008Joma 02 00007 i009Joma 02 00007 i010
Cebulski-Delebarre, 2016, FR [49]Correlation between primary flat foot and lower extremity rotational misalignment in adultsFemoral; Knee; Leg length; Pelvic; Tibial 54Joma 02 00007 i011Joma 02 00007 i012
Clément, 2014, CA [50]Influence of biomechanical multi-joint models used in global optimisation to estimate healthy and osteoarthritis knee kinematicsKnee 10Joma 02 00007 i013Joma 02 00007 i014
Clément, 2018, CA [51]Comparison of soft tissue artifact and its effects on knee kinematics between non-obese and obese subjects performing a squatting activity recorded using an exoskeletonFemoral; Knee; Tibial 17Joma 02 00007 i015Joma 02 00007 i016
Dagneaux, 2020, FR [52]Three-dimensional biometrics to correlate hindfoot and knee coronal alignments using modern weightbearing imagingFoot/ankle; Knee 59Joma 02 00007 i017Joma 02 00007 i018
Dufrénot, 2023, FR [53]Three-dimensional biometrics using weight-bearing imaging shows relationship between knee and hindfoot axial alignmentFemoral; Foot/ankle; Tibial 99Joma 02 00007 i019Joma 02 00007 i020
Dumas, 2004, CA [54]Determination of personalized inertial parameters of lower limb by biplanar low-dose radiographyFemoral 12Joma 02 00007 i021Joma 02 00007 i022
Dumas, 2005, CA [55]Personalized body segment parameters from biplanar low-dose radiographyFemoral 16Joma 02 00007 i023Joma 02 00007 i024
Guenoun, 2012, FR [56]Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstructionFemoral; Leg length; Tibial 25Joma 02 00007 i025Joma 02 00007 i026Joma 02 00007 i027
Hecker, 2021, CH [57]The EOS 3D imaging system reliably measures posterior tibial slopeTibial 56Joma 02 00007 i028Joma 02 00007 i029Joma 02 00007 i030
Kümmerlin, 2022, GE [58]Measuring knee joint laxity in three degrees-of-freedom in vivo using a robotics- and image-based technologyKnee 4Joma 02 00007 i031Joma 02 00007 i032
Lo, 2024, TW [59]Associations between femoral 3D curvature and sagittal imbalance of spineFemoral; Foot/ankle; Knee; Pelvic; Spinal/balance105Joma 02 00007 i033Joma 02 00007 i034
Morin, 2016, CA [60]Assessment of femur geometrical parameters using EOS™ imaging technology in patients with atypical femur fractures; preliminary resultsFemoral 16Joma 02 00007 i035Joma 02 00007 i036
Moon, 2020, KR [61]The effect of knee joint rotation in the sagittal and axial plane on the measurement accuracy of coronal alignment of the lower limbFemoral; Knee; Pelvic; Tibial 90Joma 02 00007 i037 Joma 02 00007 i038
Nam, 2014, US [62]Evaluation of the 3-dimensional, weight-bearing orientation of the normal adult kneeFemoral; Knee; Pelvic; Tibial 100Joma 02 00007 i039Joma 02 00007 i040
Serrurier, 2012, FR [63]Robust femur condyle disambiguation on biplanar X-raysFemoral 30Joma 02 00007 i041Joma 02 00007 i042
Zeighami, 2020, CA [64]A method for quantitative evaluation of a valgus knee orthosis using biplane X-ray imagesHealth outcomes; Knee 1Joma 02 00007 i043Joma 02 00007 i044
Lower extremity analysis—imaging comparison
Cho, 2021, KR [65]Evaluation of the reliability of lower extremity alignment measurements using EOS imaging system while standing in an even weight-bearing postureFemoral; Knee; Pelvic; Tibial 52Joma 02 00007 i045Joma 02 00007 i046Joma 02 00007 i047Joma 02 00007 i048
Choi, 2022, KR [66]Comparison of lower-limb alignment in patients with advanced knee osteoarthritis: EOS biplanar stereoradiography versus conventional scanographyKnee; Pelvic; Tibial 52Joma 02 00007 i049Joma 02 00007 i050Joma 02 00007 i051
Cosentino, 2022, CH [67]MRI signal and morphological alterations of the suprapatellar fat pad in asymptomatic subjects: are these normal variants?Knee; Leg length110Joma 02 00007 i052Joma 02 00007 i053
Folinais, 2013, FR [68]Measuring femoral and rotational alignment: EOS system versus computed tomographyFemoral; Image quality; Tibial 30Joma 02 00007 i054Joma 02 00007 i055Joma 02 00007 i056
Mayr, 2021, GE [69]Anteversion angle measurement in suspected torsional malalignment of the femur in 3-dimensional EOS vs computed tomography—a validation studyFemoral 19Joma 02 00007 i057Joma 02 00007 i058Joma 02 00007 i059
Narahashi, 2024, BR [70]Measurement of tibial slope using biplanar stereoradiography (EOS®)Knee; Tibial 30Joma 02 00007 i060 Joma 02 00007 i061
Rosskopf, 2019, CH [71]3D hindfoot alignment measurements based on low-dose biplanar radiographs: a clinical feasibility studyFoot/ankle; Tibial 50Joma 02 00007 i062 Joma 02 00007 i063
Störmann, 2021, GE [72]Comparison of medial distal tibial angle in EOS imaging and weightbearing X-rayFoot/ankle; Tibial 41Joma 02 00007 i064Joma 02 00007 i065
Wise, 2020, US [73]Reliability of EOS compared to conventional radiographs for evaluation of lower extremity deformity in adult patientsFemoral; Knee; Leg length; Tibial 10Joma 02 00007 i066Joma 02 00007 i067Joma 02 00007 i068
Yan, 2019, CN [74]Femoral and tibial torsion measurements based on EOS imaging compared to 3D CT reconstruction measurementsFemoral; Tibial 18Joma 02 00007 i069Joma 02 00007 i070
Lower extremity analysis—knee osteoarthritis
Huang, 2021, HK [75]Exploring the relationship between pain intensity and knee moments in participants with medial knee osteoarthritis: a cross-sectional studyKnee 47Joma 02 00007 i071Joma 02 00007 i072
Huang, 2021, HK [76]Knee joint loadings are related to tibial torsional alignments in people with radiographic medial knee osteoarthritisKnee; Tibial 47Joma 02 00007 i073Joma 02 00007 i074
Koliogiannis, 2021, GE [77]Is the EOS imaging system as accurate as conventional radiography in grading osteoarthritis of the knee?Knee 142Joma 02 00007 i075 Joma 02 00007 i076
Zeighami, 2017, CA [78] Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: a bi-planar X-ray analysisFemoral parameters; Knee parameters; Tibial parameters19Joma 02 00007 i077Joma 02 00007 i078
Lower extremity analysis—leg length
Clavé, 2018, FR [79]Reproducibility of length measurements of the lower limb by using EOS™Femoral; Knee; Leg length; Pelvic; Tibial 112Joma 02 00007 i079Joma 02 00007 i080Joma 02 00007 i081
Guggenberger, 2014, CH [80]Assessment of lower limb length and alignment by biplanar linear radiography: comparison with supine CT and upright full-length radiographyFoot/ankle; Knee; Leg length51Joma 02 00007 i082Joma 02 00007 i083Joma 02 00007 i084
Lazennec, 2016, FR [81]Do patients’ perceptions of leg length correlate with standing 2- and 3-dimensional radiographic imaging?Femoral; Knee; Leg length; Tibial 70Joma 02 00007 i085Joma 02 00007 i086
Patient safety and radiation exposure
Ben Abdennebi, 2017, FR [82]Comparative dose levels between CT-scanner and slot-scanning device (EOS system) in pregnant women pelvimetryRadiation dose20Joma 02 00007 i087Joma 02 00007 i088
Boutry, 2013, FR [17]Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myelomaHealth outcomes; Radiation dose/Image quality56Joma 02 00007 i089Joma 02 00007 i090
Dietrich, 2013, CH [83]Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiographyFinancials/Workflow; Health outcomes; Radiation dose445Joma 02 00007 i091Joma 02 00007 i092
Wood, 2021, US [84]Incidental extraspinal imaging findings on adult EOS full body radiographs: prevalence and clinical importanceIncidental findings503Joma 02 00007 i093Joma 02 00007 i094
Pelvis analysis
Bordes, 2023, FR [85]The influence of the sacral slope on pelvic kinematics and clinical manifestations in femoroacetabular impingementPelvic; Spinal/balance200Joma 02 00007 i095Joma 02 00007 i096
Buckland, 2017, US [86]Sagittal pelvic orientation a comparison of two methods of measurementPelvic; Spinal/balance100Joma 02 00007 i097Joma 02 00007 i098Joma 02 00007 i099
Fritz, 2019, CH [87]Acetabular coverage differs between standing and supine positions: model-based assessment of low-dose biplanar radiographs and comparison with CTPelvic 50Joma 02 00007 i100Joma 02 00007 i101Joma 02 00007 i102
Gasparutto, 2023, CH [88]Definition and reliability of 3D acetabular and global offset measurements from bi-plane X-raysPelvic 28Joma 02 00007 i103 Joma 02 00007 i104
Kim, 2019, FR [89]Stand-to-sit kinematics of the pelvis is not always as expected: hip and spine pathologies can have an impactPelvic 90Joma 02 00007 i105Joma 02 00007 i106
Mussmann, 2019, DK [90]Radiographic signs of acetabular retroversion using a low-dose slot-scanning radiographic system (EOS®)Pelvic; Radiation dose/Image quality34Joma 02 00007 i107Joma 02 00007 i108Joma 02 00007 i109
Rouissi, 2017, FR [91]Intra and inter-observer reliability of determining degree of pelvic obliquity in neuromuscular scoliosis using the EOS-CHAIR® protocolPelvic; Spinal/balance36Joma 02 00007 i110Joma 02 00007 i111
Thelen, 2017, FR [92]Normative 3D acetabular orientation measurements by the low-dose EOS imaging system in 102 asymptomatic subjects in standing position: analyses by side, gender, pelvic incidence and reproducibilityPelvic 102Joma 02 00007 i112Joma 02 00007 i113
Pelvis and lower extremity analysis
Bendaya, 2015, FR [93]Healthy vs. osteoarthritic hips: a comparison of hip, pelvis and femoral parameters and relationships using the EOS® systemFemoral; Pelvic 60Joma 02 00007 i114Joma 02 00007 i115
Canetti, 2020, FR [94]Spinopelvic parameters in greater trochanteric pain syndrome: a retrospective case–control studyPelvic 86Joma 02 00007 i116Joma 02 00007 i117
Coulomb, 2023, FR [95]Radiological signs of femoroacetabular impingement are linked to pelvic version in asymptomatic subjectsPelvic; Spinal/balance118Joma 02 00007 i118Joma 02 00007 i119
Frasson, 2022, CA [96]Do femoral version abnormalities play a role in hip function of patients with hip pain?Femoral 31Joma 02 00007 i120Joma 02 00007 i121
Hodel, 2022, CH [97]The relationship between pelvic tilt, frontal, and axial leg alignment in healthy subjectsFoot/ankle; Knee; Pelvic 30Joma 02 00007 i122Joma 02 00007 i123
Hodel, 2023, CH [98]The relationship between frontal, axial leg alignment, and ankle joint line orientation-a radiographic analysis of healthy subjectsFemoral; Foot/ankle; Knee; Pelvic; Tibial 30Joma 02 00007 i124Joma 02 00007 i125Joma 02 00007 i126
Huang, 2020, CN [99]Reliability and concurrent validity of angle measurements in lower limb: EOS 3D goniometer versus 2D manual goniometerFemoral; Knee; Pelvic; Tibial 50Joma 02 00007 i127 Joma 02 00007 i128
Pillet, 2014, FR [100]A reference method for the evaluation of femoral head joint center location technique based on external markersPelvic 17Joma 02 00007 i129 Joma 02 00007 i130
Than, 2012, HU [101]Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging systemFemoral; Knee; Pelvic; Tibial 197?Joma 02 00007 i131
Vaynrub, 2021, US [102]The ankle-pelvic angle (APA) and global lower extremity angle (GLA): summary measurements of pelvic and lower extremity compensationFoot/ankle; Femoral; Pelvic; Spinal/balance 518Joma 02 00007 i132Joma 02 00007 i133
Pelvis and lower extremity analysis—imaging comparison
Ferre, 2014, FR [103] Evaluation of a method for the assessment of anterior acetabular coverage and hip joint space widthFemoral; Pelvic; Radiation dose/Image quality28Joma 02 00007 i134Joma 02 00007 i135Joma 02 00007 i136
Krug, 2014, GE [104]Comparison of image quality using a X-ray stereotactical whole-body system and a direct flat-panel X-ray device in examinations of the pelvis and kneeImage quality114Joma 02 00007 i137Joma 02 00007 i138
Rosskopf, 2016, CH [105]Assessment of two-dimensional (2D) and three-dimensional (3D) lower limb measurements in adults: comparison of micro-dose and low-dose biplanar radiographsRadiation dose/Image quality100Joma 02 00007 i139Joma 02 00007 i140Joma 02 00007 i141Joma 02 00007 i142
Sailhan, 2017, FR [106]Differences in limb alignment and femoral mechanical-anatomical angles using two dimension versus three dimension radiographic imagingFemoral; Knee; Tibial 127Joma 02 00007 i143Joma 02 00007 i144
Pelvis and lower extremity analysis—spine
Katsumi, 2022, US [107]The influence of knee osteoarthritis on spinopelvic alignment and global sagittal balanceFemoral; Knee; Pelvic; Spinal/balance; Tibial 108Joma 02 00007 i145Joma 02 00007 i146
Kouyoumdjian, 2022, FR [108]Hip-spine relationship between sagittal balance of the lumbo-pelvi-femoral complex and hip extension capacity: an EOS evaluation in a healthy caucasian populationPelvic; Spinal/balance120Joma 02 00007 i147Joma 02 00007 i148
Lazennec, 2015, FR [109]Measuring extension of the lumbar-pelvic-femoral complex with the EOS systemFemoral; Pelvic 46Joma 02 00007 i149Joma 02 00007 i150Joma 02 00007 i151
Mekhael, 2021, LB [110]Toward understanding the underlying mechanisms of pelvic tilt reserve in adult spinal deformity: the role of the 3D hip orientationPelvic 227Joma 02 00007 i152Joma 02 00007 i153
Park, 2022, KR [111]Knee extension is related to the posteriorly deviated gravity line to the pelvis in young adults: radiographic analysis using low-dose biplanar X-rayKnee; Pelvic; Spinal/balance124Joma 02 00007 i154Joma 02 00007 i155
Shimizu, 2021, US [112]Understanding sagittal compensation in adult spinal deformity patients: relationship between pelvic tilt and lower-extremity positionFemoral; Pelvic; Spinal/balance; Tibial 200Joma 02 00007 i156Joma 02 00007 i157
Pelvis and lower extremity analysis—gait
Assi, 2023, LB [113]ASD with high pelvic retroversion develop changes in their acetabular orientation during walkingPelvic; Spinal/balance126Joma 02 00007 i158Joma 02 00007 i159
Bakouny, 2017, LB [114]Roussouly’s sagittal spino-pelvic morphotypes as determinants of gait in asymptomatic adult subjectsFoot/ankle; Gait; Knee; Pelvic; Spinal/balance91Joma 02 00007 i160Joma 02 00007 i161
De Pieri, 2021, CH [115]Subject-specific modeling of femoral torsion influences the prediction of hip loading during gait in asymptomatic adultsPelvic 37Joma 02 00007 i162Joma 02 00007 i163
Fu, 2023, CN [116]Relationship between spinal imbalance and knee osteoarthritis by using full-body EOSKnee; Pelvic; Spinal/balance213Joma 02 00007 i164Joma 02 00007 i165
Huang, 2023, CN [117]The association between tibial torsion, knee flexion excursion and foot progression during gait in people with knee osteoarthritis: a cross-sectional studyFemoral; Knee; Tibial 47Joma 02 00007 i166Joma 02 00007 i167
Ould-Slimane, 2021, FR [118]Optoelectronic study of gait kinematics in sagittal spinopelvic imbalanceGait 35Joma 02 00007 i168Joma 02 00007 i169
Sangeux, 2014, AU [119]Which method of hip joint centre localisation should be used in gait analysis?Femoral 17Joma 02 00007 i170Joma 02 00007 i171
Sauret, 2016, FR [120]On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: comparison with EOS biplanar radiographs as referenceFemoral; Foot/ankle; Knee; Tibial 13Joma 02 00007 i172Joma 02 00007 i173
Südhoff, 2007, FR [121]Comparing three attachment systems used to determine knee kinematics during gaitKnee 18Joma 02 00007 i174Joma 02 00007 i175
van Drongelen, 2020, GE [122]Determination of leg alignment in hip osteoarthritis patients with the EOS® system and the effect on external joint moments during gaitFemoral; Knee; Pelvic; Tibial 36Joma 02 00007 i176Joma 02 00007 i177
Yared, 2023, LB [123]Differences in kinematic changes from self-selected to fast speed gait in asymptomatic adults with radiological signs of femoro-acetabular impingementFemoral; Pelvic 130Joma 02 00007 i178Joma 02 00007 i179
Rib cage geometry and thoracic analysis
Attali, 2019, FR [124]Compensation of respiratory-related postural perturbation is achieved by maintenance of head-to-pelvis alignment in healthy humansSpinal/balance; Ribcage/lung 48Joma 02 00007 i180Joma 02 00007 i181
Bertrand, 2008, FR [125]Three-dimensional reconstruction of the rib cage from biplanar radiographyRibcage/lung 15Joma 02 00007 i182 Joma 02 00007 i183
Bousigues, 2023, FR [126]3D reconstruction of the scapula from biplanar X-rays for pose estimation and morphological analysisShoulder 18Joma 02 00007 i184Joma 02 00007 i185Joma 02 00007 i186
Vergari, 2022, FR [127]Functional analysis of the human rib cage over the vital capacity range in standing position using biplanar X-ray imagingPelvic; Ribcage/lung; Spinal/balance58Joma 02 00007 i187Joma 02 00007 i188
Special topics in imaging
Herrou, 2022, FR [128]Prevalence of enthesopathies in adults with x-linked hypophosphatemia: analysis of risk factorsFoot/ankle parameters; Pelvic parameters; Spinal parameters/balance114Joma 02 00007 i189Joma 02 00007 i190
Spinal and pelvis analysis
Fader, 2018, US [129]The role of lumbar lordosis and pelvic sagittal balance in femoroacetabular impingementPelvic; Spinal/balance20Joma 02 00007 i191Joma 02 00007 i192
Ferenczi, 2020, FR [130]Relationship between spinal-pelvic sagittal balance and pelvic-femoral injuries in professional soccer playersLeg length; Pelvic; Spinal/balance61Joma 02 00007 i193Joma 02 00007 i194
Hey, 2021, SG [131]Pelvic and sacral morphology and their correlation with pelvic incidence, lumbar lordosis, and lumbar alignment changes between standing and sitting posturesPelvic; Spinal/balance110Joma 02 00007 i195Joma 02 00007 i196
Spinal and posture analysis
Amabile, 2018, FR [132]Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 yearsPelvic; Spinal/balance110Joma 02 00007 i197Joma 02 00007 i198
Okamoto, 2018, JP [133]Sagittal balance measures are more reproducible when measured in 3D vs in 2D using full-body EOS® imagesPelvic; Spinal/balance60Joma 02 00007 i199 Joma 02 00007 i200
Park, 2023, US [134]The posterior cranial vertical line: a novel radiographic marker for classifying global sagittal alignmentKnee; Pelvic; Health outcomes; Spinal/balance334Joma 02 00007 i201Joma 02 00007 i202
Upper extremity analysis
Cauchon, 2020, CA [135]Morphologic and radiologic parameters correlating to shoulder function at diagnosis for patients with rotator cuff tearShoulder 52Joma 02 00007 i203Joma 02 00007 i204Joma 02 00007 i205
Kaneko, 2016, JP [136]Validation study of arm positions for evaluation of global spinal balance in EOS imagingSpinal/balance34Joma 02 00007 i206Joma 02 00007 i207
Lagacé, 2012, CA [44]Analysis of humeral head displacements from sequences of biplanar X-rays: repeatability study and preliminary results in healthy subjectsShoulder 9Joma 02 00007 i208 Joma 02 00007 i209
Borotikar, 2019, FR [137]Effects of gleno-humeral joint centre mislocation on gleno-humeral kinematics and kineticsShoulder 11Joma 02 00007 i210Joma 02 00007 i211
Loisel, 2023, FR [138]Three-dimensional reconstruction of the hand from biplanar X-rays: assessment of accuracy and reliabilityImage quality6Joma 02 00007 i212Joma 02 00007 i213Joma 02 00007 i214
Ohl, 2010, FR [41]Shoulder bony landmarks location using the EOS low-dose stereoradiography system: a reproducibility studyShoulder 22Joma 02 00007 i215 Joma 02 00007 i216
Zhang, 2015, CA [42]Investigation of 3D glenohumeral displacements from 3D reconstruction using biplane X-ray images: accuracy and reproducibility of the technique and preliminary analysis in rotator cuff tear patients Shoulder 45Joma 02 00007 i217 Joma 02 00007 i218
Retrospective study:Joma 02 00007 i219
Prospective study.Joma 02 00007 i220
Cross-sectional, case-series, case-reports:Joma 02 00007 i221
Case–control, cohort, non-randomized controlled trials:Joma 02 00007 i222
Reliability/accuracy/agreement:Joma 02 00007 i223

Appendix C. Adult Surgery Imaging Using the EOS System

Author, Year, CountryTitleClinical Endpoints
(Parameters)
Total nTimelineStudy Type
Femoral shaft fractures
Knafo, 2016, FR [139]Reproducibility of low-dose stereography measurements of femoral torsion after IM nailing of femoral shaft fractures and in intact femursFemoral 45Joma 02 00007 i224 Joma 02 00007 i225
Hip arthroplasty
Verdier, 2016, FR [140]EOS-based cup navigation: randomised controlled trial in 78 total hip arthroplastiesPelvic 78Joma 02 00007 i226RCT
Billaud, 2015, FR [141]Acetabular component navigation in lateral decubitus based on EOS imaging: a preliminary study of 13 casesPelvic 10Joma 02 00007 i227Joma 02 00007 i228
Xie, 2023, CN [142]A comparison of radiographic outcomes after total hip arthroplasty between the direct lateral approach and posterior lateral approach with EOS 2D/3D X-ray imaging systemFemoral; Pelvic 321Joma 02 00007 i229Joma 02 00007 i230Joma 02 00007 i231
Demzik, 2016, US [143]Inter-rater and intra-rater repeatability and reliability of EOS 3-dimensional imaging analysis softwareFemoral; Pelvic 25Joma 02 00007 i232 Joma 02 00007 i233
Lazennec, 2012, FR [37]THA Patients in standing and sitting positions: a prospective evaluation using the low-dose “full-body” EOS® imaging systemFemoral; Pelvic; Radiation dose150Joma 02 00007 i234Joma 02 00007 i235
Windsor, 2022, US [144]Spinopelvic hypermobility corrects after staged bilateral total hip arthroplastyPelvic 42Joma 02 00007 i236Joma 02 00007 i237
Hip arthroplasty—acetabular and femoral components
Loppini, 2017, IT [31]Femur first surgical technique: a smart non-computer-based procedure to achieve the combined anteversion in primary total hip arthroplastyPelvic 40Joma 02 00007 i238Joma 02 00007 i239
Morvan, 2016, FR [32]Standing radiological analysis with a low-dose biplanar imaging system (EOS system) of the position of the components in total hip arthroplasty using an anterior approachFemoral; Pelvic 102Joma 02 00007 i240Joma 02 00007 i241
Tiberi, 2015, US [145]What is the fate of total hip arthroplasty (THA) acetabular component orientation when evaluated in the standing position?Leg length; Pelvic 113Joma 02 00007 i242Joma 02 00007 i243
Hip arthroplasty—imaging comparison
Anderson, 2022, US [146]Validating the use of 3D biplanar radiography versus CT when measuring femoral anteversion after total hip arthroplasty: a comparative studyPelvic 45Joma 02 00007 i244 Joma 02 00007 i245
Auberger, 2021, FR [147]Pelvic position, lying on a traction table, during THA by direct anterior approach. comparison with the standing position and influence on the acetabular cup anteversionPelvic 58Joma 02 00007 i246Joma 02 00007 i247
Brenneis, 2021, GE [148]Accuracy of preoperative templating in total hip arthroplasty with special focus on stem morphology: a randomized comparison between common digital and three-dimensional planning using biplanar radiographsPelvic 51Joma 02 00007 i248RCTJoma 02 00007 i249
Buller, 2021, US [149]EOS imaging is accurate and reproducible for preoperative total hip arthroplasty templatingFemoral; Pelvic 43Joma 02 00007 i250 Joma 02 00007 i251
Esposito, 2020, US [150]Biplanar low-dose radiography is accurate for measuring combined anteversion after total hip arthroplastyFemoral; Pelvic 20Joma 02 00007 i252Joma 02 00007 i253Joma 02 00007 i254
Guenoun, 2014, FR [36]Reliability of a new method for evaluating femoral stem positioning after total hip arthroplasty based on stereoradiographic 3D reconstructionFemoral 30Joma 02 00007 i255Joma 02 00007 i256Joma 02 00007 i257
Harold, 2020, US [151]Are single plane intraoperative and biplanar postoperative radiographic measurements of acetabular cup position the same?Pelvic 48Joma 02 00007 i258Joma 02 00007 i259Joma 02 00007 i260
Lazenne, 2015, FR [152]Offset and anteversion reconstruction after cemented and uncemented total hip arthroplasty: an evaluation with the low-dose EOS system comparing two- and three-dimensional imagingPelvic 110Joma 02 00007 i261 Joma 02 00007 i262
Lazennec, 2011, FR [153]Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproducibility with EOS imaging system versus conventional radiographiesPelvic 50Joma 02 00007 i263 Joma 02 00007 i264
Ma, 2022, CN [154]Assessing component orientation of total hip arthroplasty using the low-dose bi-planar radiographsPelvic 44Joma 02 00007 i265Joma 02 00007 i266Joma 02 00007 i267
Mainard, 2017, FR [155]Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot studyPelvic 31Joma 02 00007 i268Joma 02 00007 i269Joma 02 00007 i270
Polkowsk, 2012, US [156] Does standing affect acetabular component inclination and version after THA?Pelvic 46Joma 02 00007 i271Joma 02 00007 i272Joma 02 00007 i273
Sun, 2023, US [157]Validation of a novel method of measuring cup orientation using biplanar simultaneous radiographic imagesPelvic 40Joma 02 00007 i274 Joma 02 00007 i275
Tokunaga, 2018, JP [158]Implant orientation measurement after THA using the EOS X-ray image acquisition systemFemoral; Pelvic 90Joma 02 00007 i276 Joma 02 00007 i277
Hip arthroplasty—pelvic positioning and orientation
Barbier, 2017, FR [159]Changes In pelvic orientation after total hip arthroplasty: a prospective study with EOS™Pelvic 40Joma 02 00007 i278Joma 02 00007 i279
Innmann, 2022, CA [160]The accuracy in determining pelvic tilt from anteroposterior pelvic radiographs in patients awaiting hip arthroplastyPelvic 100Joma 02 00007 i280Joma 02 00007 i281Joma 02 00007 i282
Loppini, 2022, IT [161]Pelvic tilt and functional acetabular position after total hip arthroplasty: an EOS 2D/3D radiographic studyPelvic 45Joma 02 00007 i283Joma 02 00007 i284
Premkumar, 2021, US [162]Variability of pelvic axial rotation in patients undergoing total hip arthroplastyPelvic 156Joma 02 00007 i285Joma 02 00007 i286
Hip arthroplasty—planning
Barbier, 2014, FR [163]The reliability of the anterior pelvic plane for computer navigated acetabular component placement during total hip arthroplasty: prospective study with the EOS imaging systemPelvic 44Joma 02 00007 i287Joma 02 00007 i288
Ben-Ari, 2023, US [164]Calibration of magnification in two-dimensional low-dose full-body imaging for preoperative planning of total hip arthroplastyPelvic 137Joma 02 00007 i289Joma 02 00007 i290
Fischer, 2020, JP [165]Preoperative factors improving the prediction of the postoperative sagittal orientation of the pelvis in standing position after total hip arthroplastyHealth outcomes; Pelvic 196Joma 02 00007 i291Joma 02 00007 i292
Huang, 2020, HK [166]A novel method for accurate preoperative templating for total hip arthroplasty using a biplanar digital radiographic (EOS) systemFemoral 41Joma 02 00007 i293 Joma 02 00007 i294
Knafo, 2019, FR [167] Value of 3D preoperative planning for primary total hip arthroplasty based on biplanar weightbearing radiographsFemoral; Leg length33Joma 02 00007 i295Joma 02 00007 i296Joma 02 00007 i297
Pour, 2023, US [168]Is it necessary to obtain lateral pelvic radiographs in flexed seated position for preoperative total hip arthroplasty planning?Pelvic 93Joma 02 00007 i298Joma 02 00007 i299
Sutphen, 2020, US [169]Treatment of recurrent dislocation after total hip arthroplasty using advanced imaging and three-dimensional modeling techniques: a case seriesPelvic 8Joma 02 00007 i300Joma 02 00007 i301
Hip arthroplasty—risk factors and safety
Bendaya, 2016, FR [170]Good vs poor results after total hip arthroplasty: an analysis method using implant and anatomic parameters with the EOS imaging systemHealth outcomes; Leg length; Pelvic 35Joma 02 00007 i302Joma 02 00007 i303
Esposito, 2018, US [171]Total hip arthroplasty patients with fixed spinopelvic alignment are at higher risk of hip dislocationPelvic; Spinal 1000Joma 02 00007 i304Joma 02 00007 i305
Jang, 2022, US [172]Abnormal spinopelvic mobility as a risk factor for acetabular placement error in total hip arthroplasty using optical computer-assisted surgical navigation systemFemoral; Pelvic 338Joma 02 00007 i306 Joma 02 00007 i307
Kim, 2022, JP [173]Low pelvic incidence is a risk factor for intraoperative complications in minimally invasive anterolateral approach for total hip arthroplastyFemoral, Health outcomes; Pelvic 310Joma 02 00007 i308Joma 02 00007 i309
Kouyoumdjian, 2023, FR [174]Influence of kinematics of the lumbopelvic complex in hip arthroplasty dislocation: from assessment to recommendationsPelvic; Spinal/balance80Joma 02 00007 i310Joma 02 00007 i311
Lazennec, 2011, FR [175]The EOS imaging system for understanding a patellofemoral disorder following THRFemoral; Knee; Pelvic 1Joma 02 00007 i312Joma 02 00007 i313
Lazennec, 2017, FR [176]Acetabular and femoral anteversions in standing position are outside the proposed safe zone after total hip arthroplastyPelvic 66Joma 02 00007 i314Joma 02 00007 i315
Perronne, 2021, FR [177] How is quality of life after total hip replacement related to the reconstructed anatomy? A study with low-dose stereoradiographyFemoral; Health outcomes; Pelvic 123Joma 02 00007 i316Joma 02 00007 i317Joma 02 00007 i318Joma 02 00007 i319
Reina, 2020, FR [178]The delta of correction: a novel, more reliable variable than limb-length discrepancy at predicting outcome after total hip arthroplastyHealth outcomes; Leg length121Joma 02 00007 i320Joma 02 00007 i321Joma 02 00007 i322
Sarpong, 2024, US [179]Dislocation following anterior and posterior total hip arthroplasty in the setting of spinal deformity and stiffness: evolving trends using a high-risk protocol at a single tertiary centerLeg length; Pelvic; Spinal/balance367Joma 02 00007 i323Joma 02 00007 i324Joma 02 00007 i325
Hip arthroplasty—spine
Bassani, 2022, IT [180]Simultaneous L5-S1 anterior lumbar interbody fusion and total hip arthroplasty through minimally invasive anterior approaches in hip-spine syndromeHealth outcomes; Pelvic; Spinal/balance; Financials/Workflow1Joma 02 00007 i326Joma 02 00007 i327
Bizdikian, 2023, LB [181]Role of bilateral staged hip arthroplasty in hip-spine syndrome: a case reportGait; Health outcomes; Pelvic; Spinal/balance1Joma 02 00007 i328Joma 02 00007 i329
Esposito, 2016, US [182]Does degenerative lumbar spine disease influence femoroacetabular flexion in patients undergoing total hip arthroplasty?Femoral; Pelvic; Spinal/balance242Joma 02 00007 i330Joma 02 00007 i331
Haffer, 2022, GE [183]Acetabular cup position differs in spinopelvic mobility types: a prospective observational study of primary total hip arthroplasty patientsPelvic; Spinal/balance197Joma 02 00007 i332Joma 02 00007 i333
Haffer, 2022, GE [184]Total hip replacement influences spinopelvic mobility: a prospective observational studyPelvic; Spinal/balance197Joma 02 00007 i334Joma 02 00007 i335
Vigdorchik, 2022, US [185]Does low back pain improve following total hip arthroplasty?Health outcomes; Pelvic 500Joma 02 00007 i336Joma 02 00007 i337
Hip arthroplasty—alignment
Kobayashi, 2020, JP [34]Association of femoral rotation with whole-body alignment in patients who underwent total hip arthroplastyHealth outcomes; Pelvic; Spinal/balance65Joma 02 00007 i338Joma 02 00007 i339
Haffer, 2021, GE [186]Does obesity affect acetabular cup position, spinopelvic function and sagittal spinal alignment? A prospective investigation with standing and sitting assessment of primary hip arthroplasty patientsFemoral; Pelvic; Spinal/balance190Joma 02 00007 i340Joma 02 00007 i341Joma 02 00007 i342
Haffer, 2022, GE [187]Effect of coronal and sagittal spinal malalignment on spinopelvic mobility in patients undergoing total hip replacement: a prospective observational studyPelvic; Spinal/balance197Joma 02 00007 i343Joma 02 00007 i344Joma 02 00007 i345
Shintaro, 2021, JP [188]Prediction of pelvic mobility using whole-spinal and pelvic alignment in standing and sitting position in total hip arthroplasty patientsPelvic; Spinal/balance78Joma 02 00007 i346Joma 02 00007 i347
Hip arthroplasty—leg alignment and length
Clavé, 2015, FR [189]Comparison of the reliability of leg length and offset data generated by three hip replacement CAOS systems using EOS™ imagingLeg length106Joma 02 00007 i348Joma 02 00007 i349Joma 02 00007 i350
van Drongelen, 2019, GE [190]Are changes in radiological leg alignment and femoral parameters after total hip replacement responsible for joint loading during gait?Femoral; Gait; Health Outcomes; Tibial 37Joma 02 00007 i351Joma 02 00007 i352
Di Laura, 2021, UK [191]Reconstruction of acetabular defects greater than Paprosky Type 3b: the importance of functional imagingHealth outcomes; Pelvic; Leg length 25Joma 02 00007 i353Joma 02 00007 i354Joma 02 00007 i355
Gharanizadeh, 2023, IR [192]Assessing leg length discrepancy is necessary before arthroplasty in patients with unilateral Crowe Type IV hip dislocationFemoral; Knee; Leg length; Tibial 61Joma 02 00007 i356Joma 02 00007 i357
Waibel, 2021, CH [193]Symptomatic leg length discrepancy after total hip arthroplasty is associated with new onset of lower back painHealth outcomes; Leg length79Joma 02 00007 i358Joma 02 00007 i359
Lazennec, 2018, FR [194]Does patients’ perception of leg length after total hip arthroplasty correlate with anatomical leg length?Femoral; Foot/ancle; Knee; Leg length; Pelvic 101Joma 02 00007 i360Joma 02 00007 i361
Lecoanet, 2018, FR [195]Leg length discrepancy after total hip arthroplasty: can leg length be satisfactorily controlled via anterior approach without a traction table? Evaluation in 56 patients with EOS 3DHealth outcomes; Leg length56Joma 02 00007 i362Joma 02 00007 i363
van Drongelen, 2022, GE [196]Influence of implantation of a total hip endoprosthesis on the ipsilateral leg alignment: the effect of sex and dysplasia of the hipFemoral; Knee; Leg length; Pelvic; Tibial 27Joma 02 00007 i364Joma 02 00007 i365
Knee arthroplasty
Chalmers, 2022, US [197]Characterizing the magnitude of and risk factors for functional limb lengthening in patients undergoing primary total knee arthroplastyKnee; Leg length782Joma 02 00007 i366Joma 02 00007 i367
Nam, 2015, US [198]Planned bone resections using an MRI-based custom cutting guide system versus 3-dimensional, weight-bearing images in total knee arthroplastyFemoral; Knee; Tibial 53Joma 02 00007 i368Joma 02 00007 i369
Man, 2024, HK [199]Accuracy and outcome of a handheld accelerometer-based navigation device compared to conventional alignment method in total knee arthroplasty in a Chinese populationFemoral; Knee; Tibial 123Joma 02 00007 i370 Joma 02 00007 i371
Hau, 2020, UK [200]Two-dimensional/three-dimensional EOS™ imaging is reliable and comparable to traditional X-ray imaging assessment of knee osteoarthritis aiding surgical managementFemoral; Foot/ankle; Knee; Pelvic; Tibial 20Joma 02 00007 i372 Joma 02 00007 i373
Hurry, 2023, CA [29]A low-dose biplanar X-ray imager has RSA level precision in total knee arthroplastyKnee 15Joma 02 00007 i374 Joma 02 00007 i375
Elkins, 2018, US [201]Lower extremity geometry in morbid obesity-considerations for total knee arthroplastyHealth outcomes; Femoral; Knee; Pelvic; Tibial 232Joma 02 00007 i376Joma 02 00007 i377
Bahadır, 2018, US [202]Guidelines for instrumentation for total knee replacement based on frontal plane radiographsFemoral; Foot/ancle; Knee; Tibial 66Joma 02 00007 i378Joma 02 00007 i379
Finsterwald, 2021, AU [203]Accuracy of one-dimensional templating on linear EOS radiography allows template-directed instrumentation in total knee arthroplastyFemoral; Financials/Workflow; Knee; Tibial 113Joma 02 00007 i380 Joma 02 00007 i381
Ji, 2022, CN [204]Pre-operative predictive factors of residual varus on the mechanical axis after Oxford unicompartmental knee arthroplastyFemoral; Health outcomes; Knee; Pelvic; Tibial 880Joma 02 00007 i382Joma 02 00007 i383
Vigdorchik, 2020, US [205]Stiffness after total knee arthroplasty: is it a result of spinal deformity?Health outcomes; Knee; Pelvic; Spinal/balance78Joma 02 00007 i384Joma 02 00007 i385
Liow, 2016, US [206]Does 3-dimensional in vivo component rotation affect clinical outcomes in unicompartmental knee arthroplasty?Femoral; Health outcomes; Knee; Tibial 58Joma 02 00007 i386Joma 02 00007 i387
Schlatterer, 2009, MC [207]Skeletal landmarks for TKR implantations: evaluation of their accuracy using EOS imaging acquisition systemFemoral; Knee 7? Joma 02 00007 i388
Knee arthroplasty—alignment
Meijer, 2017, NL [208]Do CAS measurements correlate with EOS 3D alignment measurements in primary TKA?Femoral; Knee; Tibial 52Joma 02 00007 i389Joma 02 00007 i390Joma 02 00007 i391
Corbett, 2023, AU [209]Comparison of CT and EOS in assessing coronal lower limb alignment when planning total knee arthroplastyKnee; Pelvic; Tibial 96Joma 02 00007 i392 Joma 02 00007 i393
Nam, 2016, US [210]The impact of imaging modality on the measurement of coronal plane alignment after total knee arthroplastyFemoral; Knee; Tibial 160Joma 02 00007 i394Joma 02 00007 i395Joma 02 00007 i396
Bar Ziv, 2022, IL [211]Excessive sagittal slope of the tibia component during kinematic alignment-safety and functionality at a minimum 2-year follow-upFemoral; Health outcomes; Knee; Pelvic; Tibial 337Joma 02 00007 i397Joma 02 00007 i398
Bar Ziv, 2022, IL [212]Minimum 2-year radiographic and clinical outcomes of unrestricted kinematic alignment total knee arthroplasty in patients with excessive varus of the tibia componentFemoral; Health outcomes; Knee; Pelvic; Tibial 338Joma 02 00007 i399Joma 02 00007 i400
Kim, 2021, KR [213]Effects of total knee arthroplasty on coronal and sagittal whole-body alignments: serial assessments using whole-body EOSFemoral; Pelvic; Spinal/balance; Tibial 101Joma 02 00007 i401Joma 02 00007 i402Joma 02 00007 i403
Meijer, 2014, NL [214]Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: a reliability studyFemoral; Knee: Tibial 37Joma 02 00007 i404 Joma 02 00007 i405
Tsai, 2016, US [215]Three-dimensional imaging analysis of unicompartmental knee arthroplasty evaluated in standing position: component alignment and in vivo articular contactFemoral; Knee; Tibial 68Joma 02 00007 i406Joma 02 00007 i407Joma 02 00007 i408
Yoo, 2020, KR [216]Pitfalls in assessing limb alignment affected by rotation and flexion of the knee after total knee arthroplasty: analysis using sagittal and coronal whole-body EOS radiographyFemoral; Knee; Tibial 115Joma 02 00007 i409Joma 02 00007 i410
Shoulder arthroplasty
Linderman, 2022, US [217]Return of scapulohumeral rhythm in patients after reverse shoulder arthroplasty: a midterm stereoradiographic imaging analysisShoulder 10Joma 02 00007 i411Joma 02 00007 i412
Tibial osteotomy
Yoo, 2023, KR [218]Changes in parameters after high tibial osteotomy: comparison of EOS system and computed tomographic analysisFemoral; Knee; Tibial 30Joma 02 00007 i413Joma 02 00007 i414Joma 02 00007 i415
Oh, 2023, KR [219]Coronal and sagittal alignment of ankle joint is significantly affected by high tibial osteotomyFemoral; Foot/angle; Knee; Tibial 46Joma 02 00007 i416Joma 02 00007 i417
Retrospective study:Joma 02 00007 i418
Prospective study:Joma 02 00007 i419
Cross-sectional, case-series, case-reports:Joma 02 00007 i420
Case–control, cohort, non-randomized controlled trials:Joma 02 00007 i421
Reliability/accuracy/agreement:Joma 02 00007 i422
Randomized controlled trial.RCT

Appendix D. Pediatric Imaging Using EOS Imaging System

Author, Year, CountryTitleClinical Endpoints
(Parameters)
Total nTimelineStudy TypePediatric/Adults
Center of mass analysis—fracture
Sandoz, 2008, FR [220]Subject-specific mass and 3D localisation of the mass centre of child body segments using biplanar X-raysSpinal/balance12Joma 02 00007 i423Joma 02 00007 i424Joma 02 00007 i425 Joma 02 00007 i426Joma 02 00007 i427
Foot and ankle analysis
Rampal, 2018, FR [221] Assessing 3D paediatric foot morphology using low-dose biplanar radiography: parameter reproducibility and preliminary valuesFoot/ankle 10Joma 02 00007 i428Joma 02 00007 i429Joma 02 00007 i430Joma 02 00007 i431
Rungprai, 2014, US [222]Validation and reproducibility of a biplanar imaging system versus conventional radiography of foot and ankle radiographic parametersFemoral; Foot/ankle; Leg length; Tibial 50Joma 02 00007 i432Joma 02 00007 i433Joma 02 00007 i434Joma 02 00007 i435Joma 02 00007 i436
Head and neck analysis—cerebral shunt status
Ben-Sira, 2018, IL [11]Use of EOS low-dose biplanar X-ray for shunt series in children with hydrocephalus: a preliminary studyShunt9Joma 02 00007 i437Joma 02 00007 i438 Joma 02 00007 i439
Monuszko, 2021, US [19]Image quality of EOS low-dose radiography in comparison with conventional radiography for assessment of ventriculoperitoneal shunt integrityImage quality/radiation dose; Shunt57Joma 02 00007 i440Joma 02 00007 i441Joma 02 00007 i442Joma 02 00007 i443Joma 02 00007 i444
Image quality
Dubousset, 2005, FR [223]A new imaging 2D and 3D for musculo-skeletal physiology and pathology with low radiation dose and standing position: the EOS systemImage quality/radiation dose45Joma 02 00007 i445 Joma 02 00007 i446Joma 02 00007 i447
Welborn, 2020, US [224]Image distortion in biplanar slot scanning: patient-specific factorsImage quality43Joma 02 00007 i448Joma 02 00007 i449Joma 02 00007 i450?
Image quality—scoliosis
Hui, 2016, HK [225]Radiation dose of digital radiography (DR) versus micro-dose X-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT- IRSSD “John Sevastic Award” winner in imaging researchImage quality/radiation dose131Joma 02 00007 i451Joma 02 00007 i452 Joma 02 00007 i453Joma 02 00007 i454
Lower extremity analysis
Brooks, 2021, US [226]Reliability of low-dose biplanar radiography in assessing pediatric torsional pathologyFemoral; Tibial 17Joma 02 00007 i455 Joma 02 00007 i456Joma 02 00007 i457
Gaumétou, 2014, FR [227]EOS analysis of lower extremity segmental torsion in children and young adultsFemoral; Tibial 114Joma 02 00007 i458Joma 02 00007 i459 Joma 02 00007 i460Joma 02 00007 i461
Ghanem, 2023, LB [228]Towards a better understanding of knee angular deformities: discrepancies between clinical examination and 2D/3D assessmentsKnee 329Joma 02 00007 i462Joma 02 00007 i463Joma 02 00007 i464Joma 02 00007 i465Joma 02 00007 i466
Gheno, 2012, FR [229]Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray deviceFemoral; Knee; Tibial 27Joma 02 00007 i467Joma 02 00007 i468Joma 02 00007 i469Joma 02 00007 i470
Lerisson, 2018, FR [230]Assessment of micro-dose biplanar radiography in lower limb measurements in childrenFemoral; Leg length; Knee; Tibial; Image quality/radiation dose260Joma 02 00007 i471Joma 02 00007 i472Joma 02 00007 i473Joma 02 00007 i474
Meyrignac, 2014, FR [231]Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiationFemoral parameters; Tibial parameters30Joma 02 00007 i475Joma 02 00007 i476 Joma 02 00007 i477
Ries, 2023, US [232]Interobserver reliability of biplanar radiography is unaffected by clinical factors relevant to individuals at risk of pathological lower limb torsionFemoral; Tibial 44Joma 02 00007 i478Joma 02 00007 i479Joma 02 00007 i480Joma 02 00007 i481Joma 02 00007 i482
Rosskopf, 2013, CH [233] Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CTFemoral; Tibial 50Joma 02 00007 i483Joma 02 00007 i484Joma 02 00007 i485Joma 02 00007 i486
Rosskopf, 2017, CH [234] Femoral and tibial torsion measurements in children and adolescents: comparison of MRI and 3D models based on low-dose biplanar radiographsFemoral; Tibial 60Joma 02 00007 i487Joma 02 00007 i488Joma 02 00007 i489Joma 02 00007 i490
Schlégl, 2022, HU [235]Neck-shaft angle measurement in children: accuracy of the conventional radiography-based (2D) methods compared to 3D reconstructionsFemoral 156Joma 02 00007 i491Joma 02 00007 i492Joma 02 00007 i493Joma 02 00007 i494
Westberry, 2019, US [236]3D modeling of lower extremities with biplanar radiographs: reliability of measures on subsequent examinationsFemoral; Knee; Leg length; Pelvic; Tibial 53Joma 02 00007 i495Joma 02 00007 i496Joma 02 00007 i497Joma 02 00007 i498
Lower extremity analysis—bone lesions
Yucekul, 2022, TR [237]Prevalence of benign bone lesions of the lower extremity in the pediatric spinal disorders: a whole-body imaging studyTumor1378Joma 02 00007 i499Joma 02 00007 i500Joma 02 00007 i501Joma 02 00007 i502
Lower extremity analysis—cerebral palsy
Assi, 2007, FR [238]Specific 3D reconstruction for children lower limbs using a low dose biplanar X-ray system. reproducibility of clinical parameters for cerebral palsy patientsFemoral; Knee; Pelvic; Tibial 12?Joma 02 00007 i503Joma 02 00007 i504Joma 02 00007 i505Joma 02 00007 i506
Assi, 2013, FR [239]Three-dimensional reconstructions for asymptomatic and cerebral palsy children’s lower limbs using a biplanar X-ray system: a feasibility studyFemoral; Leg Length; Tibial 10Joma 02 00007 i507Joma 02 00007 i508 Joma 02 00007 i509
Lower extremity analysis—x-linked hypophosphatemia
Bonnet-Lebrun, 2020, FR [240]Quantitative analysis of lower limbs and pelvis deformities in children with x-linked hypophosphatemic ricketsFemoral; Pelvic; Tibial 75Joma 02 00007 i510Joma 02 00007 i511 Joma 02 00007 i512
Lower extremity analysis—scoliosis
Burkus, 2019, HU [241]Analysis of proximal femoral parameters in adolescent idiopathic scoliosisFemoral; Spinal/balance670Joma 02 00007 i513Joma 02 00007 i514Joma 02 00007 i515Joma 02 00007 i516
Karam, 2020, LB [242]Alterations of 3D acetabular and lower limb parameters in adolescent idiopathic scoliosisFemoral; Knee; Leg length; Pelvic; Spinal/balance; Tibial 360Joma 02 00007 i517Joma 02 00007 i518 Joma 02 00007 i519
Márkus, 2018, HU [243]The effect of coronal decompensation on the biomechanical parameters in lower limbs in adolescent idiopathic scoliosisFemoral; Knee; Leg length; Pelvic; Spinal/balance; Tibial 336Joma 02 00007 i520Joma 02 00007 i521Joma 02 00007 i522Joma 02 00007 i523
Lower extremity analysis—patellar dislocation
Miao, 2023, CN [244]Analysis of lower extremity alignment (LEA) in children with recurrent patellar dislocation by EOS systemFemoral; Knee; Tibial 50Joma 02 00007 i524Joma 02 00007 i525 Joma 02 00007 i526
Lower extremity analysis—clubfoot
Rampal, 2020, FR [245]Combined 3D analysis of lower-limb morphology and function in children with idiopathic equinovarus clubfoot: a preliminary studyFemoral; Foot/ankle; Gait; Pelvic; Tibial 10Joma 02 00007 i527Joma 02 00007 i528 Joma 02 00007 i529
Lower extremity analysis—gait
Westberry, 2018, US [246]Femoral anteversion assessment: comparison of physical examination, gait analysis, and EOS biplanar radiographyFemoral; Gait 110Joma 02 00007 i530Joma 02 00007 i531Joma 02 00007 i532Joma 02 00007 i533
Lower extremity analysis—gait—cerebral palsy
Assi, 2016, LB [247]Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy childrenPelvic 28Joma 02 00007 i534Joma 02 00007 i535 Joma 02 00007 i536
Bailly, 2021, FR [248]3-D lower extremity bone morphology in ambulant children with cerebral palsy and its relation to gaitFemoral; Gait; Knee; Leg length; Tibial 523Joma 02 00007 i537Joma 02 00007 i538 Joma 02 00007 i539
Bailly, 2022, FR [249]Relationship between 3D lower limb bone morphology and 3D gait variables in children with uni and bilateral cerebral palsyFemoral; Foot/ankle; Gait; Knee; Pelvic; Tibial 121Joma 02 00007 i540Joma 02 00007 i541 Joma 02 00007 i542
Lower extremity analysis—gait—x-linked hypophosphatemia
Bonnet-Lebrun, 2023, FR [250] Combined gait analysis and radiologic examination in children with x-linked hypophosphatemiaGait; Femoral, Foot/ankle; Knee; Pelvic 55Joma 02 00007 i543Joma 02 00007 i544Joma 02 00007 i545 Joma 02 00007 i546
Lower extremity analysis—leg length
Chen, 2023, US [251]Normative femoral and tibial lengths in a modern population of twenty-first-century U.S. childrenFemoral; Leg length; Tibial 700Joma 02 00007 i547Joma 02 00007 i548 Joma 02 00007 i549
Jensen, 2017, DK [5]Microdose acquisition in adolescent leg length discrepancy using a low-dose biplane imaging systemFemoral; Leg length; Tibial 22Joma 02 00007 i550Joma 02 00007 i551Joma 02 00007 i552Joma 02 00007 i553
Rampal, 2018, FR [252] Lower-limb lengths and angles in children older than six years: reliability and reference values by EOS(®) stereoradiographyFemoral; Tibial ?Joma 02 00007 i554Joma 02 00007 i555Joma 02 00007 i556Joma 02 00007 i557
Lower extremity analysis—leg length—scoliosis
Sekiya, 2018, JP [253]Evaluation of functional and structural leg length discrepancy in patients with adolescent idiopathic scoliosis using the EOS imaging system: a prospective comparative studyLeg length; Pelvic; Spinal/balance82Joma 02 00007 i558Joma 02 00007 i559 Joma 02 00007 i560Joma 02 00007 i561
Pelvis and lower extremity analysis
Khalifé, 2023, FR [254]Femoral neck version in the spinopelvic and lower limb 3D alignment: a full-body EOS® study in 400 healthy subjectsFemoral; Foot/ankle; Knee; Pelvic; Spinal/balance400Joma 02 00007 i562Joma 02 00007 i563 Joma 02 00007 i564Joma 02 00007 i565
Loppini, 2017, IT [255]Analysis of the pelvic functional orientation in the sagittal plane: a radiographic study with EOS 2D/3D technologyPelvic 109Joma 02 00007 i566Joma 02 00007 i567Joma 02 00007 i568Joma 02 00007 i569Joma 02 00007 i570
Passmore, 2018, AU [256]Defining the medial-lateral axis of the femur: medical imaging, conventional and functional calibration methods lead to differences in hip rotation kinematics for children with torsional deformitiesFemoral; Gait; Knee20Joma 02 00007 i571Joma 02 00007 i572 Joma 02 00007 i573
Prum, 2022, FR [257] Can early golfing lead to acetabular and lower limb changes? A cross-sectional studyFemoral; Pelvic; Tibial; Pelvic 35Joma 02 00007 i574Joma 02 00007 i575Joma 02 00007 i576 Joma 02 00007 i577Joma 02 00007 i578
Pytiak, 2016, US [258]Analysis of spinal alignment and pelvic parameters on upright radiographs: implications for acetabular developmentPelvic; Spinal/balance99Joma 02 00007 i579Joma 02 00007 i580Joma 02 00007 i581Joma 02 00007 i582
Rampal, 2013, FR [259] Three-dimensional morphologic study of the child’s hip: which parameters are reproducible?Pelvic 33Joma 02 00007 i583Joma 02 00007 i584Joma 02 00007 i585Joma 02 00007 i586
Schlégl, 2015, HU [260]Three dimensional radiological imaging of normal lower-limb alignment in childrenFemoral; Knee; Tibial 523Joma 02 00007 i587Joma 02 00007 i588Joma 02 00007 i589Joma 02 00007 i590
Szuper, 2015, HU [261]Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray systemFemoral; Pelvic 508Joma 02 00007 i591Joma 02 00007 i592Joma 02 00007 i593Joma 02 00007 i594
Pelvis and lower extremity analysis—cerebral palsy
Massaad, 2016, LB [262]Three-dimensional evaluation of skeletal deformities of the pelvis and lower limbs in ambulant children with cerebral palsyFemoral; Pelvic; Tibial 49Joma 02 00007 i595Joma 02 00007 i596 Joma 02 00007 i597
Neirynck, 2019, BE [263]The migration percentage measured on EOS® standing full-leg radiographs: equivalent and advantageous in ambulant children with cerebral palsyPelvic 21Joma 02 00007 i598Joma 02 00007 i599Joma 02 00007 i600Joma 02 00007 i601
Thépaut, 2016, FR [264]Measuring physiological and pathological femoral anteversion using a biplanar low-dose X-ray system: validity, reliability, and discriminative ability in cerebral palsyPelvic parameters38Joma 02 00007 i602Joma 02 00007 i603 Joma 02 00007 i604
Pelvis and lower extremity analysis—dysplasia
Powell, 2020, US [265]Can EOS imaging substitute for conventional radiography in measurement of acetabular morphology in the young dysplastic hip?Pelvic 21Joma 02 00007 i605Joma 02 00007 i606Joma 02 00007 i607Joma 02 00007 i608
Pelvis and lower extremity analysis—leg length
Park, 2022, KR [266]The comparison of lower extremity length and angle between computed radiography-based teleoroentgenogram and EOS ® imaging systemFemoral; Knee; Leg length; Tibial 101Joma 02 00007 i609Joma 02 00007 i610Joma 02 00007 i611Joma 02 00007 i612Joma 02 00007 i613Joma 02 00007 i614
Pelvis and lower extremity analysis—impingement
Schmitz, 2013, US [267]Spectrum of radiographic femoroacetabular impingement morphology in adolescents and young adults: an EOS-based double-cohort studyPelvic; Spinal/balance90Joma 02 00007 i615Joma 02 00007 i616Joma 02 00007 i617Joma 02 00007 i618Joma 02 00007 i619
Maturity
Hughes, 2020, US [268]The clavicle continues to grow during adolescence and early adulthoodMaturity57Joma 02 00007 i620Joma 02 00007 i621Joma 02 00007 i622Joma 02 00007 i623Joma 02 00007 i624
Nguyen, 2020, US [269]Hand bone age radiography: comparison between slot-scanning and conventional techniquesImage quality/radiation dose; Maturity194Joma 02 00007 i625Joma 02 00007 i626Joma 02 00007 i627Joma 02 00007 i628
O’Sullivan, 2021, HU [270]Femoral neck-shaft angle and bone age in 4- to 24-year-olds based on 1005 EOS three-dimensional reconstructionsFemoral; Maturity1005Joma 02 00007 i629Joma 02 00007 i630 Joma 02 00007 i631Joma 02 00007 i632
Schlégl, 2017, HU [271]Determination and correlation of lower limb anatomical parameters and bone age during skeletal growth (based on 1005 cases)Femoral; Leg length; Maturity; Tibial 1005Joma 02 00007 i633Joma 02 00007 i634Joma 02 00007 i635Joma 02 00007 i636Joma 02 00007 i637
Schlégl, 2022, HU [272]Alternative methods for skeletal maturity estimation with the EOS scanner-experience from 934 patientsMaturity934Joma 02 00007 i638Joma 02 00007 i639Joma 02 00007 i640Joma 02 00007 i641Joma 02 00007 i642
Xie, 2023, CN [273]Identification of adolescent menarche status using biplanar X-ray images: a deep learning-based methodMaturity259Joma 02 00007 i643Joma 02 00007 i644Joma 02 00007 i645Joma 02 00007 i646
Machine learning
Vafadar, 2021, FR [274]A novel dataset and deep learning-based approach for marker-less motion capture during gaitGait 31Joma 02 00007 i647Joma 02 00007 i648Joma 02 00007 i649Joma 02 00007 i650
Machine learning—leg length
Tsai, 2021, US [275]Anatomical landmark localization via convolutional neural networks for limb-length discrepancy measurementsFemoral; Leg length; Tibial 359Joma 02 00007 i651Joma 02 00007 i652 Joma 02 00007 i653Joma 02 00007 i654
Rib cage geometry and thoracic analysis
Aubert, 2016, FR [276]3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approachRibcage/lung; Spinal/balance79Joma 02 00007 i655Joma 02 00007 i656Joma 02 00007 i657Joma 02 00007 i658
Khalifé, 2022, FR [277]The rib cage: a new element in the spinopelvic chainPelvic; Ribcage/lung; Spinal/balance; Thoracic 256Joma 02 00007 i659Joma 02 00007 i660 Joma 02 00007 i661Joma 02 00007 i662
Rib cage geometry and thoracic analysis—scoliosis
Assi, 2021, LB [278] A novel classification of 3D rib cage deformity in subjects with adolescent idiopathic scoliosisPelvic; Ribcage/lung; Spinal/balance271Joma 02 00007 i663Joma 02 00007 i664Joma 02 00007 i665 Joma 02 00007 i666
Bouloussa, 2019, FR [279]Biplanar stereoradiography predicts pulmonary function tests in adolescent idiopathic scoliosis: a cross-sectional studySpinal/balance; Ribcage/lung 54Joma 02 00007 i667Joma 02 00007 i668 Joma 02 00007 i669
Courvoisier, 2013, FR [280]Evaluation of a three-dimensional reconstruction method of the rib cage of mild scoliotic patientsSpinal parameters/balance; Ribcage/lung parameters22Joma 02 00007 i670Joma 02 00007 i671Joma 02 00007 i672
Machino, 2020, JP [281]Accuracy of rib cage parameters from 3-dimensional reconstruction images obtained using simultaneous biplanar radiographic scanning technique in adolescent idiopathic scoliosis: comparison with conventional computed tomographyRibcage/lung 28Joma 02 00007 i673Joma 02 00007 i674Joma 02 00007 i675Joma 02 00007 i676
Vergari, 2020, FR [282]A novel method of anatomical landmark selection for rib cage 3D reconstruction from biplanar radiographyRibcage/lung; Spinal/balance20Joma 02 00007 i677Joma 02 00007 i678Joma 02 00007 i679Joma 02 00007 i680
Yaszay, 2016, US [283] The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary functionSpinal/balance; Ribcage/lung 163Joma 02 00007 i681Joma 02 00007 i682 Joma 02 00007 i683
Spinal and posture analysis—spine
Clement, 2020, US [284]What are normal radiographic spine and shoulder balance parameters among adolescent patients?Spinal parameters/balance; Shoulder parameters117Joma 02 00007 i684Joma 02 00007 i685 Joma 02 00007 i686
Retrospective study:Joma 02 00007 i687
Prospective study:Joma 02 00007 i688
Cross-sectional, case-series, case-reports:Joma 02 00007 i689
Case–control, cohort, non-randomized controlled trials:Joma 02 00007 i690
Reliability/accuracy/agreement:Joma 02 00007 i691
Adult:Joma 02 00007 i692
Pediatric:Joma 02 00007 i693

Appendix E. Pediatric Surgery Imaging Using EOS Imaging System

Author, Year, CountryTitleClinical Endpoints
(Parameters)
Total nTimelineStudy TypePediatric/Adults
Lower extremity analysis—fracture
Boscher, 2022, FR [285]Femoral shaft fractures treated by antegrade locked intramedullary nailing: EOS stereoradiographic imaging evaluation of rotational malalignment having a functional impactFemoral; Health outcomes; Pelvic 30Joma 02 00007 i694Joma 02 00007 i695 Joma 02 00007 i696Joma 02 00007 i697
Orfeuvre, 2021, FR [286]EOS stereographic assessment of femoral shaft malunion after intramedullary nailing: a prospective series of 48 patients at 9 months’ follow-upHealth outcomes; Femoral; Knee; Tibial48Joma 02 00007 i698Joma 02 00007 i699 Joma 02 00007 i700Joma 02 00007 i701
Simon, 2018, FR [287]Pediatric tibial shaft fractures treated by open reduction and stabilization with monolateral external fixationKnee; Leg length; Maturity 45Joma 02 00007 i702Joma 02 00007 i703 Joma 02 00007 i704Joma 02 00007 i705
Lower extremity analysis—imaging comparison
Chua, 2022, SG [288]Accuracy of biplanar linear radiography versus conventional radiographs when used for lower limb and implant measurementsFemoral; Knee; Tibial 43Joma 02 00007 i706 Joma 02 00007 i707Joma 02 00007 i708Joma 02 00007 i709
Lower extremity analysis—leg length
Lecoanet, 2020, FR [289]Medium-term evaluation of leg lengthening by ISKD® intramedullary nail in 28 patients: should we still use this lengthening system?Health outcomes; Leg length28Joma 02 00007 i710Joma 02 00007 i711 Joma 02 00007 i712Joma 02 00007 i713
Pelvis and lower extremity analysis—Down’s syndrome
Bakouny, 2020, LB [290]Combining acetabular and femoral morphology improves our understanding of the Down syndrome hipFemoral; Knee; Pelvic; Tibial 82Joma 02 00007 i714Joma 02 00007 i715 Joma 02 00007 i716Joma 02 00007 i717
Rib cage geometry and thoracic analysis—scoliosis
Deng, 2022, HK [291]Statistical changes of lung morphology in patients with adolescent idiopathic scoliosis after spinal fusion surgery: a prospective nonrandomized study based on low-dose biplanar X-ray imagingRibcage/lung; Spinal/balance25Joma 02 00007 i718Joma 02 00007 i719 Joma 02 00007 i720Joma 02 00007 i721
Machino, 2021, JP [38]Three-dimensional analysis of preoperative and postoperative rib cage parameters by simultaneous biplanar radiographic scanning technique in adolescent idiopathic scoliosis: minimum 2-year follow-upPelvic; Ribcage/lung Spinal/balance67Joma 02 00007 i722Joma 02 00007 i723 Joma 02 00007 i724
Machino, 2021, JP [39]Three-dimensional reconstruction image by biplanar stereoradiography reflects pulmonary functional states in adolescent idiopathic scoliosisHealth outcomes; Ribcage/lung; Spinal/balance67Joma 02 00007 i725Joma 02 00007 i726 Joma 02 00007 i727
Machino, 2022, JP [40]Factors affecting postoperative pulmonary function deterioration in adolescent idiopathic scoliosis: a prospective study using 3-dimensional image reconstruction by biplanar stereoradiographyPelvic; Spinal/balance; Ribcage/lung 67Joma 02 00007 i728Joma 02 00007 i729 Joma 02 00007 i730
Pietton, 2022, FR [292]Estimating pulmonary function after surgery for adolescent idiopathic scoliosis using biplanar radiographs of the chest with 3D reconstructionHealth outcomes; Ribcage/lung; Spinal/balance45Joma 02 00007 i731Joma 02 00007 i732 Joma 02 00007 i733
Sabourin, 2010, FR [293]Three-dimensional stereoradiographic modeling of rib cage before and after spinal growing rod procedures in early-onset scoliosisPelvic; Spinal/balance8Joma 02 00007 i734Joma 02 00007 i735Joma 02 00007 i736Joma 02 00007 i737
Spinal and posture analysis—shoulder
Ha, 2021, US [294]Can spinal deformity patients maintain proper arm positions while undergoing full-body X-ray?Arm positioning370Joma 02 00007 i738Joma 02 00007 i739 Joma 02 00007 i740Joma 02 00007 i741
Retrospective study:Joma 02 00007 i742
Prospective study:Joma 02 00007 i743
Cross-sectional, case-series, case-reports:Joma 02 00007 i744
Case–control, cohort, non-randomized controlled trials:Joma 02 00007 i745
Reliability/accuracy/agreement:Joma 02 00007 i746
Adult:Joma 02 00007 i747
Pediatric:Joma 02 00007 i748

References

  1. Illés, T.; Somoskeöy, S. The EOS™ imaging system and its uses in daily orthopaedic practice. Int. Orthop. 2012, 36, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
  2. Escott, B.G.; Ravi, B.; Weathermon, A.C.; Acharya, J.; Gordon, C.L.; Babyn, P.S.; Kelley, S.P.; Narayanan, U.G. EOS low-dose radiography: A reliable and accurate upright assessment of lower-limb lengths. J. Bone Jt. Surg. Am. 2013, 95, e1831–e1837. [Google Scholar] [CrossRef] [PubMed]
  3. McKenna, C.; Wade, R.; Faria, R.; Yang, H.; Stirk, L.; Gummerson, N.; Sculpher, M.; Woolacott, N. EOS 2D/3D X-ray imaging system: A systematic review and economic evaluation. Health Technol. Assess. 2012, 16, 1–188. [Google Scholar] [CrossRef]
  4. Yvert, M.; Diallo, A.; Bessou, P.; Rehel, J.L.; Lhomme, E.; Chateil, J.F. Radiography of scoliosis: Comparative dose levels and image quality between a dynamic flat-panel detector and a slot-scanning device (EOS system). Diagn. Interv. Imaging 2015, 96, 1177–1188. [Google Scholar] [CrossRef]
  5. Jensen, J.; Mussmann, B.R.; Hjarbæk, J.; Al-Aubaidi, Z.; Pedersen, N.W.; Gerke, O.; Torfing, T. Microdose acquisition in adolescent leg length discrepancy using a low-dose biplane imaging system. Acta Radiol. 2017, 58, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
  6. Girdler, S.; Cho, B.; Mikhail, C.M.; Cheung, Z.B.; Maza, N.; Cho, S.K.-W. Emerging Techniques in Diagnostic Imaging for Idiopathic Scoliosis in Children and Adolescents: A Review of the Literature. World Neurosurg. 2020, 136, 128–135. [Google Scholar] [CrossRef]
  7. Garg, B.; Mehta, N.; Bansal, T.; Malhotra, R. EOS® imaging: Concept and current applications in spinal disorders. J. Clin. Orthop. Trauma. 2020, 11, 786–793. [Google Scholar] [CrossRef]
  8. Wybier, M.; Bossard, P. Musculoskeletal imaging in progress: The EOS imaging system. Jt. Bone Spine 2013, 80, 238–243. [Google Scholar] [CrossRef] [PubMed]
  9. Delsole, E.M.; Mercuri, J.J. Utility of Upright Weight-bearing Imaging in Total Hip Arthroplasty. Semin. Musculoskelet. Radiol. 2019, 23, 603–608. [Google Scholar] [CrossRef]
  10. Hey, H.W.D.; Chan, C.X.; Wong, Y.M.; Sng, J.W.; Ong, H.Y.; Tan, C.S.; Liu, G.K.; Wong, H.K.; Quek, S.T. The Effectiveness of Full-body EOS Compared With Conventional Chest X-ray in Preoperative Evaluation of the Chest for Patients Undergoing Spine Operations: A Preliminary Study. Spine (Phila Pa 1976) 2018, 43, 1502–1511. [Google Scholar] [CrossRef]
  11. Ben-Sira, L.; Shiran, S.I.; Pratt, L.-T.; Precel, R.; Ovadia, D.; Constantini, S.; Roth, J. Use of EOS Low-Dose Biplanar X-Ray for Shunt Series in Children with Hydrocephalus: A Preliminary Study. World Neurosurg. 2018, 116, e273–e277. [Google Scholar] [CrossRef] [PubMed]
  12. Peters, M.D.J.; Godfrey, C.; McInerney, P.; Khalil, H.; Larsen, P.; Marnie, C.; Pollock, D.; Tricco, A.C.; Munn, Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid. Synth. 2022, 20, 953–968. [Google Scholar] [CrossRef] [PubMed]
  13. Aromataris, E.M. JBI Manual for Evidence Synthesis 2020. 2022. Available online: https://synthesismanual.jbi.global (accessed on 19 March 2025).
  14. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
  15. Brage, K.; Mussmann, B.; Geijer, M.; Larsen, P.; Jensen, J. Clinical application of EOS imaging system: A scoping review protocol. JBI Evid. Synth. 2023, 21, 1009–1015. [Google Scholar] [CrossRef]
  16. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
  17. Boutry, N.; Dutouquet, B.; Leleu, X.; Vieillard, M.H.; Duhamel, A.; Cotten, A. Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma. Eur. Radiol. 2013, 23, 2236–2245. [Google Scholar] [CrossRef]
  18. EOS Imaging, EOSedge. Available online: https://www.eos-imaging.com/our-expertise/imaging-solutions/eosedge (accessed on 19 March 2025).
  19. Monuszko, K.; Malinzak, M.; Yang, L.Z.; Niedzwiecki, D.; Fuchs, H.; Muh, C.R.; Gingrich, K.; Lark, R.; Thompson, E.M. Image quality of EOS low-dose radiography in comparison with conventional radiography for assessment of ventriculoperitoneal shunt integrity. J. Neurosurg. Pediatr. 2021, 27, 375–381. [Google Scholar] [CrossRef]
  20. Wade, R.; Yang, H.; McKenna, C.; Faria, R.; Gummerson, N.; Woolacott, N. A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur. Spine J. 2013, 22, 296–304. [Google Scholar] [CrossRef]
  21. Hamzian, N.; Roozmand, Z.; Abrisham, S.M.J.; Abdollahi-Dehkordi, S.; Afereydoon, S.; Ghorbani, M.; Deevband, M.R. Monte Carlo evaluation of effective dose and risk of exposure induced cancer death (REID) for common examinations in stereo radiography (EOS) imaging: Considering age and gender. J. Med. Imaging Radiat. Sci. 2022, 53, 283–290. [Google Scholar] [CrossRef]
  22. Hamzian, N.; Afereydoon, S.; Ghorbani, M.; Abrisham, S.M.J.; Roozmand, Z.; Abdollahi-Dehkordi, S.; Javan, M.S.; Deevband, M.R. Equivalent Dose and Risk of Exposure Induced Cancer Death of Different Organs due to Various Image Techniques of EOS Imaging System. J. Biomed. Phys. Eng. 2021, 11, 289–296. [Google Scholar] [CrossRef]
  23. Pacult, M.A.; Walker, C.T.; Godzik, J.; Turner, J.D.; Uribe, J.S. Emerging Technologies in Spinal Surgery: Ultra-Low Radiation Imaging Platforms. Oper. Neurosurg. 2021, 21 (Suppl. S1), S39–S45. [Google Scholar] [CrossRef] [PubMed]
  24. Chiron, P.; Demoulin, L.; Wytrykowski, K.; Cavaignac, E.; Reina, N.; Murgier, J. Radiation dose and magnification in pelvic X-ray: EOS™ imaging system versus plain radiographs. Orthop. Traumatol. Surg. Res. 2017, 103, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
  25. Bragdon, C.H.W. Radiostereometric analysis (RSA) studies at Massachusetts general hospital. Psychol. Harv. Orthop. J. 2003, 5, 104–107. [Google Scholar]
  26. Lorenzen, N.D.; Stilling, M.; Jakobsen, S.S.; Gustafson, K.; Søballe, K.; Baad-Hansen, T. Marker-based or model-based RSA for evaluation of hip resurfacing arthroplasty? A clinical validation and 5-year follow-up. Arch. Orthop. Trauma Surg. 2013, 133, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
  27. Jensen, J.; Tromborg, H.B.; Rasmussen, B.S.B.; Gerke, O.; Torfing, T.; Precht, H.; Graumann, O. The effect of forearm rotation on radiographic measurements of the wrist: An experimental study using radiostereometric analyses on cadavers. Eur. Radiol. Exp. 2021, 5, 15. [Google Scholar] [CrossRef]
  28. Valstar, E.R.; Gill, R.; Ryd, L.; Flivik, G.; Borlin, N.; Karrholm, J. Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop. 2005, 76, 563–572. [Google Scholar] [CrossRef]
  29. Hurry, J.K.; Spurway, A.J.; Laende, E.K.; Rehan, S.; Wilson, J.L.A.; Dunbar, M.J.; El-Hawary, R. A low-dose biplanar X-ray imager has RSA level precision in total knee arthroplasty. Acta Orthop. 2023, 94, 555–559. [Google Scholar] [CrossRef]
  30. Hurry, J.K.; Rehan, S.; Spurway, A.J.; Laende, E.K.; Wilson, J.L.A.; Logan, K.J.; Dunbar, M.J.; El-Hawary, R. The reliability of radiostereometric analysis in determining physeal motion in slipped capital femoral epiphysis in standard uniplanar and low-dose EOS biplanar radiography: A phantom model study. J. Pediatr. Orthop. B 2018, 27, 496–502. [Google Scholar] [CrossRef] [PubMed]
  31. Loppini, M.; Longo, U.G.; Caldarella, E.; Rocca, A.D.; Denaro, V.; Grappiolo, G. Femur first surgical technique: A smart non-computer-based procedure to achieve the combined anteversion in primary total hip arthroplasty. BMC Musculoskelet. Disord. 2017, 18, 331. [Google Scholar] [CrossRef]
  32. Morvan, A.; Combourieu, B.; Pansard, E.; Marmorat, J.L.; Carlier, R.; Judet, T.; Moreau, S.; Lonjon, G. Standing radiological analysis with a low-dose biplanar imaging system (EOS system) of the position of the components in total hip arthroplasty using an anterior approach. Bone Jt. J. 2016, 98, 326–333. [Google Scholar] [CrossRef]
  33. Kobayashi, D.; Choe, H.; Kobayashi, N.; Watanabe, S.; Inaba, Y. Effects of changes in whole-body alignment on ipsilateral knee pain after total hip arthroplasty. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 2023, 28, 398–402. [Google Scholar] [CrossRef] [PubMed]
  34. Kobayashi, D.; Choe, H.; Kobayashi, N.; Tezuka, T.; Ike, H.; Inaba, Y. Association of Femoral Rotation With Whole-Body Alignment in Patients Who Underwent Total Hip Arthroplasty. Arthroplast. Today 2020, 6, 532–537. [Google Scholar] [CrossRef] [PubMed]
  35. Weng, W.; Wu, H.; Wu, M.; Zhu, Y.; Qiu, Y.; Wang, W. The effect of total hip arthroplasty on sagittal spinal-pelvic-leg alignment and low back pain in patients with severe hip osteoarthritis. Eur. Spine J. 2016, 25, 3608–3614. [Google Scholar] [CrossRef] [PubMed]
  36. Guenoun, B.; El Hajj, F.; Biau, D.; Anract, P.; Courpied, J.P. Reliability of a New Method for Evaluating Femoral Stem Positioning After Total Hip Arthroplasty Based on Stereoradiographic 3D Reconstruction. J. Arthroplast. 2015, 30, 141–144. [Google Scholar] [CrossRef] [PubMed]
  37. Lazennec, J.Y.; Brusson, A.; Rousseau, M.-A.; Standing, T.H.P.I.; Positions, S. “Full-Body” EOS® Imaging System. Semin. Arthroplast. JSES 2012, 23, 220–225. [Google Scholar] [CrossRef]
  38. Machino, M.; Kawakami, N.; Ohara, T.; Saito, T.; Tauchi, R.; Imagama, S. Three-Dimensional Analysis of Preoperative and Postoperative Rib Cage Parameters by Simultaneous Biplanar Radiographic Scanning Technique in Adolescent Idiopathic Scoliosis: Minimum 2-Year Follow-Up. Spine (Phila Pa 1976) 2021, 46, E105–E113. [Google Scholar] [CrossRef]
  39. Machino, M.; Kawakami, N.; Ohara, T.; Saito, T.; Tauchi, R.; Imagama, S. Three-dimensional reconstruction image by biplanar stereoradiography reflects pulmonary functional states inadolescent idiopathic scoliosis. J. Clin. Neurosci. 2021, 88, 178–184. [Google Scholar] [CrossRef]
  40. Machino, M.; Kawakami, N.; Ohara, T.; Saito, T.; Tauchi, R.; Imagama, S. Factors affecting postoperative pulmonary function deterioration in adolescent idiopathic scoliosis: A prospective study using 3-dimensional image reconstruction by biplanar stereoradiography. J. Clin. Neurosci. 2022, 98, 182–188. [Google Scholar] [CrossRef] [PubMed]
  41. Ohl, X.; Stanchina, C.; Billuart, F.; Skalli, W. Shoulder bony landmarks location using the EOS low-dose stereoradiography system: A reproducibility study. Surg. Radiol. Anat. 2010, 32, 153–158. [Google Scholar] [CrossRef]
  42. Zhang, C.; Skalli, W.; Lagacé, P.-Y.; Billuart, F.; Ohl, X.; Cresson, T.; Bureau, N.J.; Rouleau, D.M.; Roy, A.; Tétreault, P.; et al. Investigation of 3D glenohumeral displacements from 3D reconstruction using biplane X-ray images: Accuracy and reproducibility of the technique and preliminary analysis in rotator cuff tear patients. J. Electromyogr. Kinesiol. 2016, 29, 12–20. [Google Scholar] [CrossRef]
  43. Lempereur, M.; Leboeuf, F.; Brochard, S.; Rémy-Néris, O. Effects of glenohumeral joint centre mislocation on shoulder kinematics and kinetics. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 130–131. [Google Scholar] [CrossRef] [PubMed]
  44. Lagacé, P.-Y.; Billuart, F.; Ohl, X.; Skalli, W.; Tétreault, P.; de Guise, J.; Hagemeister, N. Analysis of humeral head displacements from sequences of biplanar X-rays: Repeatability study and preliminary results in healthy subjects. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 221–229. [Google Scholar] [CrossRef] [PubMed]
  45. Amabile, C.; Nérot, A.; Choisne, J.; Pillet, H.; Lafage, V.; Skalli, W. Alignment of centers of mass of body segments with the gravity line. Comput. Methods Biomech. Biomed. Eng. 2015, 18 (Suppl. S1), 1870–1871. [Google Scholar] [CrossRef] [PubMed]
  46. Berg, B.I.; Laville, A.; Courvoisier, D.S.; Rouch, P.; Schouman, T. Experiences with a new biplanar low-dose X-ray device for imaging the facial skeleton: A feasibility study. PLoS ONE 2020, 15, e0235032. [Google Scholar] [CrossRef] [PubMed]
  47. Kerbrat, A.; Rivals, I.; Dupuy, P.; Dot, G.; Berg, B.I.; Attali, V.; Schouman, T. Biplanar Low-Dose Radiograph Is Suitable for Cephalometric Analysis in Patients Requiring 3D Evaluation of the Whole Skeleton. J. Clin. Med. 2021, 10, 5477. [Google Scholar] [CrossRef] [PubMed]
  48. Buck, F.M.; Guggenberger, R.; Koch, P.P.; Pfirrmann, C.W. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am. J. Roentgenol. 2012, 199, W607–W612. [Google Scholar] [CrossRef] [PubMed]
  49. Cebulski-Delebarre, A.; Boutry, N.; Szymanski, C.; Maynou, C.; Lefebvre, G.; Amzallag-Bellenger, E.; Cotten, A. Correlation between primary flat foot and lower extremity rotational misalignment in adults. Diagn. Interv. Imaging 2016, 97, 1151–1157. [Google Scholar] [CrossRef]
  50. Clément, J.; Hagemeister, N.; Dumas, R.; Kanhonou, M.; de Guise, J.A. Influence of biomechanical multi-joint models used in global optimisation to estimate healthy and osteoarthritis knee kinematics. Comput. Methods Biomech. Biomed. Eng. 2014, 17 (Suppl. S1), 76–77. [Google Scholar] [CrossRef]
  51. Clément, J.; de Guise, J.A.; Fuentes, A.; Hagemeister, N. Comparison of soft tissue artifact and its effects on knee kinematics between non-obese and obese subjects performing a squatting activity recorded using an exoskeleton. Gait Posture 2018, 61, 197–203. [Google Scholar] [CrossRef]
  52. Dagneaux, L.; Dufrenot, M.; Bernasconi, A.; Bedard, N.A.; de Cesar Netto, C.; Lintz, F. Three-Dimensional Biometrics to Correlate Hindfoot and Knee Coronal Alignments Using Modern Weightbearing Imaging. Foot Ankle Int. 2020, 41, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
  53. Dufrénot, M.; Dagneaux, L.; Fernando, C.; Chabrand, P.; Ollivier, M.; Lintz, F. Three-dimensional biometrics using weight-bearing imaging shows relationship between knee and hindfoot axial alignment. Orthop. Traumatol. Surg. Res. 2023, 109, 103482. [Google Scholar] [CrossRef] [PubMed]
  54. Dumas, R.; Aissaoui, R.; Mitton, D.; Skalli, W.; de Guise, J.A. Determination of personalized inertial parameters of lower limb by biplanar low-dose radiography. Int. Congr. Ser. 2004, 1268, 19–24. [Google Scholar] [CrossRef]
  55. Dumas, R.; Aissaoui, R.; Mitton, D.; Skalli, W.; de Guise, J.A. Personalized body segment parameters from biplanar low-dose radiography. IEEE Trans. Biomed. Eng. 2005, 52, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
  56. Guenoun, B.; Zadegan, F.; Aim, F.; Hannouche, D.; Nizard, R. Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction. Orthop. Traumatol. Surg. Res. 2012, 98, 506–513. [Google Scholar] [CrossRef] [PubMed]
  57. Hecker, A.; Lerch, T.D.; Egli, R.J.; Liechti, E.F.; Klenke, F.M. The EOS 3D imaging system reliably measures posterior tibial slope. J. Orthop. Surg. Res. 2021, 16, 388. [Google Scholar] [CrossRef]
  58. Kümmerlin, J.; Fabro, H.K.; Pedersen, P.H.; Jensen, K.K.; Pedersen, D.; Andersen, M.S. Measuring Knee Joint Laxity in Three Degrees-of-Freedom In Vivo Using a Robotics- and Image-Based Technology. J. Biomech. Eng. 2022, 144, 084502. [Google Scholar] [CrossRef] [PubMed]
  59. Lo, C.H.; Fang, Y.H.D.; Wang, J.Y.; Yu, T.P.; Chuang, H.C.; Liu, Y.F.; Chang, C.J.; Lin, C.L. Associations between femoral 3D curvature and sagittal imbalance of spine. JOR Spine 2024, 7, e1305. [Google Scholar] [CrossRef]
  60. Morin, S.N.; Wall, M.; Belzile, E.L.; Godbout, B.; Moser, T.P.; Michou, L.; Ste-Marie, L.-G.; de Guise, J.A.; Rahme, E.; Brown, J.P. Assessment of femur geometrical parameters using EOS™ imaging technology in patients with atypical femur fractures; preliminary results. Bone 2016, 83, 184–189. [Google Scholar] [CrossRef]
  61. Moon, H.-S.; Choi, C.-H.; Jung, M.; Lee, D.-Y.; Kim, J.-H.; Kim, S.-H. The effect of knee joint rotation in the sagittal and axial plane on the measurement accuracy of coronal alignment of the lower limb. BMC Musculoskelet. Disord. 2020, 21, 470. [Google Scholar] [CrossRef]
  62. Nam, D.; Shah, R.R.; Nunley, R.M.; Barrack, R.L. Evaluation of the 3-dimensional, weight-bearing orientation of the normal adult knee. J. Arthroplast. 2014, 29, 906–911. [Google Scholar] [CrossRef] [PubMed]
  63. Serrurier, A.; Quijano, S.; Nizard, R.; Skalli, W. Robust femur condyle disambiguation on biplanar X-rays. Med. Eng. Phys. 2012, 34, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
  64. Zeighami, A.; Dumas, R.; Bleau, J.; Lavoie, F.; Guise, J.; Aissaoui, R. A method for quantitative evaluation of a valgus knee orthosis using biplane x-ray images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 4815–4818. [Google Scholar] [PubMed]
  65. Cho, B.W.; Lee, T.H.; Kim, S.; Choi, C.H.; Jung, M.; Lee, K.Y.; Kim, S.H. Evaluation of the reliability of lower extremity alignment measurements using EOS imaging system while standing in an even weight-bearing posture. Sci. Rep. 2021, 11, 22039. [Google Scholar] [CrossRef]
  66. Choi, H.U.; Kim, D.H.; Lee, S.W.; Choi, B.C.; Bae, K.C. Comparison of Lower-Limb Alignment in Patients with Advanced Knee Osteoarthritis: EOS Biplanar Stereoradiography versus Conventional Scanography. Clin. Orthop. Surg. 2022, 14, 370–376. [Google Scholar] [CrossRef] [PubMed]
  67. Cosentino, A.; Richard, R.; Baron, M.; Demondion, X.; Favre, J.; Omoumi, P. MRI signal and morphological alterations of the suprapatellar fat pad in asymptomatic subjects: Are these normal variants? Skelet. Radiol. 2022, 51, 1995–2007. [Google Scholar] [CrossRef]
  68. Folinais, D.; Thelen, P.; Delin, C.; Radier, C.; Catonne, Y.; Lazennec, J.Y. Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop. Traumatol. Surg. Res. 2013, 99, 509–516. [Google Scholar] [CrossRef]
  69. Mayr, H.O.; Schmidt, J.-P.; Haasters, F.; Bernstein, A.; Schmal, H.; Prall, W.C. Anteversion Angle Measurement in Suspected Torsional Malalignment of the Femur in 3-Dimensional EOS vs Computed Tomography-A Validation Study. J. Arthroplast. 2021, 36, 379–386. [Google Scholar] [CrossRef]
  70. Narahashi, É.; Guimarães, J.B.; Filho, A.G.O.; Nico, M.A.C.; Silva, F.D. Measurement of tibial slope using biplanar stereoradiography (EOS®). Skelet. Radiol. 2024, 53, 1091–1101. [Google Scholar] [CrossRef]
  71. Rosskopf, A.B.; Sutter, R.; Pfirrmann, C.W.A.; Buck, F.M. 3D hindfoot alignment measurements based on low-dose biplanar radiographs: A clinical feasibility study. Skelet. Radiol. 2019, 48, 707–712. [Google Scholar] [CrossRef]
  72. Störmann, S.; Chraga-Urban, A.; Lüring, C.; Bouillon, B.; Gutteck, N.; Arbab, D. Comparison of medial distal tibial angle in EOS imaging and weightbearing X-ray. Foot Ankle Surg. 2021, 27, 855–859. [Google Scholar] [CrossRef]
  73. Wise, K.L.; Kelly, B.J.; Agel, J.; Marette, S.; Macalena, J.A. Reliability of EOS compared to conventional radiographs for evaluation of lower extremity deformity in adult patients. Skelet. Radiol. 2020, 49, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
  74. Yan, W.; Xu, X.; Xu, Q.; Yan, W.; Sun, Z.; Jiang, Q.; Shi, D. Femoral and tibial torsion measurements based on EOS imaging compared to 3D CT reconstruction measurements. Ann. Transl. Med. 2019, 7, 460. [Google Scholar] [CrossRef] [PubMed]
  75. Huang, C.; Chan, P.K.; Chiu, K.Y.; Yan, C.H.; Yeung, S.S.; Fu, S.N. Exploring the relationship between pain intensity and knee moments in participants with medial knee osteoarthritis: A cross-sectional study. BMC Musculoskelet. Disord. 2021, 22, 685. [Google Scholar] [CrossRef] [PubMed]
  76. Huang, C.; Chan, P.K.; Chiu, K.Y.; Yan, C.H.; Yeung, D.S.S.; Lai, C.W.K.; Fu, S.N. Knee joint loadings are related to tibial torsional alignments in people with radiographic medial knee osteoarthritis. PLoS ONE 2021, 16, e0255008. [Google Scholar] [CrossRef] [PubMed]
  77. Koliogiannis, V.K.A.; Brandlhuber, M.; Messerschmidt, V.; Stahl, R.; Melcher, C.; Schinner, R.; Birkenmaier, C.; Ricke, J.; Baur-Melnyk, A. Is the EOS imaging system as accurate as conventional radiography in grading osteoarthritis of the knee? Eur. Radiol. 2021, 31, 3491–3497. [Google Scholar] [CrossRef]
  78. Zeighami, A.; Dumas, R.; Kanhonou, M.; Hagemeister, N.; Lavoie, F.; de Guise, J.A.; Aissaoui, R. Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: A bi-planar X-ray analysis. J. Biomech. 2017, 53, 178–184. [Google Scholar] [CrossRef]
  79. Clavé, A.; Maurer, D.G.; Nagra, N.S.; Fazilleau, F.; Lefèvre, C.; Stindel, E. Reproducibility of length measurements of the lower limb by using EOS™. Musculoskelet. Surg. 2018, 102, 165–171. [Google Scholar] [CrossRef] [PubMed]
  80. Guggenberger, R.; Pfirrmann, C.W.; Koch, P.P.; Buck, F.M. Assessment of lower limb length and alignment by biplanar linear radiography: Comparison with supine CT and upright full-length radiography. AJR Am. J. Roentgenol. 2014, 202, W161–W167. [Google Scholar] [CrossRef]
  81. Lazennec, J.Y.; Brusson, A.; Rousseau, M.A.; Robbins, C.B.; Pour, A.E. Do Patients’ Perceptions of Leg Length Correlate With Standing 2- and 3-Dimensional Radiographic Imaging? J. Arthroplast. 2016, 31, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
  82. Abdennebi, A.B.; Aubry, S.; Ounalli, L.; Fayache, M.S.; Delabrousse, E.; Petegnief, Y. Comparative dose levels between CT-scanner and slot-scanning device (EOS system) in pregnant women pelvimetry. Phys. Med. 2017, 33, 77–86. [Google Scholar] [CrossRef]
  83. Dietrich, T.J.; Pfirrmann, C.W.; Schwab, A.; Pankalla, K.; Buck, F.M. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skelet. Radiol. 2013, 42, 959–967. [Google Scholar] [CrossRef]
  84. Wood, L.; Martin, C.; Polly, D.; Luchsinger, S.; Takahashi, T. Incidental extraspinal imaging findings on adult EOS full body radiographs: Prevalence and clinical importance. BMC Med. Imaging 2021, 21, 83. [Google Scholar] [CrossRef]
  85. Bordes, M.; Thaunat, M.; Maury, É.; Bonin, N.; May, O.; Tardy, N.; Martz, P.; Gedouin, J.-E.; Kouyoumdjian, P.; Krantz, N.; et al. The influence of the sacral slope on pelvic kinematics and clinical manifestations in femoroacetabular impingement. Orthop. Traumatol. Surg. Res. 2023, 109 (Suppl. S8), 103688. [Google Scholar] [CrossRef] [PubMed]
  86. Buckland, A.; DelSole, E.; George, S.; Vira, S.; Lafage, V.; Errico, T.; Vigdorchik, J. Sagittal Pelvic Orientation A Comparison of Two Methods of Measurement. Bull. Hosp. Jt. Dis. 2017, 75, 234–240. [Google Scholar]
  87. Fritz, B.; Agten, C.A.; Boldt, F.K.; Zingg, P.O.; Pfirrmann, C.W.A.; Sutter, R. Acetabular coverage differs between standing and supine positions: Model-based assessment of low-dose biplanar radiographs and comparison with CT. Eur. Radiol. 2019, 29, 5691–5699. [Google Scholar] [CrossRef] [PubMed]
  88. Gasparutto, X.; Besonhe, P.; DiGiovanni, P.L.; Armand, S.; Hannouche, D. Definition and reliability of 3D acetabular and global offset measurements from bi-plane X-rays. Sci. Rep. 2023, 13, 591. [Google Scholar] [CrossRef] [PubMed]
  89. Kim, Y.; Vergari, C.; Girinon, F.; Lazennec, J.Y.; Skalli, W. Stand-to-Sit Kinematics of the Pelvis Is Not Always as Expected: Hip and Spine Pathologies Can Have an Impact. J. Arthroplast. 2019, 34, 2118–2123. [Google Scholar] [CrossRef] [PubMed]
  90. Mussmann, B.; Jensen, C.; Bensen, A.S.; Torfing, T.; Ovesen, O.; Overgaard, S. Radiographic signs of acetabular retroversion using a low-dose slot-scanning radiographic system (EOS(®)). Radiography 2019, 25, e53–e57. [Google Scholar] [CrossRef] [PubMed]
  91. Rouissi, J.; Arvieu, R.; Dubory, A.; Vergari, C.; Bachy, M.; Vialle, R. Intra and inter-observer reliability of determining degree of pelvic obliquity in neuromuscular scoliosis using the EOS-CHAIR® protocol. Childs Nerv. Syst. 2017, 33, 337–341. [Google Scholar] [CrossRef]
  92. Thelen, T.; Thelen, P.; Demezon, H.; Aunoble, S.; Le Huec, J.C. Normative 3D acetabular orientation measurements by the low-dose EOS imaging system in 102 asymptomatic subjects in standing position: Analyses by side, gender, pelvic incidence and reproducibility. Orthop. Traumatol. Surg. Res. 2017, 103, 209–215. [Google Scholar] [CrossRef]
  93. Bendaya, S.; Lazennec, J.Y.; Anglin, C.; Allena, R.; Sellam, N.; Thoumie, P.; Skalli, W. Healthy vs. osteoarthritic hips: A comparison of hip, pelvis and femoral parameters and relationships using the EOS® system. Clin. Biomech. 2015, 30, 195–204. [Google Scholar] [CrossRef] [PubMed]
  94. Canetti, R.; de Saint Vincent, B.; Vieira, T.D.; Fière, V.; Thaunat, M. Spinopelvic parameters in greater trochanteric pain syndrome: A retrospective case-control study. Skelet. Radiol. 2020, 49, 773–778. [Google Scholar] [CrossRef] [PubMed]
  95. Coulomb, R.; Michaud, J.; Maury, E.; Bonin, N.; Krantz, N.; May, O.; Thaunat, M.; Bordes, M.; Tardy, N.; Martz, P.; et al. Radiological signs of femoroacetabular impingement are linked to pelvic version in asymptomatic subjects. Orthop. Traumatol. Surg. Res. 2023, 109, 103719. [Google Scholar] [CrossRef] [PubMed]
  96. Frasson, V.B.; Herzog, W.; Johnston, K.; Pauchard, Y.; Vaz, M.A.; Baroni, B.M. Do femoral version abnormalities play a role in hip function of patients with hip pain? Clin. Biomech. 2022, 97, 105708. [Google Scholar] [CrossRef] [PubMed]
  97. Hodel, S.; Flury, A.; Hoch, A.; Zingg, P.O.; Vlachopoulos, L.; Fucentese, S.F. The relationship between pelvic tilt, frontal, and axial leg alignment in healthy subjects. J. Orthop. Sci. 2022, 28, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
  98. Hodel, S.; Cavalcanti, N.; Fucentese, S.; Vlachopoulos, L.; Viehöfer, A.; Wirth, S. The Relationship between Frontal, Axial Leg Alignment, and Ankle Joint Line Orientation-a Radiographic Analysis of Healthy Subjects. Orthop. Surg. 2022, 15, 79–84. [Google Scholar] [CrossRef]
  99. Huang, J.; Tian, F.; Zhang, Z.; Shi, W.; Lin, J.; Chen, L.; Yang, H. Reliability and concurrent validity of angle measurements in lower limb: EOS 3D goniometer versus 2D manual goniometer. J. Orthop. Translat. 2020, 24, 96–102. [Google Scholar] [CrossRef]
  100. Pillet, H.; Sangeux, M.; Hausselle, J.; El Rachkidi, R.; Skalli, W. A reference method for the evaluation of femoral head joint center location technique based on external markers. Gait Posture 2014, 39, 655–658. [Google Scholar] [CrossRef]
  101. Than, P.; Szuper, K.; Somoskeöy, S.; Warta, V.; Illés, T. Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int. Orthop. 2012, 36, 1291–1297. [Google Scholar] [CrossRef]
  102. Vaynrub, M.; Tishelman, J.; Buckland, A.J.; Errico, T.J.; Protopsaltis, T.S. The Ankle-Pelvic Angle (APA) and Global Lower Extremity Angle (GLA): Summary Measurements of Pelvic and Lower Extremity Compensation. Int. J. Spine Surg. 2021, 15, 130–136. [Google Scholar] [CrossRef]
  103. Ferre, R.; Gibon, E.; Hamadouche, M.; Feydy, A.; Drapé, J.L. Evaluation of a method for the assessment of anterior acetabular coverage and hip joint space width. Skelet. Radiol. 2014, 43, 599–605. [Google Scholar] [CrossRef]
  104. Krug, K.B.; Weber, C.; Schwabe, H.; Sinzig, N.M.; Wein, B.; Müller, D.; Wegmann, K.; Peters, S.; Sendler, V.; Ewen, K.; et al. Comparison of image quality using a X-ray stereotactical whole-body system and a direct flat-panel X-ray device in examinations of the pelvis and knee. Rofo 2014, 186, 67–76. [Google Scholar] [CrossRef] [PubMed]
  105. Rosskopf, A.; Pfirrmann, C.; Buck, F.; Rosskopf, A.B.; Pfirrmann, C.W.A.; Buck, F.M. Assessment of two-dimensional (2D) and three-dimensional (3D) lower limb measurements in adults: Comparison of micro-dose and low-dose biplanar radiographs. Eur. Radiol. 2016, 26, 3054–3062. [Google Scholar] [CrossRef] [PubMed]
  106. Sailhan, F.; Jacob, L.; Hamadouche, M. Differences in limb alignment and femoral mechanical-anatomical angles using two dimension versus three dimension radiographic imaging. Int. Orthop. 2017, 41, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
  107. Katsumi, R.; Mannen, E.M.; Bajaj, G.; Smith, J.R.; Mears, S.C.; Stambough, J.B.; Barnes, C.L. The Influence of Knee Osteoarthritis on Spinopelvic Alignment and Global Sagittal Balance. J. Knee Surg. 2022, 36, 917–924. [Google Scholar] [CrossRef] [PubMed]
  108. Kouyoumdjian, P.; Mansour, J.; Haignère, V.; Demattei, C.; Maury, E.; George, D.; Coulomb, R. Hip-Spine Relationship between Sagittal Balance of the Lumbo-Pelvi-Femoral Complex and Hip Extension Capacity: An EOS Evaluation in a Healthy Caucasian Population. Glob. Spine J. 2022, 14, 265–271. [Google Scholar] [CrossRef] [PubMed]
  109. Lazennec, J.; Brusson, A.; Folinais, D.; Zhang, A.; Pour, A.; Rousseau, M. Measuring extension of the lumbar-pelvic-femoral complex with the EOS system. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
  110. Mekhael, M.; Kawkabani, G.; Saliby, R.M.; Skalli, W.; Saad, E.; Jaber, E.; Rachkidi, R.; Kharrat, K.; Kreichati, G.; Ghanem, I.; et al. Toward understanding the underlying mechanisms of pelvic tilt reserve in adult spinal deformity: The role of the 3D hip orientation. Eur. Spine J. 2021, 30, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
  111. Park, J.Y.; Cho, B.W.; Kwon, H.M.; Park, K.K.; Lee, W.S. Knee Extension Is Related to the Posteriorly Deviated Gravity Line to the Pelvis in Young Adults: Radiographic Analysis Using Low-Dose Biplanar X-ray. Yonsei Med. J. 2022, 63, 933–940. [Google Scholar] [CrossRef]
  112. Shimizu, T.; Cerpa, M.; Lenke, L.G. Understanding sagittal compensation in adult spinal deformity patients: Relationship between pelvic tilt and lower-extremity position. J. Neurosurg. Spine 2021, 35, 616–623. [Google Scholar] [CrossRef] [PubMed]
  113. Assi, A.; Rebeyrat, G.; El Rachkidi, R.; Semaan, K.; Saad, E.; Mekhael, E.; Nassim, N.; Massaad, A.; Lafage, V.; Ghanem, I.; et al. ASD with high pelvic retroversion develop changes in their acetabular orientation during walking. Brain Spine 2023, 3, 101752. [Google Scholar] [CrossRef] [PubMed]
  114. Bakouny, Z.; Assi, A.; Massaad, A.; Saghbini, E.; Lafage, V.; Skalli, W.; Ghanem, I.; Kreichati, G. Roussouly’s sagittal spino-pelvic morphotypes as determinants of gait in asymptomatic adult subjects. Gait Posture 2017, 54, 27–33. [Google Scholar] [CrossRef]
  115. De Pieri, E.; Friesenbichler, B.; List, R.; Monn, S.; Casartelli, N.C.; Leunig, M.; Ferguson, S.J. Subject-Specific Modeling of Femoral Torsion Influences the Prediction of Hip Loading During Gait in Asymptomatic Adults. Front. Bioeng. Biotechnol. 2021, 9, 679360. [Google Scholar] [CrossRef] [PubMed]
  116. Fu, P.; Xu, W.; Xu, P.; Huang, J.; Guo, J.J. Relationship between spinal imbalance and knee osteoarthritis by using full-body EOS. BMC Musculoskelet. Disord. 2023, 24, 402. [Google Scholar] [CrossRef] [PubMed]
  117. Huang, C.; Chan, P.K.; Chiu, K.Y.; Yan, C.H.; Yeung, S.S.; Lai, C.W.; Leung, A.K.; Fu, S.N. The association between tibial torsion, knee flexion excursion and foot progression during gait in people with knee osteoarthritis: A cross-sectional study. BMC Sports Sci. Med. Rehabil. 2023, 15, 110. [Google Scholar] [CrossRef]
  118. Ould-Slimane, M.; Bouyge, B.; Chastan, N.; Ferrand-Devouge, E.; Dujardin, F.; Bertucchi, W.; Michelin, P.; Gillibert, A.; Gauthé, R. Optoelectronic Study of Gait Kinematics in Sagittal Spinopelvic Imbalance. World Neurosurg. 2022, 158, e956–e963. [Google Scholar] [CrossRef]
  119. Sangeux, M.; Pillet, H.; Skalli, W. Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 2014, 40, 20–25. [Google Scholar] [CrossRef] [PubMed]
  120. Sauret, C.; Pillet, H.; Skalli, W.; Sangeux, M. On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference. Gait Posture 2016, 50, 180–184. [Google Scholar] [CrossRef] [PubMed]
  121. Südhoff, I.; Van Driessche, S.; Laporte, S.; de Guise, J.A.; Skalli, W. Comparing three attachment systems used to determine knee kinematics during gait. Gait Posture 2007, 25, 533–543. [Google Scholar] [CrossRef]
  122. van Drongelen, S.; Kaldowski, H.; Fey, B.; Tarhan, T.; Assi, A.; Stief, F.; Meurer, A. Determination of Leg Alignment in Hip Osteoarthritis Patients with the EOS® System and the Effect on External Joint Moments during Gait. Appl. Sci. 2020, 10, 7777. [Google Scholar] [CrossRef]
  123. Yared, F.; Massaad, A.; Bakouny, Z.; Otayek, J.; Bizdikian, A.J.; Ghanimeh, J.; Labaki, C.; Ghanem, D.; Ghanem, I.; Skalli, W.; et al. Differences in Kinematic Changes From Self-Selected to Fast Speed Gait in Asymptomatic Adults With Radiological Signs of Femoro-Acetabular Impingement. Cureus 2023, 15, e43733. [Google Scholar] [CrossRef] [PubMed]
  124. Attali, V.; Clavel, L.; Rouch, P.; Rivals, I.; Rémy-Néris, S.; Skalli, W.; Sandoz, B.; Similowski, T. Compensation of Respiratory-Related Postural Perturbation Is Achieved by Maintenance of Head-to-Pelvis Alignment in Healthy Humans. Front. Physiol. 2019, 10, 441. [Google Scholar] [CrossRef]
  125. Bertrand, S.; Laporte, S.; Parent, S.; Skalli, W.; Mitton, D. Three-dimensional reconstruction of the rib cage from biplanar radiography. IRBM 2008, 29, 278–286. [Google Scholar] [CrossRef]
  126. Bousigues, S.; Gajny, L.; Abihssira, S.; Heidsieck, C.; Ohl, X.; Hagemeister, N.; Skalli, W. 3D reconstruction of the scapula from biplanar X-rays for pose estimation and morphological analysis. Med. Eng. Phys. 2023, 120, 104043. [Google Scholar] [CrossRef] [PubMed]
  127. Vergari, C.; Skalli, W.; Clavel, L.; Demuynck, M.; Valentin, R.; Sandoz, B.; Similowski, T.; Attali, V. Functional analysis of the human rib cage over the vital capacity range in standing position using biplanar X-ray imaging. Comput. Biol. Med. 2022, 144, 105343. [Google Scholar] [CrossRef] [PubMed]
  128. Herrou, J.; Picaud, A.S.; Lassalle, L.; Pacot, L.; Chaussain, C.; Merzoug, V.; Hervé, A.; Gadion, M.; Rothenbuhler, A.; Kamenický, P.; et al. Prevalence of Enthesopathies in Adults With X-linked Hypophosphatemia: Analysis of Risk Factors. J. Clin. Endocrinol. Metab. 2022, 107, e224–e235. [Google Scholar] [CrossRef]
  129. Fader, R.R.; Tao, M.A.; Gaudiani, M.A.; Turk, R.; Nwachukwu, B.U.; Esposito, C.I.; Ranawat, A.S. The role of lumbar lordosis and pelvic sagittal balance in femoroacetabular impingement. Bone Jt. J. 2018, 100, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
  130. Ferenczi, A.; Moraux, A.; Gall, F.L.; Thevenon, A.; Wieczorek, V. Relationship Between Spinal-Pelvic Sagittal Balance and Pelvic-Femoral Injuries in Professional Soccer Players. Orthop. J. Sports Med. 2020, 8, 2325967119894962. [Google Scholar] [CrossRef]
  131. Hey, H.W.D.; Tan, J.H.; Ong, B.; Kumar, A.; Liu, G.; Wong, H.K. Pelvic and sacral morphology and their correlation with pelvic incidence, lumbar lordosis, and lumbar alignment changes between standing and sitting postures. Clin. Neurol. Neurosurg. 2021, 211, 107019. [Google Scholar] [CrossRef]
  132. Amabile, C.; Le Huec, J.C.; Skalli, W. Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur. Spine J. 2018, 27, 458–466. [Google Scholar] [CrossRef]
  133. Okamoto, M.; Jabour, F.; Sakai, K.; Hatsushikano, S.; Le Huec, J.C.; Hasegawa, K. Sagittal balance measures are more reproducible when measured in 3D vs in 2D using full-body EOS® images. Eur. Radiol. 2018, 28, 4570–4577. [Google Scholar] [CrossRef] [PubMed]
  134. Park, P.J.; Hassan, F.M.; Ferrer, X.E.; Morrissette, C.; Lee, N.J.; Cerpa, M.; Sardar, Z.M.; Kelly, M.P.; Bourret, S.; Hasegawa, K.; et al. The Posterior Cranial Vertical Line: A Novel Radiographic Marker for Classifying Global Sagittal Alignment. Neurospine 2023, 20, 790–797. [Google Scholar] [CrossRef] [PubMed]
  135. Cauchon, A.M.; Tétreault, P.; Bascans, C.; Skalli, W.; Hagemeister, N. Morphologic and radiologic parameters correlating to shoulder function at diagnosis for patients with rotator cuff tear. J. Shoulder Elb. Surg. 2020, 29, 2272–2281. [Google Scholar] [CrossRef] [PubMed]
  136. Kaneko, K.; Aota, Y.; Sekiya, T.; Yamada, K.; Saito, T. Validation study of arm positions for evaluation of global spinal balance in EOS imaging. Eur. J. Orthop. Surg. Traumatol. 2016, 26, 725–733. [Google Scholar] [CrossRef]
  137. Borotikar, B.; Lempereur, M.; Brochard, S.; Rémy-Néris, O.; Leboucher, J.; Leboeuf, F. Effects of gleno-humeral joint centre mislocation on gleno-humeral kinematics and kinetics. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 764–771. [Google Scholar]
  138. Loisel, F.; Durand, S.; Goubier, J.N.; Bonnet, X.; Rouch, P.; Skalli, W. Three-dimensional reconstruction of the hand from biplanar X-rays: Assessment of accuracy and reliability. Orthop. Traumatol. Surg. Res. 2023, 109, 103403. [Google Scholar] [CrossRef]
  139. Knafo, J.; Thelen, T.; Verdier, D.; Creppy, L.; Tournier, C.; Fabre, T. Reproducibility of low-dose stereography measurements of femoral torsion after IM nailing of femoral shaft fractures and in intact femurs. Orthop. Traumatol. Surg. Res. 2016, 102, 595–599. [Google Scholar] [CrossRef] [PubMed]
  140. Verdier, N.; Billaud, A.; Masquefa, T.; Pallaro, J.; Fabre, T.; Tournier, C. EOS-based cup navigation: Randomised controlled trial in 78 total hip arthroplasties. Orthop. Traumatol. Surg. Res. 2016, 102, 417–421. [Google Scholar] [CrossRef]
  141. Billaud, A.; Verdier, N.; de Bartolo, R.; Lavoinne, N.; Chauveaux, D.; Fabre, T. Acetabular component navigation in lateral decubitus based on EOS imaging: A preliminary study of 13 cases. Orthop. Traumatol. Surg. Res. 2015, 101, 271–275. [Google Scholar] [CrossRef]
  142. Xie, R.; Huang, J.; Wu, Q.; Qian, Y.F.; Jiang, D.; Li, L.; Huang, L. A Comparison of Radiographic Outcomes after Total Hip Arthroplasty between the Direct Lateral Approach and Posterior Lateral Approach with EOS 2D/3D X-Ray Imaging System. Orthop. Surg. 2023, 15, 1312–1324. [Google Scholar] [CrossRef]
  143. Demzik, A.L.; Alvi, H.M.; Delagrammaticas, D.E.; Martell, J.M.; Beal, M.D.; Manning, D.W. Inter-Rater and Intra-Rater Repeatability and Reliability of EOS 3-Dimensional Imaging Analysis Software. J. Arthroplast. 2016, 31, 1091–1095. [Google Scholar] [CrossRef]
  144. Windsor, E.N.; Sculco, P.K.; Mayman, D.J.; Vigdorchik, J.M.; Jerabek, S.A. Spinopelvic Hypermobility Corrects After Staged Bilateral Total Hip Arthroplasty. Hss J. 2022, 18, 541–549. [Google Scholar] [CrossRef] [PubMed]
  145. Tiberi, J.V., III; Antoci, V.; Malchau, H.; Rubash, H.E.; Freiberg, A.A.; Kwon, Y.M. What is the Fate of Total Hip Arthroplasty (THA) Acetabular Component Orientation When Evaluated in the Standing Position? J. Arthroplast. 2015, 30, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
  146. Anderson, C.G.; Brilliant, Z.R.; Jang, S.J.; Sokrab, R.; Mayman, D.J.; Vigdorchik, J.M.; Sculco, P.K.; Jerabek, S.A. Validating the use of 3D biplanar radiography versus CT when measuring femoral anteversion after total hip arthroplasty: A comparative study. Bone Jt. J. 2022, 104, 1196–1201. [Google Scholar] [CrossRef]
  147. Auberger, G.; Pansard, E.; Bouche, P.A.; Marmorat, J.L.; Judet, T.; Lonjon, G. Pelvic position, lying on a traction table, during THA by direct anterior approach. Comparison with the standing position and influence on the acetabular cup anteversion. Orthop. Traumatol. Surg. Res. 2021, 107, 103077. [Google Scholar] [CrossRef]
  148. Brenneis, M.; Braun, S.; van Drongelen, S.; Fey, B.; Tarhan, T.; Stief, F.; Meurer, A. Accuracy of Preoperative Templating in Total Hip Arthroplasty With Special Focus on Stem Morphology: A Randomized Comparison Between Common Digital and Three-Dimensional Planning Using Biplanar Radiographs. J. Arthroplast. 2021, 36, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
  149. Buller, L.T.; McLawhorn, A.S.; Maratt, J.D.; Carroll, K.M.; Mayman, D.J. EOS Imaging is Accurate and Reproducible for Preoperative Total Hip Arthroplasty Templating. J. Arthroplast. 2021, 36, 1143–1148. [Google Scholar] [CrossRef]
  150. Esposito, C.I.; Miller, T.T.; Lipman, J.D.; Carroll, K.M.; Padgett, D.E.; Mayman, D.J.; Jerabek, S.A. Biplanar Low-Dose Radiography Is Accurate for Measuring Combined Anteversion After Total Hip Arthroplasty. Hss J. 2020, 16, 23–29. [Google Scholar] [CrossRef] [PubMed]
  151. Harold, R.E.; Delagrammaticas, D.; Keller, T.; Butler, B.; Stover, M.D.; Manning, D.W. Are single plane intraoperative and biplanar postoperative radiographic measurements of acetabular cup position the same? Hip Int. 2020, 30, 530–535. [Google Scholar] [CrossRef] [PubMed]
  152. Lazennec, J.; Brusson, A.; Dominique, F.; Rousseau, M.-A.; Pour, A. Offset and anteversion reconstruction after cemented and uncemented total hip arthroplasty: An evaluation with the low-dose EOS system comparing two- and three-dimensional imaging. Int. Orthop. 2015, 39, 1259–1267. [Google Scholar] [CrossRef]
  153. Lazennec, J.Y.; Rousseau, M.A.; Rangel, A.; Gorin, M.; Belicourt, C.; Brusson, A.; Catonné, Y. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: Measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop. Traumatol. Surg. Res. 2011, 97, 373–380. [Google Scholar] [CrossRef]
  154. Ma, Z.; Tang, H.; Zhou, Y.; Wang, S.; Yang, D.; Guo, S. Assessing component orientation of total hip arthroplasty using the low-dose bi-planar radiographs. BMC Musculoskelet. Disord. 2022, 23, 886. [Google Scholar] [CrossRef] [PubMed]
  155. Mainard, D.; Barbier, O.; Knafo, Y.; Belleville, R.; Mainard-Simard, L.; Gross, J.B. Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: A pilot study. Orthop. Traumatol. Surg. Res. 2017, 103, 531–536. [Google Scholar] [CrossRef] [PubMed]
  156. Polkowski, G.; Nunley, R.; Ruh, E.; Williams, B.; Barrack, R. Barrack, Does Standing Affect Acetabular Component Inclination and Version After THA? Clin. Orthop. Relat. Res. 2012, 470, 2988–2994. [Google Scholar] [CrossRef] [PubMed]
  157. Sun, D.C.; Murphy, W.S.; Amundson, A.J.; Lane, P.M.; Kowal, J.H.; Murphy, S.B. Validation of a Novel Method of Measuring Cup Orientation Using BiPlanar Simultaneous Radiographic Images. J. Arthroplast. 2023, 38, S252–S256. [Google Scholar] [CrossRef]
  158. Tokunaga, K.; Okamoto, M.; Watanabe, K. Implant Orientation Measurement After THA Using the EOS X-Ray Image Acquisition System. Adv. Exp. Med. Biol. 2018, 1093, 335–343. [Google Scholar]
  159. Barbier, O.; Skalli, W.; Mainard, D. Changes In Pelvic Orientation After Total Hip Arthroplasty: A Prospective Study With EOS™. Acta Orthop. Belg. 2017, 83, 360–366. [Google Scholar]
  160. Innmann, M.M.; McGoldrick, N.P.; Ratra, A.; Merle, C.; Grammatopoulos, G. The accuracy in determining pelvic tilt from anteroposterior pelvic radiographs in patients awaiting hip arthroplasty. J. Orthop. Res. 2022, 40, 854–861. [Google Scholar] [CrossRef] [PubMed]
  161. Loppini, M.; Pisano, A.; Ruggeri, R.; Della Rocca, A.; Grappiolo, G. Pelvic tilt and functional acetabular position after total hip arthroplasty: An EOS 2D/3D radiographic study. HIP Int. 2022, 33, 365–370. [Google Scholar] [CrossRef]
  162. Premkumar, A.; Almeida, B.; Ranawat, C.S.; Jerabek, S.A.; Esposito, C.I.; Mayman, D.J. Variability of pelvic axial rotation in patients undergoing total hip arthroplasty. HIP Int. 2021, 31, 215–222. [Google Scholar] [CrossRef]
  163. Barbier, O.; Skalli, W.; Mainard, L.; Mainard, D. The reliability of the anterior pelvic plane for computer navigated acetabular component placement during total hip arthroplasty: Prospective study with the EOS imaging system. Orthop. Traumatol. Surg. Res. 2014, 100 (Suppl. S6), S287–S291. [Google Scholar] [CrossRef] [PubMed]
  164. Ben-Ari, E.; Shichman, I.; Sissman, E.; Oakley, C.; Hepinstall, M.; Schwarzkopf, R. Calibration of magnification in two-dimensional low-dose full-body imaging for preoperative planning of total hip arthroplasty. Arch. Orthop. Trauma. Surg. 2023, 143, 6875–6881. [Google Scholar] [CrossRef] [PubMed]
  165. Fischer, M.C.M.; Tokunaga, K.; Okamoto, M.; Habor, J.; Radermacher, K. Preoperative factors improving the prediction of the postoperative sagittal orientation of the pelvis in standing position after total hip arthroplasty. Sci. Rep. 2020, 10, 15944. [Google Scholar] [CrossRef] [PubMed]
  166. Huang, J.; Zhu, Y.; Ma, W.; Zhang, Z.; Shi, W.; Lin, J. A Novel Method for Accurate Preoperative Templating for Total Hip Arthroplasty Using a Biplanar Digital Radiographic (EOS) System. JBJS Open Access 2020, 5, e20.00078. [Google Scholar] [CrossRef]
  167. Knafo, Y.; Houfani, F.; Zaharia, B.; Egrise, F.; Clerc-Urmès, I.; Mainard, D. Value of 3D Preoperative Planning for Primary Total Hip Arthroplasty Based on Biplanar Weightbearing Radiographs. Biomed. Res. Int. 2019, 2019, 1932191. [Google Scholar] [CrossRef] [PubMed]
  168. Pour, A.E.; Green, J.H.; Christensen, T.H.; Muthusamy, N.; Schwarzkopf, R. Is It Necessary to Obtain Lateral Pelvic Radiographs in Flexed Seated Position for Preoperative Total Hip Arthro-plasty Planning? Arthroplast. Today 2023, 21, 101133. [Google Scholar] [CrossRef] [PubMed]
  169. Sutphen, S.A.; Lipman, J.D.; Jerabek, S.A.; Mayman, D.J.; Esposito, C.I. Treatment of Recurrent Dislocation after Total Hip Arthroplasty Using Advanced Imaging and Three-Dimensional Modeling Techniques: A Case Series. Hss J. 2020, 16 (Suppl. S2), 245–255. [Google Scholar] [CrossRef]
  170. Bendaya, S.; Anglin, C.; Lazennec, J.Y.; Allena, R.; Thoumie, P.; Skalli, W. Good vs Poor Results After Total Hip Arthroplasty: An Analysis Method Using Implant and Anatomic Parameters With the EOS Imaging System. J. Arthroplast. 2016, 31, 2043–2052. [Google Scholar] [CrossRef]
  171. Esposito, C.I.; Carroll, K.M.; Sculco, P.K.; Padgett, D.E.; Jerabek, S.A.; Mayman, D.J. Total Hip Arthroplasty Patients With Fixed Spinopelvic Alignment Are at Higher Risk of Hip Dislocation. J. Arthroplast. 2018, 33, 1449–1454. [Google Scholar] [CrossRef]
  172. Jang, S.J.; Vigdorchik, J.M.; Windsor, E.W.; Schwarzkopf, R.; Mayman, D.J.; Sculco, P.K. Abnormal spinopelvic mobility as a risk factor for acetabular placement error in total hip arthroplasty using optical computer-assisted surgical navigation system. Bone Jt. Open 2022, 3, 475–484. [Google Scholar] [CrossRef]
  173. Kim, Y.; Pour, A.E.; Lazennec, J.Y. Low pelvic incidence is a risk factor for intraoperative complications in minimally invasive anterolateral approach for total hip arthroplasty. Hip Int. 2022, 32, 304–311. [Google Scholar] [CrossRef] [PubMed]
  174. Kouyoumdjian, P.; Mansour, J.; Marouby, S.; Canovas, F.; Dagneaux, L.; Coulomb, R. Influence of kinematics of the lumbopelvic complex in hip arthroplasty dislocation: From assessment to recommendations. Arch. Orthop. Trauma. Surg. 2023, 143, 4773–4783. [Google Scholar] [CrossRef] [PubMed]
  175. Lazennec, J.Y.; Rangel, A.; Baudoin, A.; Skalli, W.; Catonne, Y.; Rousseau, M.A. The EOS imaging system for understanding a patellofemoral disorder following THR. Orthop. Traumatol. Surg. Res. 2011, 97, 98–101. [Google Scholar] [CrossRef] [PubMed]
  176. Lazennec, J.Y.; Thauront, F.; Robbins, C.B.; Pour, A.E. Acetabular and Femoral Anteversions in Standing Position are Outside the Proposed Safe Zone After Total Hip Arthroplasty. J. Arthroplast. 2017, 32, 3550–3556. [Google Scholar] [CrossRef] [PubMed]
  177. Perronne, L.; Haehnel, O.; Chevret, S.; Wybier, M.; Hannouche, D.; Nizard, R.; Bousson, V. How is quality of life after total hip replacement related to the reconstructed anatomy? A study with low-dose stereoradiography. Diagn. Interv. Imaging 2021, 102, 101–107. [Google Scholar] [CrossRef]
  178. Reina, N.; Hourtal, J.; Salib, C.G.; Gracia, G.; Cavaignac, E.; Chiron, P. The Delta of Correction: A novel, more reliable variable than limb-length discrepancy at predicting outcome after total hip arthroplasty. Hip Int. 2020, 30, 536–543. [Google Scholar] [CrossRef] [PubMed]
  179. Sarpong, N.O.; Rodriguez, S.; Kuyl, E.V.; Lyman, S.; Della Valle, A.G.; Vigdorchik, J.M.; Rodriguez, J.A. Dislocation Following Anterior and Posterior Total Hip Arthroplasty in the Setting of Spinal Deformity and Stiffness: Evolving Trends Using a High-Risk Protocol at a Single Tertiary Center. J. Arthroplast. 2024, 39, 1019–1024.e1. [Google Scholar] [CrossRef]
  180. Bassani, R.; Sirtori, P.; Morselli, C.; Cirullo, A.; Ciliberto, R.; Mangiavini, L.; Peretti, G.M. Simultaneous L5-S1 anterior lumbar interbody fusion and total hip arthroplasty through minimally invasive anterior approaches in hip-spine syndrome. J. Biol. Regul. Homeost. Agents 2022, 36, 239–245. [Google Scholar] [CrossRef]
  181. Bizdikian, A.J.; Assi, A.; Semaan, K.; Otayek, J.; Karam, M.; Massaad, A.; Jaber, E.; Ghanem, I.; El Rachkidi, R. Role of bilateral staged hip arthroplasty in Hip-spine syndrome: A case report. Medicine 2023, 102, e36296. [Google Scholar] [CrossRef]
  182. Esposito, C.I.; Miller, T.T.; Kim, H.J.; Barlow, B.T.; Wright, T.M.; Padgett, D.E.; Jerabek, S.A.; Mayman, D.J. Does Degenerative Lumbar Spine Disease Influence Femoroacetabular Flexion in Patients Undergoing Total Hip Arthroplasty? Clin. Orthop. Relat. Res. 2016, 474, 1788–1797. [Google Scholar] [CrossRef]
  183. Haffer, H.; Wang, Z.; Hu, Z.; Hipfl, C.; Pumberger, M. Acetabular cup position differs in spinopelvic mobility types: A prospective observational study of primary total hip arthroplasty patients. Arch. Orthop. Trauma. Surg. 2022, 142, 2979–2989. [Google Scholar] [CrossRef]
  184. Haffer, H.; Wang, Z.; Hu, Z.; Hipfl, C.; Perka, C.; Pumberger, M. Total Hip Replacement Influences Spinopelvic Mobility: A Prospective Observational Study. J. Arthroplast. 2022, 37, 316–324.e2. [Google Scholar] [CrossRef] [PubMed]
  185. Vigdorchik, J.M.; Shafi, K.A.; Kolin, D.A.; Buckland, A.J.; Carroll, K.M.; Jerabek, S.A. Does Low Back Pain Improve Following Total Hip Arthroplasty? J. Arthroplast. 2022, 37, S937–S940. [Google Scholar] [CrossRef] [PubMed]
  186. Haffer, H.; Wang, Z.; Hu, Z.; Becker, L.; Müllner, M.; Hipfl, C.; Pumberger, M.; Palmowski, Y. Does obesity affect acetabular cup position, spinopelvic function and sagittal spinal alignment? A prospective investigation with standing and sitting assessment of primary hip arthroplasty patients. J. Orthop. Surg. Res. 2021, 16, 640. [Google Scholar] [CrossRef]
  187. Haffer, H.; Wang, Z.; Hu, Z.; Muellner, M.; Hipfl, C.; Pumberger, M. Effect of Coronal and Sagittal Spinal Malalignment on Spinopelvic Mobility in Patients Undergoing Total Hip Replacement: A Prospective Observational Study. Clin. Spine Surg. 2022, 35, E510–E519. [Google Scholar] [CrossRef] [PubMed]
  188. Shintaro, W.; Hyonmin, C.; Naomi, K.; Hiroyuki, I.; Daigo, K.; Yutaka, I.; Watanabe, S.; Choe, H.; Kobayashi, N.; Ike, H.; et al. Prediction of pelvic mobility using whole-spinal and pelvic alignment in standing and sitting position in total hip arthroplasty patients. J. Orthop. Surg. 2021, 29, 10225536. [Google Scholar]
  189. Clavé, A.; Fazilleau, F.; Cheval, D.; Williams, T.; Lefèvre, C.; Stindel, E. Comparison of the reliability of leg length and offset data generated by three hip replacement CAOS systems using EOS™ imaging. Orthop. Traumatol. Surg. Res. 2015, 101, 647–653. [Google Scholar] [CrossRef] [PubMed]
  190. van Drongelen, S.; Kaldowski, H.; Tarhan, T.; Assi, A.; Meurer, A.; Stief, F. Are changes in radiological leg alignment and femoral parameters after total hip replacement responsible for joint loading during gait? BMC Musculoskelet. Disord. 2019, 20, 526. [Google Scholar] [CrossRef]
  191. Di Laura, A.; Henckel, J.; Gal, E.D.; Monem, M.; Moralidou, M.; Hart, A.J. Reconstruction of acetabular defects greater than Paprosky type 3B: The importance of functional imaging. BMC Musculoskelet. Disord. 2021, 22, 207. [Google Scholar] [CrossRef] [PubMed]
  192. Gharanizadeh, K.; Mahmoudi, M.; Shiva, F.; Ghazavi, M.; Abolghasemian, M. Assessing Leg Length Discrepancy Is Necessary Before Arthroplasty in Patients With Unilateral Crowe Type IV Hip Dislocation. Clin. Orthop. Relat. Res. 2023, 481, 1783–1789. [Google Scholar] [CrossRef]
  193. Waibel, F.W.A.; Berndt, K.; Jentzsch, T.; Farei-Campagna, J.; Rahm, S.; Dora, C.; Zingg, P.O. Symptomatic leg length discrepancy after total hip arthroplasty is associated with new onset of lower back pain. Orthop. Traumatol. Surg. Res. 2021, 107, 102761. [Google Scholar] [CrossRef] [PubMed]
  194. Lazennec, J.Y.; Folinais, D.; Florequin, C.; Pour, A.E. Does Patients’ Perception of Leg Length After Total Hip Arthroplasty Correlate With Anatomical Leg Length? J. Arthroplast. 2018, 33, 1562–1566. [Google Scholar] [CrossRef]
  195. Lecoanet, P.; Vargas, M.; Pallaro, J.; Thelen, T.; Ribes, C.; Fabre, T. Leg length discrepancy after total hip arthroplasty: Can leg length be satisfactorily controlled via anterior approach without a traction table? Evaluation in 56 patients with EOS 3D. Orthop. Traumatol. Surg. Res. 2018, 104, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
  196. van Drongelen, S.; Fey, B.; Stief, F.; Meurer, A. Influence of implantation of a total hip endoprosthesis on the ipsilateral leg alignment: The effect of sex and dysplasia of the hip. Arch. Orthop. Trauma Surg 2022, 143, 3541–3549. [Google Scholar] [CrossRef] [PubMed]
  197. Chalmers, B.P.; LaGreca, M.; Addona, J.; Sculco, P.K.; Haas, S.B.; Mayman, D.J. Characterizing the Magnitude of and Risk Factors for Functional Limb Lengthening in Patients Undergoing Primary Total Knee Arthroplasty. Hss J. 2022, 18, 271–276. [Google Scholar] [CrossRef] [PubMed]
  198. Nam, D.; Williams, B.; Hirsh, J.; Johnson, S.R.; Nunley, R.M.; Barrack, R.L. Planned bone resections using an MRI-based custom cutting guide system versus 3-dimensional, weight-bearing images in total knee arthroplasty. J. Arthroplast. 2015, 30, 567–572. [Google Scholar] [CrossRef] [PubMed]
  199. Man, S.L.-C.; Chau, W.-W.; Zheng, X.; Ong, M.T.-Y.; Ho, K.K.-W. Accuracy and outcome of a handheld accelerometer-based navigation device compared to conventional alignment method in total knee arthroplasty in a Chinese population, Journal of Orthopaedics. Trauma. Rehabil. 2024, 31, 34–47. [Google Scholar] [CrossRef]
  200. Hau, M.Y.T.; Menon, D.K.; Chan, R.J.N.; Chung, K.Y.; Chau, W.W.; Ho, K.W. Two-dimensional/three-dimensional EOS™ imaging is reliable and comparable to traditional X-ray imaging assessment of knee osteoarthritis aiding surgical management. Knee 2020, 27, 970–979. [Google Scholar] [CrossRef]
  201. Elkins, J.M.; Simoens, K.J.; Callaghan, J.J. Lower Extremity Geometry in Morbid Obesity-Considerations for Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 3304–3312. [Google Scholar] [CrossRef] [PubMed]
  202. Bahadır, T.; Werner, J.; Clair, A.J.; Walker, P.S. Guidelines for Instrumentation for Total Knee Replacement Based on Frontal Plane Radiographs. Bull. Hosp. Jt. Dis. 2018, 76, 238–245. [Google Scholar]
  203. Finsterwald, M.A.; Sobhi, S.; Isaac, S.; Scott, P.; Khan, R.J.K.; Fick, D.P. Accuracy of one-dimensional templating on linear EOS radiography allows template-directed instrumentation in total knee arthroplasty. J. Orthop. Surg. Res. 2021, 16, 664. [Google Scholar] [CrossRef] [PubMed]
  204. Ji, S.; Huang, Y.; Zhou, Y.; Wang, C.; Wang, X.; Ma, C.; Jiang, X. Pre-operative predictive factors of residual varus on the mechanical axis after Oxford unicompartmental knee arthroplasty. Front. Surg. 2022, 9, 1054351. [Google Scholar] [CrossRef]
  205. Vigdorchik, J.M.; Sharma, A.K.; Feder, O.I.; Buckland, A.J.; Mayman, D.J.; Carroll, K.M.; Sculco, P.K.; Long, W.J.; Jerabek, S.A. Stiffness After Total Knee Arthroplasty: Is It a Result of Spinal Deformity? J. Arthroplast. 2020, 35, S330–S335. [Google Scholar] [CrossRef] [PubMed]
  206. Liow, M.H.; Tsai, T.Y.; Dimitriou, D.; Li, G.; Kwon, Y.M. Does 3-Dimensional In Vivo Component Rotation Affect Clinical Outcomes in Unicompartmental Knee Arthroplasty? J. Arthroplast. 2016, 31, 2167–2172. [Google Scholar] [CrossRef] [PubMed]
  207. Schlatterer, B.; Suedhoff, I.; Bonnet, X.; Catonne, Y.; Maestro, M.; Skalli, W. Skeletal landmarks for TKR implantations: Evaluation of their accuracy using EOS imaging acquisition system. Orthop. Traumatol. Surg. Res. 2009, 95, 2–11. [Google Scholar] [CrossRef] [PubMed]
  208. Meijer, M.; Boerboom, A.; Bulstra, S.; Reininga, I.; Stevens, M.; Meijer, M.F.; Boerboom, A.L.; Bulstra, S.K.; Reininga, I.H.F. Do CAS measurements correlate with EOS 3D alignment measurements in primary TKA? Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
  209. Corbett, J.; Tai, J.; Salmon, L.; Roe, J. Comparison of CT and EOS in assessing coronal lower limb alignment when planning total knee arthroplasty. Knee 2023, 42, 400–408. [Google Scholar] [CrossRef]
  210. Nam, D.; Vajapey, S.; Nunley, R.M.; Barrack, R.L. The Impact of Imaging Modality on the Measurement of Coronal Plane Alignment After Total Knee Arthroplasty. J. Arthroplast. 2016, 31, 2314–2319. [Google Scholar] [CrossRef]
  211. Ziv, Y.B.; Livshits, G.; Lamykin, K.; Khatib, S.; Sira, Y.B.; Rabau, O.; Shohat, N.; Essa, A. Excessive Sagittal Slope of the Tibia Component during Kinematic Alignment-Safety and Functionality at a Minimum 2-Year Follow-Up. J. Pers. Med. 2022, 12, 1407. [Google Scholar]
  212. Ziv, Y.B.; Essa, A.; Lamykin, K.; Chacar, N.; Livshits, G.; Khatib, S.; Comaya, Y.; Shohat, N. Minimum 2-Year Radiographic and Clinical Outcomes of Unrestricted Kinematic Alignment Total Knee Arthroplasty in Patients with Excessive Varus of the Tibia Component. J. Pers. Med. 2022, 12, 1206. [Google Scholar]
  213. Kim, S.C.; Choi, H.G.; Kim, J.S.; Kim, T.W.; Lee, Y.S. Effects of Total Knee Arthroplasty on Coronal and Sagittal Whole-Body Alignments: Serial Assessments Using Whole-Body EOS. J. Clin. Med. 2021, 10, 3242. [Google Scholar] [CrossRef] [PubMed]
  214. Meijer, M.F.; Boerboom, A.L.; Stevens, M.; Bulstra, S.K.; Reininga, I.H. Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: A reliability study. PLoS ONE 2014, 9, e104613. [Google Scholar] [CrossRef] [PubMed]
  215. Tsai, T.-Y.; Dimitriou, D.; Liow, M.H.L.; Rubash, H.E.; Li, G.; Kwon, Y.-M. Three-Dimensional Imaging Analysis of Unicompartmental Knee Arthroplasty Evaluated in Standing Position: Component Alignment and In Vivo Articular Contact. J. Arthroplast. 2016, 31, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
  216. Yoo, H.J.; Kim, J.E.; Kim, S.C.; Kim, J.S.; Yang, H.J.; Kim, T.W.; Lee, Y.S. Pitfalls in assessing limb alignment affected by rotation and flexion of the knee after total knee arthroplasty: Analysis using sagittal and coronal whole-body EOS radiography. Knee 2020, 27, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
  217. Linderman, S.E.; Hall, J.R.L.; Johnson, J.E.; Caceres, A.P.; Hettrich, C.M.; Anderson, D.D. Return of Scapulohumeral Rhythm in Patients After Reverse Shoulder Arthroplasty: A Midterm Stereoradiographic Imaging Analysis. Iowa Orthop. J. 2022, 42, 227–237. [Google Scholar]
  218. Yoo, H.-J.; Choi, J.-K.; Heo, Y.-M.; Moon, S.-J.; Oh, B.-H. Changes in Parameters after High Tibial Osteotomy: Comparison of EOS System and Computed Tomographic Analysis. J. Clin. Med. 2023, 12, 5638. [Google Scholar] [CrossRef]
  219. Oh, B.H.; Seo, K.D.; Heo, Y.M.; Kim, T.K.; Choi, J.K.; Song, J.H. Coronal and sagittal alignment of ankle joint is significantly affected by high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4878–4885. [Google Scholar] [CrossRef]
  220. Sandoz, B.; Laporte, S.; Skalli, W.; Mitton, D. Subject-specific mass and 3D localisation of the mass centre of child body segments using biplanar X-rays. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 203–204. [Google Scholar] [CrossRef]
  221. Rampal, V.; Rohan, P.Y.; Saksik, R.; Wicart, P.; Skalli, W. Assessing 3D paediatric foot morphology using low-dose biplanar radiography: Parameter reproducibility and preliminary values. Orthop. Traumatol. Surg. Res. 2018, 104, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
  222. Rungprai, C.; Goetz, J.E.; Arunakul, M.; Gao, Y.; Femino, J.E.; Amendola, A.; Phisitkul, P. Validation and reproducibility of a biplanar imaging system versus conventional radiography of foot and ankle radiographic parameters. Foot Ankle Int. 2014, 35, 1166–1175. [Google Scholar] [CrossRef]
  223. Dubousset, J.; Charpak, G.; Dorion, I.; Skalli, W.; Lavaste, F.; Deguise, J.; Kalifa, G.; Ferey, S. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: The EOS system. Bull. Acad. Natl. Med. 2005, 189, 287–297, discussion 297. [Google Scholar] [PubMed]
  224. Welborn, M.C.; Bouton, D.; Baksh, N.; Degan, T.; Sienko, S. Image Distortion in Biplanar Slot Scanning: Patient-specific Factors. J. Pediatr. Orthop. 2020, 40, 468–473. [Google Scholar] [CrossRef] [PubMed]
  225. Hui, S.C.; Pialasse, J.P.; Wong, J.Y.; Lam, T.P.; Ng, B.K.; Cheng, J.C.; Chu, W.C. Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT-IRSSD “John Sevastic Award” Winner in Imaging Research. Scoliosis Spinal Disord. 2016, 11, 46. [Google Scholar] [CrossRef] [PubMed]
  226. Brooks, J.T.; Bomar, J.D.; Jeffords, M.E.; Farnsworth, C.L.; Pennock, A.T.; Upasani, V.V. Reliability of Low-dose Biplanar Radiography in Assessing Pediatric Torsional Pathology. J. Pediatr. Orthop. 2021, 41, 33–39. [Google Scholar] [CrossRef]
  227. Gaumétou, E.; Quijano, S.; Ilharreborde, B.; Presedo, A.; Thoreux, P.; Mazda, K.; Skalli, W. EOS analysis of lower extremity segmental torsion in children and young adults. Orthop. Traumatol. Surg. Res. 2014, 100, 147–151. [Google Scholar] [CrossRef] [PubMed]
  228. Ghanem, D.; Ghoul, A.; Assi, A.; Ghanem, I. Towards a better understanding of knee angular deformities: Discrepancies between clinical examination and 2D/3D assessments. Arch. Orthop. Trauma. Surg. 2024, 144, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
  229. Gheno, R.; Nectoux, E.; Herbaux, B.; Baldisserotto, M.; Glock, L.; Cotten, A.; Boutry, N. Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device. Eur. Radiol. 2012, 22, 765–771. [Google Scholar] [CrossRef]
  230. Lerisson, H.; Amzallag-Bellenger, É.; Cebulski-Delebarre, A.; Nectoux, E.; Desmulliez, G.; Duhamel, A.; Drumez, E.; Herbaux, B.; Boutry, N. Assessment of micro-dose biplanar radiography in lower limb measurements in children. Eur. Radiol. 2018, 28, 1778–1787. [Google Scholar] [CrossRef]
  231. Meyrignac, O.; Moreno, R.; Baunin, C.; Vial, J.; Accadbled, F.; Sommet, A.; De Gauzy, J.S.; Sans, N. Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiation. Eur. Radiol. 2014, 25, 1752–1760. [Google Scholar] [CrossRef]
  232. Ries, A.J.; Duffy, E.A.; Schwartz, M.H.; Novacheck, T.F.; Chau, M.M. Interobserver reliability of biplanar radiography is unaffected by clinical factors relevant to individuals at risk of pathological lower limb torsion. Gait Posture 2023, 100, 126–131. [Google Scholar] [CrossRef] [PubMed]
  233. Rosskopf, A.B.; Ramseier, L.E.; Sutter, R.; Pfirrmann, C.W.; Buck, F.M. Femoral and tibial torsion measurement in children and adolescents: Comparison of 3D models based on low-dose biplanar radiography and low-dose CT. AJR Am. J. Roentgenol. 2014, 202, W285–W291. [Google Scholar] [CrossRef] [PubMed]
  234. Rosskopf, A.; Buck, F.; Pfirrmann, C.; Ramseier, L.; Rosskopf, A.B.; Buck, F.M.; Pfirrmann, C.W.A.; Ramseier, L.E. Femoral and tibial torsion measurements in children and adolescents: Comparison of MRI and 3D models based on low-dose biplanar radiographs. Skelet. Radiol. 2017, 46, 469–476. [Google Scholar] [CrossRef] [PubMed]
  235. Schlégl, Á.T.; Nyakas, V.; Kovács, D.; Maróti, P.; Józsa, G.; Than, P. Neck-shaft angle measurement in children: Accuracy of the conventional radiography-based (2D) methods compared to 3D reconstructions. Sci. Rep. 2022, 12, 16494. [Google Scholar]
  236. Westberry, D.E.; Carpenter, A.M. 3D Modeling of Lower Extremities With Biplanar Radiographs: Reliability of Measures on Subsequent Examinations. J. Pediatr. Orthop. 2019, 39, 521–526. [Google Scholar] [CrossRef] [PubMed]
  237. Yucekul, A.; Karaytug, K.; Bakircioglu, S.; Zulemyan, T.; Sirin, B.K.; Karaarslan, E.; Yilgor, C.; Alanay, A. Prevalence of benign bone lesions of the lower extremity in the pediatric spinal disorders: A whole-body imaging study. J. Pediatr. Orthop. B 2022, 31, 583–590. [Google Scholar] [CrossRef]
  238. Assi, A.; Presedo, A.; Baudoin, A.; Mitton, D.; Ghanem, I.; Skalli, W. Specific 3D reconstruction for children lower limbs using a low dose biplanar X-ray system. Reproducibility of clinical parameters for cerebral palsy patients. Comput. Methods Biomech. Biomed. Eng. 2007, 10, 27–28. [Google Scholar] [CrossRef]
  239. Assi, A.; Chaibi, Y.; Presedo, A.; Dubousset, J.; Ghanem, I.; Skalli, W. Three-dimensional reconstructions for asymptomatic and cerebral palsy children’s lower limbs using a biplanar X-ray system: A feasibility study. Eur. J. Radiol. 2013, 82, 2359–2364. [Google Scholar] [CrossRef]
  240. Bonnet-Lebrun, A.; Linglart, A.; De Tienda, M.; Ouchrif, Y.; Berkenou, J.; Assi, A.; Wicart, P.; Skalli, W. Quantitative analysis of lower limbs and pelvis deformities in children with X-linked hypophosphatemic rickets. Orthop. Traumatol. Surg. Res. 2022, 109, 103187. [Google Scholar] [CrossRef] [PubMed]
  241. Burkus, M.; Schlégl, Á.T.; József, K.; O’Sullivan, I.; Márkus, I.; Tunyogi-Csapó, M. Analysis of Proximal Femoral Parameters in Adolescent Idiopathic Scoliosis. Adv. Orthop. 2019, 2019, 3948595. [Google Scholar] [CrossRef]
  242. Karam, M.; Bizdikian, A.J.; Khalil, N.; Bakouny, Z.; Obeid, I.; Ghanimeh, J.; Labaki, C.; Mjaess, G.; Karam, A.; Skalli, W.; et al. Alterations of 3D acetabular and lower limb parameters in adolescent idiopathic scoliosis. Eur. Spine J. 2020, 29, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
  243. Márkus, I.; Schlégl, Á.T.; Burkus, M.; József, K.; Niklai, B.; Than, P.; Tunyogi-Csapó, M. The effect of coronal decompensation on the biomechanical parameters in lower limbs in adolescent idiopathic scoliosis. Orthop. Traumatol. Surg. Res. 2018, 104, 609–616. [Google Scholar] [CrossRef] [PubMed]
  244. Miao, M.; Cai, H.; Zhang, L.; Cai, H. Analysis of lower extremity alignment (LEA) in children with recurrent patellar dislocation by EOS system. Front. Pediatr. 2023, 11, 1291739. [Google Scholar] [CrossRef] [PubMed]
  245. Rampal, V.; Rohan, P.Y.; Pillet, H.; Bonnet-Lebrun, A.; Fonseca, M.; Desailly, E.; Wicart, P.; Skalli, W. Combined 3D analysis of lower-limb morphology and function in children with idiopathic equinovarus clubfoot: A preliminary study. Orthop. Traumatol. Surg. Res. 2020, 106, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
  246. Westberry, D.E.; Wack, L.I.; Davis, R.B.; Hardin, J.W. Femoral anteversion assessment: Comparison of physical examination, gait analysis, and EOS biplanar radiography. Gait Posture 2018, 62, 285–290. [Google Scholar] [CrossRef] [PubMed]
  247. Assi, A.; Sauret, C.; Massaad, A.; Bakouny, Z.; Pillet, H.; Skalli, W.; Ghanem, I. Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait Posture 2016, 48, 30–35. [Google Scholar] [CrossRef] [PubMed]
  248. Bailly, R.; Lempereur, M.; Pons, C.; Houx, L.; Thepaut, M.; Borotikar, B.; Gross, R.; Brochard, S. 3-D lower extremity bone morphology in ambulant children with cerebral palsy and its relation to gait. Ann. Phys. Rehabil. Med. 2021, 64, 101254. [Google Scholar] [CrossRef]
  249. Bailly, R.; Lempereur, M.; Thepaut, M.; Pons, C.; Houx, L.; Brochard, S. Relationship between 3D lower limb bone morphology and 3D gait variables in children with uni and bilateral Cerebral Palsy. Gait Posture 2022, 92, 51–59. [Google Scholar] [CrossRef] [PubMed]
  250. Bonnet-Lebrun, A.; Linglart, A.; De Tienda, M.; Khac, V.N.; Ouchrif, Y.; Berkenou, J.; Pillet, H.; Assi, A.; Wicart, P.; Skalli, W. Combined gait analysis and radiologic examination in children with X-linked hypophosphatemia. Clin. Biomech. 2023, 105, 105974. [Google Scholar] [CrossRef]
  251. Chen, C.; Milbrandt, T.A.; Babadi, E.; Duong, S.Q.; Larson, D.R.; Shaughnessy, W.J.; Stans, A.A.; Hull, N.C.; Peterson, H.A.; Larson, A.N. Normative Femoral and Tibial Lengths in a Modern Population of Twenty-First-Century U.S. Children. J. Bone Jt. Surg. Am. 2023, 105, 468–478. [Google Scholar] [CrossRef]
  252. Rampal, V.; Rohan, P.Y.; Assi, A.; Ghanem, I.; Rosello, O.; Simon, A.L.; Gaumetou, E.; Merzoug, V.; Skalli, W.; Wicart, P. Lower-limb lengths and angles in children older than six years: Reliability and reference values by EOS(®) stereoradiography. Orthop. Traumatol. Surg. Res. 2018, 104, 389–395. [Google Scholar] [CrossRef]
  253. Sekiya, T.; Aota, Y.; Yamada, K.; Kaneko, K.; Ide, M.; Saito, T. Evaluation of functional and structural leg length discrepancy in patients with adolescent idiopathic scoliosis using the EOS imaging system: A prospective comparative study. Scoliosis Spinal Disord. 2018, 13, 7. [Google Scholar] [CrossRef] [PubMed]
  254. Khalifé, M.; Vergari, C.; Rebeyrat, G.; Ferrero, E.; Guigui, P.; Assi, A.; Skalli, W. Femoral neck version in the spinopelvic and lower limb 3D alignment: A full-body EOS(®) study in 400 healthy subjects. Eur. Spine J. 2024, 33, 1807–1815. [Google Scholar] [CrossRef]
  255. Loppini, M.; Longo, U.G.; Ragucci, P.; Trenti, N.; Balzarini, L.; Grappiolo, G. Analysis of the Pelvic Functional Orientation in the Sagittal Plane: A Radiographic Study With EOS 2D/3D Technology. J. Arthroplast. 2017, 32, 1027–1032. [Google Scholar] [CrossRef]
  256. Passmore, E.; Graham, H.K.; Sangeux, M. Defining the medial-lateral axis of the femur: Medical imaging, conventional and functional calibration methods lead to differences in hip rotation kinematics for children with torsional deformities. J. Biomech. 2018, 69, 156–163. [Google Scholar] [CrossRef] [PubMed]
  257. Prum, G.; Sauret, C.; Bourgain, M.; Rouillon, O.; Rouch, P.; Thoreux, P. Can early golfing lead to acetabular and lower limb changes? A cross-sectional study. Int. J. Sports Sci. Coach. 2022, 18, 270–277. [Google Scholar] [CrossRef]
  258. Pytiak, A.; Bomar, J.D.; Peterson, J.B.; Schmitz, M.R.; Pennock, A.T.; Wenger, D.R.; Upasani, V.V. Analysis of spinal alignment and pelvic parameters on upright radiographs: Implications for acetabular development. J. Hip Preserv. Surg. 2016, 3, 208–214. [Google Scholar] [CrossRef]
  259. Rampal, V.; Hausselle, J.; Thoreux, P.; Wicart, P.; Skalli, W. Three-dimensional morphologic study of the child’s hip: Which parameters are reproducible? Clin. Orthop. Relat. Res. 2013, 471, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
  260. Schlégl, Á.T.; Szuper, K.; Somoskeöy, S.; Than, P. Three dimensional radiological imaging of normal lower-limb alignment in children. Int. Orthop. 2015, 39, 2073–2080. [Google Scholar] [CrossRef]
  261. Szuper, K.; Schlégl, Á.; Vermes, C.; Somoskeöy, S.; Than, P.; Leidecker, E. Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system. Pediatr. Radiol. 2015, 45, 411–421. [Google Scholar] [CrossRef]
  262. Massaad, A.; Assi, A.; Bakouny, Z.; Sauret, C.; Khalil, N.; Skalli, W.; Ghanem, I. Three-dimensional evaluation of skeletal deformities of the pelvis and lower limbs in ambulant children with cerebral palsy. Gait Posture 2016, 49, 102–107. [Google Scholar] [CrossRef] [PubMed]
  263. Neirynck, J.; Proost, R.; Van Campenhout, A. The migration percentage measured on EOS® standing full-leg radiographs: Equivalent and advantageous in ambulant children with cerebral palsy. BMC Musculoskelet. Disord. 2019, 20, 366. [Google Scholar] [CrossRef]
  264. Thépaut, M.; Brochard, S.; Leboucher, J.; Lempereur, M.; Stindel, E.; Tissot, V.; Borotikar, B.; Borotikar, B.S. Measuring physiological and pathological femoral anteversion using a biplanar low-dose X-ray system: Validity, reliability, and discriminative ability in cerebral palsy. Skelet. Radiol. 2016, 45, 243–250. [Google Scholar] [CrossRef]
  265. Powell, J.; Gibly, R.F.; Faulk, L.W.; Carry, P.; Mayer, S.W.; Selberg, C.M. Can EOS Imaging Substitute for Conventional Radiography in Measurement of Acetabular Morphology in the Young Dysplastic Hip? J. Pediatr. Orthop. 2020, 40, 294–299. [Google Scholar] [CrossRef] [PubMed]
  266. Park, K.R.; Lee, J.H.; Kim, D.S.; Ryu, H.; Kim, J.; Yon, C.J.; Lee, S.W. The Comparison of Lower Extremity Length and Angle between Computed Radiography-Based Teleoroentgenogram and EOS(®) Imaging System. Diagnostics 2022, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
  267. Schmitz, M.R.; Bittersohl, B.; Zaps, D.; Bomar, J.D.; Pennock, A.T.; Hosalkar, H.S. Spectrum of radiographic femoroacetabular impingement morphology in adolescents and young adults: An EOS-based double-cohort study. J. Bone Jt. Surg. Am. 2013, 95, e90. [Google Scholar] [CrossRef] [PubMed]
  268. Hughes, J.L.; Newton, P.O.; Bastrom, T.; Fabricant, P.D.; Pennock, A.T. The Clavicle Continues to Grow During Adolescence and Early Adulthood. Hss J. 2020, 16 (Suppl. S2), 372–377. [Google Scholar] [CrossRef] [PubMed]
  269. Nguyen, J.C.; Guariento, A.; Nicholson, A.; Nguyen, M.K.; Gendler, L.; Ho-Fung, V.; Zhu, X.; Talwar, D.; Darge, K.; Flynn, J.M.; et al. Hand Bone Age Radiography: Comparison Between Slot-scanning and Conventional Techniques. J. Pediatr. Orthop. 2021, 41, e167–e173. [Google Scholar] [CrossRef]
  270. O’Sullivan, I.R.; Schégl, Á.T.; Varga, P.; Than, P.; Vermes, C. Femoral neck-shaft angle and bone age in 4- to 24-year-olds based on 1005 EOS three-dimensional reconstructions. J. Pediatr. Orthop. B 2021, 30, 337–345. [Google Scholar] [CrossRef]
  271. Schlégl, Á.T.; O’Sullivan, I.; Varga, P.; Than, P.; Vermes, C. Determination and correlation of lower limb anatomical parameters and bone age during skeletal growth (based on 1005 cases). J. Orthop. Res. 2017, 35, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
  272. Schlégl, Á.T.; O’Sullivan, I.; Varga, P.; Than, P.; Vermes, C. Alternative methods for skeletal maturity estimation with the EOS scanner-Experience from 934 patients. PLoS ONE 2022, 17, e0267668. [Google Scholar] [CrossRef]
  273. Xie, L.; Ge, T.; Xiao, B.; Han, X.; Zhang, Q.; Xu, Z.; He, D.; Tian, W. Identification of Adolescent Menarche Status Using Biplanar X-ray Images: A Deep Learning-Based Method. Bioengineering 2023, 10, 769. [Google Scholar] [CrossRef] [PubMed]
  274. Vafadar, S.; Skalli, W.; Bonnet-Lebrun, A.; Khalifé, M.; Renaudin, M.; Hamza, A.; Gajny, L. A novel dataset and deep learning-based approach for marker-less motion capture during gait. Gait Posture 2021, 86, 70–76. [Google Scholar] [CrossRef] [PubMed]
  275. Tsai, A. Anatomical landmark localization via convolutional neural networks for limb-length discrepancy measurements. Pediatr. Radiol. 2021, 51, 1431–1447. [Google Scholar] [CrossRef]
  276. Aubert, B.; Vergari, C.; Ilharreborde, B.; Courvoisier, A.; Skalli, W. 3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, 4, 281–295. [Google Scholar] [CrossRef]
  277. Khalifé, M.; Vergari, C.; Ferrero, E.; Attali, V.; Heidsieck, C.; Assi, A.; Skalli, W. The rib cage: A new element in the spinopelvic chain. Eur. Spine J. 2022, 31, 1457–1467. [Google Scholar] [CrossRef]
  278. Assi, A.; Karam, M.; Skalli, W.; Vergari, C.; Vialle, R.; Pietton, R.; Bizdikian, A.J.; Kharrat, K.; Dubousset, J.; Ghanem, I. A Novel Classification of 3D Rib Cage Deformity in Subjects With Adolescent Idiopathic Scoliosis. Clin. Spine Surg. 2021, 34, 331–341. [Google Scholar] [CrossRef] [PubMed]
  279. Bouloussa, H.; Pietton, R.; Vergari, C.; Haen, T.X.; Skalli, W.; Vialle, R. Biplanar stereoradiography predicts pulmonary function tests in adolescent idiopathic scoliosis: A cross-sectional study. Eur. Spine J. 2019, 28, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
  280. Courvoisier, A.; Ilharreborde, B.; Constantinou, B.; Aubert, B.; Vialle, R.; Skalli, W. Evaluation of a Three-Dimensional Reconstruction Method of the Rib Cage of Mild Scoliotic Patients. Spine Deform. 2013, 1, 321–327. [Google Scholar] [CrossRef] [PubMed]
  281. Machino, M.; Kawakami, N.; Ohara, T.; Saito, T.; Tauchi, R.; Imagama, S. Accuracy of rib cage parameters from 3-Dimensional reconstruction images obtained using simultaneous biplanar radiographic scanning technique in adolescent idiopathic scoliosis: Comparison with conventional computed tomography. J. Clin. Neurosci. 2020, 75, 94–98. [Google Scholar] [CrossRef]
  282. Vergari, C.; Aubert, B.; Lallemant-Dudek, P.; Haen, T.X.; Skalli, W. A novel method of anatomical landmark selection for rib cage 3D reconstruction from biplanar radiography. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 15–23. [Google Scholar] [CrossRef]
  283. Yaszay, B.; Bastrom, T.; Bartley, C.; Parent, S.; Newton, P.; Bastrom, T.P.; Bartley, C.E.; Newton, P.O. The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary function. Eur. Spine J. 2017, 26, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
  284. Clement, R.C.; Anari, J.; Bartley, C.E.; Bastrom, T.P.; Shah, R.; Talwar, D.; Upasani, V.V. What are normal radiographic spine and shoulder balance parameters among adolescent patients? Spine Deform. 2020, 8, 621–627. [Google Scholar] [CrossRef]
  285. Boscher, J.; Alain, A.; Vergnenegre, G.; Hummel, V.; Charissoux, J.L.; Marcheix, P.S. Femoral shaft fractures treated by antegrade locked intramedullary nailing: EOS stereoradiographic imaging evaluation of rotational malalignment having a functional impact. Orthop. Traumatol. Surg. Res. 2022, 108, 103235. [Google Scholar] [CrossRef]
  286. Orfeuvre, B.; Tonetti, J.; Kerschbaumer, G.; Barthelemy, R.; Moreau-Gaudry, A.; Boudissa, M. EOS stereographic assessment of femoral shaft malunion after intramedullary nailing. A prospective series of 48 patients at 9 months’ follow-up. Orthop. Traumatol. Surg. Res. 2021, 107, 102805. [Google Scholar] [CrossRef] [PubMed]
  287. Simon, A.L.; Apostolou, N.; Vidal, C.; Ferrero, E.; Mazda, K.; Ilharreborde, B. Paediatric tibial shaft fractures treated by open reduction and stabilization with monolateral external fixation. J. Child. Orthop. 2018, 12, 20–28. [Google Scholar] [CrossRef]
  288. Chua, C.X.K.; Tan, S.H.S.; Lim, A.K.S.; Hui, J.H. Accuracy of biplanar linear radiography versus conventional radiographs when used for lower limb and implant measurements. Arch. Orthop. Trauma. Surg. 2022, 142, 735–745. [Google Scholar] [CrossRef] [PubMed]
  289. Lecoanet, P.; Legallois, Y.; Ribes, C.; Lefevre, Y.; Cadennes, A.; Fabre, T. Medium-term evaluation of leg lengthening by ISKD® intramedullary nail in 28 patients: Should we still use this lengthening system? Orthop. Traumatol. Surg. Res. 2020, 106, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
  290. Bakouny, Z.; Assi, A.; Yared, F.; Khalil, N.; Mansour, E.; Yaacoub, J.J.; Skalli, W.; Ghanem, I. Combining acetabular and femoral morphology improves our understanding of the down syndrome hip. Clin. Biomech. 2018, 58, 96–102. [Google Scholar] [CrossRef]
  291. Deng, M.; Chen, Q.; Deng, Q.; Shi, L.; Cheng, C.C.N.; Yeung, K.H.; Zhang, R.; Yu, W.P.F.; Lam, T.P.; Cheng, J.C.Y.; et al. Statistical changes of lung morphology in patients with adolescent idiopathic scoliosis after spinal fusion surgery-a prospective nonrandomized study based on low-dose biplanar X-ray imaging. Quant. Imaging Med. Surg. 2022, 12, 3325–3339. [Google Scholar] [CrossRef]
  292. Pietton, R.; Bouloussa, H.; Langlais, T.; Taytard, J.; Beydon, N.; Skalli, W.; Vergari, C.; Vialle, R. Estimating pulmonary function after surgery for adolescent idiopathic scoliosis using biplanar radiographs of the chest with 3D reconstruction. Bone Joint J. 2022, 104, 112–119. [Google Scholar] [CrossRef] [PubMed]
  293. Sabourin, M.; Jolivet, E.; Miladi, L.; Wicart, P.; Rampal, V.; Skalli, W. Three-dimensional stereoradiographic modeling of rib cage before and after spinal growing rod procedures in early-onset scoliosis. Clin. Biomech. 2010, 25, 284–291. [Google Scholar] [CrossRef] [PubMed]
  294. Ha, A.S.; Lee, N.; Blake, R.; Mathew, J.; Cerpa, M.; Lenke, L.G. Can spinal deformity patients maintain proper arm positions while undergoing full-body X-ray? Spine Deform. 2021, 9, 387–394. [Google Scholar] [CrossRef] [PubMed]
Figure 1. PRISMA flowchart of articles.
Figure 1. PRISMA flowchart of articles.
Joma 02 00007 g001
Figure 2. Number of EOS articles per year.
Figure 2. Number of EOS articles per year.
Joma 02 00007 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Brage, K.; Mussmann, B.; Pedersen, M.R.; Nissen, M.; Brage, O.; Mørup, S.D.; Geijer, M.; Larsen, P.; Jensen, J. Clinical Application of the EOS Imaging System—The Broader Horizon. J. Oman Med. Assoc. 2025, 2, 7. https://doi.org/10.3390/joma2010007

AMA Style

Brage K, Mussmann B, Pedersen MR, Nissen M, Brage O, Mørup SD, Geijer M, Larsen P, Jensen J. Clinical Application of the EOS Imaging System—The Broader Horizon. Journal of the Oman Medical Association. 2025; 2(1):7. https://doi.org/10.3390/joma2010007

Chicago/Turabian Style

Brage, Karen, Bo Mussmann, Malene Roland Pedersen, Marcus Nissen, Oliver Brage, Svea Deppe Mørup, Mats Geijer, Palle Larsen, and Janni Jensen. 2025. "Clinical Application of the EOS Imaging System—The Broader Horizon" Journal of the Oman Medical Association 2, no. 1: 7. https://doi.org/10.3390/joma2010007

APA Style

Brage, K., Mussmann, B., Pedersen, M. R., Nissen, M., Brage, O., Mørup, S. D., Geijer, M., Larsen, P., & Jensen, J. (2025). Clinical Application of the EOS Imaging System—The Broader Horizon. Journal of the Oman Medical Association, 2(1), 7. https://doi.org/10.3390/joma2010007

Article Metrics

Back to TopTop