An Evaluation on the Potential of Large Language Models for Use in Trauma Triage
Abstract
:1. Introduction
2. The Current Landscape of Trauma Triage Protocols
2.1. Current Trauma Triaging Systems
2.2. Limitations of Current Trauma Triaging Guidelines: Over-Triaging and Under-Triaging
3. Overview of Generative Artificial Intelligence and Large Language Models
3.1. Defining Large Language Models
3.2. Accessible Large Language Models
3.3. Artificial Intelligence and Large Language Models in Healthcare
3.3.1. The Role of Artificial Intelligence and Large Language Models in Imaging Based Diagnosis and Prognosis
3.3.2. The Role of Large Language Models in Enhancing Clinical-Decision Making and Diagnostic Accuracy
3.3.3. Enhancing Patient Communication and Education with Large Language Models
3.3.4. The Impact of Large Language Models on Academia and Research in Healthcare
4. The Role of Large Language Models in Trauma Triaging
4.1. Current Evidence for the Use of Large Language Models in Trauma Triaging
4.1.1. Accuracy of Triaging
4.1.2. Rates of Trauma Undertriage and Overtriage with Large Language Models
4.1.3. Evaluation of Large Language Models in Emergency Trauma Triaging: Strengths and Limitations in Current Research
4.2. Ethical Challenges, Bias and Future Directions for the Integration of Large Language Models into Trauma Triage Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bedard, A.F.; Mata, L.V.; Dymond, C.; Moreira, F.; Dixon, J.; Schauer, S.G.; Ginde, A.A.; Bebarta, V.; Moore, E.E.; Mould-Millman, N.-K. A scoping review of worldwide studies evaluating the effects of prehospital time on trauma outcomes. Int. J. Emerg. Med. 2020, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, M.; Maki, S.; Furuya, T.; Inoue, K.; Nagai, K.; Nagashima, Y.; Maruyama, J.; Toki, Y.; Kitagawa, K.; Iwata, S.; et al. Emergency Patient Triage Improvement through a Retrieval-Augmented Generation Enhanced Large-Scale Language Model. Prehosp. Emerg. Care 2024, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guyette, F.X.; Peitzman, A.B.; Billiar, T.R.; Sperry, J.L.; Brown, J.B. Identifying patients with time-sensitive injuries: Association of mortality with increasing prehospital time. J. Trauma Acute Care Surg. 2019, 86, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.S.; Karam, B.S.; Murphy, P.B.; Jenkins, P.; Milia, D.J.; Hemmila, M.R.; Haines, K.L.; Puzio, T.J.; De Moya, M.A.; Tignanelli, C.J. Field-triage, hospital-triage and triage-assessment: A literature review of the current phases of adult trauma triage. J. Trauma Acute Care Surg. 2021, 90, e138–e145. [Google Scholar] [CrossRef] [PubMed]
- Voskens, F.J.; van Rein, E.A.; van der Sluijs, R.; Houwert, R.M.; Lichtveld, R.A.; Verleisdonk, E.J.; Segers, M.; van Olden, G.; Dijkgraaf, M.; Leenen, L.P. Accuracy of prehospital triage in selecting severely injured trauma patients. JAMA Surg. 2018, 153, 322–327. [Google Scholar] [CrossRef]
- Teixeira, P.G.; Inaba, K.; Hadjizacharia, P.; Brown, C.; Salim, A.; Rhee, P.; Browder, T.; Noguchi, T.T.; Demetriades, D. Preventable or potentially preventable mortality at a mature trauma center. J. Trauma 2007, 63, 1338–1346, discussion 1346–1347. [Google Scholar] [CrossRef]
- Schellenberg, M.; Docherty, S.; Owattanapanich, N.; Emigh, B.; Lutterman, P.; Karavites, L.; Switzer, E.; Wiepking, M.; Chudnofsky, C.; Inaba, K. Emergency physician and nurse discretion accurately triage high-risk trauma patients. Eur. J. Trauma Emerg. Surg. 2023, 49, 273–279. [Google Scholar] [CrossRef]
- van Rein, E.A.; van der Sluijs, R.; Voskens, F.J.; Lansink, K.W.; Houwert, R.M.; Lichtveld, R.A.; de Jongh, M.A.; Dijkgraaf, M.G.; Champion, H.R.; Beeres, F.J. Development and validation of a prediction model for prehospital triage of trauma patients. JAMA Surg. 2019, 154, 421–429. [Google Scholar] [CrossRef]
- MacKenzie, E.J.; Rivara, F.P.; Jurkovich, G.J.; Nathens, A.B.; Frey, K.P.; Egleston, B.L.; Salkever, D.S.; Scharfstein, D.O. A national evaluation of the effect of trauma-center care on mortality. N. Engl. J. Med. 2006, 354, 366–378. [Google Scholar] [CrossRef]
- Paslı, S.; Şahin, A.S.; Beşer, M.F.; Topçuoğlu, H.; Yadigaroğlu, M.; İmamoğlu, M. Assessing the precision of artificial intelligence in emergency department triage decisions: Insights from a study with ChatGPT. Am. J. Emerg. Med. 2024, 78, 170–175. [Google Scholar] [CrossRef]
- McKee, C.H.; Heffernan, R.W.; Willenbring, B.D.; Schwartz, R.B.; Liu, J.M.; Colella, M.R.; Lerner, E.B. Comparing the Accuracy of Mass Casualty Triage Systems When Used in an Adult Population. Prehosp. Emerg. Care 2020, 24, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Tam, H.L.; Chung, S.F.; Lou, C.K. A review of triage accuracy and future direction. BMC Emerg. Med. 2018, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Suamchaiyaphum, K.; Jones, A.R.; Markaki, A. Triage accuracy of emergency nurses: An evidence-based review. J. Emerg. Nurs. 2023, 50, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Franc, J.M.; Cheng, L.; Hart, A.; Hata, R.; Hertelendy, A. Repeatability, reproducibility, and diagnostic accuracy of a commercial large language model (ChatGPT) to perform emergency department triage using the Canadian triage and acuity scale. Can. J. Emerg. Med. 2024, 26, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Frosolini, A.; Catarzi, L.; Benedetti, S.; Latini, L.; Chisci, G.; Franz, L.; Gennaro, P.; Gabriele, G. The role of large language models (LLMs) in providing triage for maxillofacial trauma cases: A preliminary study. Diagnostics 2024, 14, 839. [Google Scholar] [CrossRef]
- Merrell, L.A.; Fisher, N.D.; Egol, K.A. Large language models in orthopaedic trauma: A cutting-edge technology to enhance the field. JBJS 2023, 105, 1383–1387. [Google Scholar] [CrossRef]
- Le, K.D.R.; Tay, S.B.P.; Choy, K.T.; Verjans, J.; Sasanelli, N.; Kong, J.C.H. Applications of natural language processing tools in the surgical journey. Front. Surg. 2024, 11, 1403540. [Google Scholar] [CrossRef]
- Sasanelli, F.; Le, K.D.R.; Tay, S.B.P.; Tran, P.; Verjans, J.W. Applications of natural language processing tools in orthopaedic surgery: A scoping review. Appl. Sci. 2023, 13, 11586. [Google Scholar] [CrossRef]
- Gan, R.K.; Uddin, H.; Gan, A.Z.; Yew, Y.Y.; González, P.A. ChatGPT’s performance before and after teaching in mass casualty incident triage. Sci. Rep. 2023, 13, 20350. [Google Scholar] [CrossRef]
- Peta, D.; Day, A.; Lugari, W.S.; Gorman, V.; Pajo, V.M.T. Triage: A global perspective. J. Emerg. Nurs. 2023, 49, 814–825. [Google Scholar] [CrossRef]
- Trauma Victoria. Major Trauma Guidelines & Education—Victorian State Trauma System. Available online: https://trauma.reach.vic.gov.au/guidelines/early-trauma-care/early-activation (accessed on 19 August 2024).
- ACT Government Canberra Health Services. Trauma Team Activation and Roles & Responsibilities. Available online: https://www.canberrahealthservices.act.gov.au/__data/assets/word_doc/0010/1981693/Trauma-Team-Activation-and-Roles-and-Responsibilities.docx (accessed on 19 August 2024).
- NSW Health. Trauma Team Activation Guidelines—ST George Hospital (SGH). Available online: https://www.seslhd.health.nsw.gov.au/sites/default/files/groups/StGTrauma/Policies/BR372_SGH_Trauma_team_activation_guideline.pdf (accessed on 19 August 2024).
- Cameron, M.; McDermott, K.M.; Campbell, L. The performance of trauma team activation criteria at an Australian regional hospital. Injury 2019, 50, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Yancey, C.C.; O’Rourke, M.C. Emergency Department Triage. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- UAM Medical Centre. Trauma Services Manual. Available online: https://medicine.uams.edu/surgery/wp-content/uploads/sites/5/2016/12/Trauma-Team-Activation-Criteria.pdf (accessed on 19 August 2024).
- McDonell, A.; Veitch, C.; Aitken, P.; Elcock, M. The organisation of trauma services for rural Australia. Australas. J. Paramed. 2009, 7, 1–14. [Google Scholar] [CrossRef]
- Bhalla, M.C.; Frey, J.; Rider, C.; Nord, M.; Hegerhorst, M. Simple Triage Algorithm and Rapid Treatment and Sort, Assess, Lifesaving, Interventions, Treatment, and Transportation mass casualty triage methods for sensitivity, specificity, and predictive values. Am. J. Emerg. Med. 2015, 33, 1687–1691. [Google Scholar] [CrossRef] [PubMed]
- Romig, L.E. Pediatric triage. A system to JumpSTART your triage of young patients at MCIs. JEMS J. Emerg. Med. Serv. 2002, 27, 52–58, 60. [Google Scholar]
- González, J.; Soltero, R. Emergency Severity Index (ESI) triage algorithm: Trends after implementation in the emergency department. Boletín Asoc. Médica Puerto Rico 2009, 101, 7–10. [Google Scholar]
- Clarkson, L.; Williams, M. EMS Mass Casualty Triage. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Silvestri, S.; Field, A.; Mangalat, N.; Weatherford, T.; Hunter, C.; McGowan, Z.; Stamile, Z.; Mattox, T.; Barfield, T.; Afshari, A. Comparison of START and SALT triage methodologies to reference standard definitions and to a field mass casualty simulation. Am. J. Disaster Med. 2017, 12, 27–33. [Google Scholar] [CrossRef]
- SALT mass casualty triage: Concept endorsed by the American College of Emergency Physicians, American College of Surgeons Committee on Trauma, American Trauma Society, National Association of EMS Physicians, National Disaster Life Support Education Consortium, and State and Territorial Injury Prevention Directors Association. Disaster Med. Public Health Prep. 2008, 2, 245–246. [CrossRef] [PubMed]
- Grouse, A.; Bishop, R.; Bannon, A. The Manchester Triage System provides good reliability in an Australian emergency department. Emerg. Med. J. 2009, 26, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Hugman, A.; Varndell, W.; Howes, K. A review of the quality assurance processes for the Australasian Triage Scale (ATS) and implications for future practice. Australas. Emerg. Nurs. J. 2013, 16, 21–29. [Google Scholar] [CrossRef]
- Huabbangyang, T.; Rojsaengroeng, R.; Tiyawat, G.; Silakoon, A.; Vanichkulbodee, A.; Sri-On, J.; Buathong, S. Associated factors of under and over-triage based on the emergency severity index; a retrospective cross-sectional study. Arch. Acad. Emerg. Med. 2023, 11, e57. [Google Scholar]
- Peng, J.; Xiang, H. Trauma undertriage and overtriage rates: Are we using the wrong formulas? Am. J. Emerg. Med. 2016, 34, 2191. [Google Scholar] [CrossRef] [PubMed]
- Yoder, A.; Bradburn, E.H.; Morgan, M.E.; Vernon, T.M.; Bresz, K.E.; Gross, B.W.; Cook, A.D.; Rogers, F.B. An analysis of overtriage and undertriage by advanced life support transport in a mature trauma system. J. Trauma Acute Care Surg. 2020, 88, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Dinh, M.M.; Oliver, M.; Bein, K.J.; Roncal, S.; Byrne, C.M. Performance of the New South Wales Ambulance Service major trauma transport protocol (T1) at an inner city trauma centre. Emerg. Med. Australas. 2012, 24, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, M.; Benjamin, E.; Bardes, J.M.; Inaba, K.; Demetriades, D. Undertriaged trauma patients: Who are we missing? J. Trauma Acute Care Surg. 2019, 87, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.Y.; Kim, K. Factors associated with the undertriage of patients with abdominal pain in an emergency room. Int. Emerg. Nurs. 2021, 54, 100933. [Google Scholar] [CrossRef]
- Newgard, C.D.; Staudenmayer, K.; Hsia, R.Y.; Mann, N.C.; Bulger, E.M.; Holmes, J.F.; Fleischman, R.; Gorman, K.; Haukoos, J.; McConnell, K.J. The cost of overtriage: More than one-third of low-risk injured patients were taken to major trauma centers. Health Aff. 2013, 32, 1591–1599. [Google Scholar] [CrossRef]
- Frykberg, E.R. Medical management of disasters and mass casualties from terrorist bombings: How can we cope? J. Trauma Acute Care Surg. 2002, 53, 201–212. [Google Scholar] [CrossRef]
- Lupton, J.R.; Davis-O’Reilly, C.; Jungbauer, R.M.; Newgard, C.D.; Fallat, M.E.; Brown, J.B.; Mann, N.C.; Jurkovich, G.J.; Bulger, E.; Gestring, M.L. Under-triage and over-triage using the field triage guidelines for injured patients: A systematic review. Prehosp. Emerg. Care 2023, 27, 38–45. [Google Scholar] [CrossRef]
- Curtis, K.; Olivier, J.; Mitchell, R.; Cook, A.; Rankin, T.; Rana, A.; Watson, W.L.; Nau, T. Evaluation of a tiered trauma call system in a level 1 trauma centre. Injury 2011, 42, 57–62. [Google Scholar] [CrossRef]
- Xiang, H.; Wheeler, K.K.; Groner, J.I.; Shi, J.; Haley, K.J. Undertriage of major trauma patients in the US emergency departments. Am. J. Emerg. Med. 2014, 32, 997–1004. [Google Scholar] [CrossRef]
- Dehli, T.; Fredriksen, K.; Osbakk, S.A.; Bartnes, K. Evaluation of a university hospital trauma team activation protocol. Scand. J. Trauma Resusc. Emerg. Med. 2011, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Staudenmayer, K.; Lin, F.; Mackersie, R.; Spain, D.; Hsia, R. Variability in California triage from 2005 to 2009: A population-based longitudinal study of severely injured patients. J. Trauma Acute Care Surg. 2014, 76, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Rainer, T.H.; Cheung, N.; Yeung, J.H.; Graham, C.A. Do trauma teams make a difference?: A single centre registry study. Resuscitation 2007, 73, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Carlos, G.; Nassar, A.K.; Knowlton, L.M.; Spain, D.A. The impact of trauma systems on patient outcomes. Curr. Probl. Surg. 2021, 58, 100849. [Google Scholar] [CrossRef]
- Tomas, C.; Kallies, K.; Cronn, S.; Kostelac, C.; deRoon-Cassini, T.; Cassidy, L. Mechanisms of traumatic injury by demographic characteristics: An 8-year review of temporal trends from the National Trauma Data Bank. Inj. Prev. 2023, 29, 347–354. [Google Scholar] [CrossRef]
- af Ugglas, B.; Lindmarker, P.; Ekelund, U.; Djärv, T.; Holzmann, M.J. Emergency department crowding and mortality in 14 Swedish emergency departments, a cohort study leveraging the Swedish Emergency Registry (SVAR). PLoS ONE 2021, 16, e0247881. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Basu, K.; Sinha, R.; Ong, A.; Basu, T. Artificial intelligence: How is it changing medical sciences and its future? Indian J. Dermatol. 2020, 65, 365–370. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Tortora, L. Beyond Discrimination: Generative AI Applications and Ethical Challenges in Forensic Psychiatry. Front. Psychiatry 2024, 15, 1346059. [Google Scholar] [CrossRef]
- Nichols, J.A.; Herbert Chan, H.W.; Baker, M.A. Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophys. Rev. 2019, 11, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Naveed, H.; Khan, A.U.; Qiu, S.; Saqib, M.; Anwar, S.; Usman, M.; Akhtar, N.; Barnes, N.; Mian, A. A comprehensive overview of large language models. arXiv 2023, arXiv:2307.06435. [Google Scholar]
- Shahab, O.; El Kurdi, B.; Shaukat, A.; Nadkarni, G.; Soroush, A. Large language models: A primer and gastroenterology applications. Ther. Adv. Gastroenterol. 2024, 17, 17562848241227031. [Google Scholar] [CrossRef] [PubMed]
- Khurana, D.; Koli, A.; Khatter, K.; Singh, S. Natural language processing: State of the art, current trends and challenges. Multimed. Tools Appl. 2023, 82, 3713–3744. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744. [Google Scholar]
- Christiano, P.F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.; Amodei, D. Deep reinforcement learning from human preferences. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf (accessed on 23 August 2024).
- Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Wang, H. Retrieval-augmented generation for large language models: A survey. arXiv 2023, arXiv:2312.10997. [Google Scholar]
- Mintz, Y.; Brodie, R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Cascella, M.; Semeraro, F.; Montomoli, J.; Bellini, V.; Piazza, O.; Bignami, E. The breakthrough of large language models release for medical applications: 1-year timeline and perspectives. J. Med. Syst. 2024, 48, 22. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Kang, H.M.; Leem, D.; Lee, H.; Seo, K.Y.; Yoon, S. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Sci. Rep. 2021, 11, 1897. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi Mehr, R.; Ameri, A. Skin Cancer Detection Based on Deep Learning. J. Biomed. Phys. Eng. 2022, 12, 559–568. [Google Scholar] [PubMed]
- Winkler, J.K.; Blum, A.; Kommoss, K.; Enk, A.; Toberer, F.; Rosenberger, A.; Haenssle, H.A. Assessment of diagnostic performance of dermatologists cooperating with a convolutional neural network in a prospective clinical study: Human with machine. JAMA Dermatol. 2023, 159, 621–627. [Google Scholar] [CrossRef]
- Günay, S.; Öztürk, A.; Özerol, H.; Yiğit, Y.; Erenler, A.K. Comparison of emergency medicine specialist, cardiologist, and chat-GPT in electrocardiography assessment. Am. J. Emerg. Med. 2024, 80, 51–60. [Google Scholar] [CrossRef]
- Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front. Artif. Intell. 2023, 6, 1169595. [Google Scholar] [CrossRef]
- Barash, Y.; Klang, E.; Konen, E.; Sorin, V. ChatGPT-4 assistance in optimizing emergency department radiology referrals and imaging selection. J. Am. Coll. Radiol. 2023, 20, 998–1003. [Google Scholar] [CrossRef]
- Delsoz, M.; Madadi, Y.; Raja, H.; Munir, W.M.; Tamm, B.; Mehravaran, S.; Soleimani, M.; Djalilian, A.; Yousefi, S. Performance of ChatGPT in diagnosis of corneal eye diseases. Cornea 2024, 43, 664–670. [Google Scholar] [CrossRef]
- Pressman, S.M.; Borna, S.; Gomez-Cabello, C.A.; Haider, S.A.; Forte, A.J. AI in Hand Surgery: Assessing Large Language Models in the Classification and Management of Hand Injuries. J. Clin. Med. 2024, 13, 2832. [Google Scholar] [CrossRef]
- Borna, S.; Gomez-Cabello, C.A.; Pressman, S.M.; Haider, S.A.; Forte, A.J. Comparative Analysis of Large Language Models in Emergency Plastic Surgery Decision-Making: The Role of Physical Exam Data. J. Pers. Med. 2024, 14, 612. [Google Scholar] [CrossRef]
- Ayoub, M.; Ballout, A.A.; Zayek, R.A.; Ayoub, N.F. Mind+ Machine: ChatGPT as a Basic Clinical Decisions Support Tool. Cureus 2023, 15, e43690. [Google Scholar] [CrossRef] [PubMed]
- Lahat, A.; Sharif, K.; Zoabi, N.; Shneor Patt, Y.; Sharif, Y.; Fisher, L.; Shani, U.; Arow, M.; Levin, R.; Klang, E. Assessing Generative Pretrained Transformers (GPT) in Clinical Decision-Making: Comparative Analysis of GPT-3.5 and GPT-4. J. Med. Internet Res. 2024, 26, e54571. [Google Scholar] [CrossRef] [PubMed]
- Goh, E.; Gallo, R.; Hom, J.; Strong, E.; Weng, Y.; Kerman, H.; Cool, J.; Kanjee, Z.; Parsons, A.S.; Ahuja, N. Influence of a Large Language Model on Diagnostic Reasoning: A Randomized Clinical Vignette Study. medRxiv 2024. [Google Scholar] [CrossRef]
- Hoppe, J.M.; Auer, M.K.; Strüven, A.; Massberg, S.; Stremmel, C. ChatGPT with GPT-4 Outperforms Emergency Department Physicians in Diagnostic Accuracy: Retrospective Analysis. J. Med. Internet Res. 2024, 26, e56110. [Google Scholar] [CrossRef] [PubMed]
- Haim, G.B.; Braun, A.; Eden, H.; Burshtein, L.; Barash, Y.; Irony, A.; Klang, E. AI in the ED: Assessing the efficacy of GPT models vs. physicians in medical score calculation. Am. J. Emerg. Med. 2024, 79, 161–166. [Google Scholar] [CrossRef]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef]
- Boyd, C.J.; Hemal, K.; Sorenson, T.J.; Patel, P.A.; Bekisz, J.M.; Choi, M.; Karp, N.S. Artificial Intelligence as a Triage Tool during the Perioperative Period: Pilot Study of Accuracy and Accessibility for Clinical Application. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5580. [Google Scholar] [CrossRef]
- Reynolds, K.; Tejasvi, T. Potential use of ChatGPT in responding to patient questions and creating patient resources. JMIR Dermatol. 2024, 7, e48451. [Google Scholar] [CrossRef]
- Seth, I.; Xie, Y.; Rodwell, A.; Gracias, D.; Bulloch, G.; Hunter-Smith, D.J.; Rozen, W.M. Exploring the role of a large language model on carpal tunnel syndrome management: An observation study of ChatGPT. J. Hand Surg. 2023, 48, 1025–1033. [Google Scholar] [CrossRef]
- Gül, Ş.; Erdemir, İ.; Hanci, V.; Aydoğmuş, E.; Erkoç, Y.S. How artificial intelligence can provide information about subdural hematoma: Assessment of readability, reliability, and quality of ChatGPT, BARD, and perplexity responses. Medicine 2024, 103, e38009. [Google Scholar] [CrossRef]
- Mokmin, N.A.M.; Ibrahim, N.A. The evaluation of chatbot as a tool for health literacy education among undergraduate students. Educ. Inf. Technol. 2021, 26, 6033–6049. [Google Scholar] [CrossRef] [PubMed]
- Breeding, T.; Martinez, B.; Patel, H.; Nasef, H.; Arif, H.; Nakayama, D.; Elkbuli, A. The utilization of ChatGPT in reshaping future medical education and learning perspectives: A curse or a blessing? Am. Surg. 2024, 90, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Park, J.; Lee, H. Analysis of the effect of an artificial intelligence chatbot educational program on non-face-to-face classes: A quasi-experimental study. BMC Med. Educ. 2022, 22, 830. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.; Kasapovic, A.; Jansen, T.; Kaczmarczyk, R. Artificial intelligence in medical education: Comparative analysis of ChatGPT, Bing, and medical students in Germany. JMIR Med. Educ. 2023, 9, e46482. [Google Scholar] [CrossRef]
- Friederichs, H.; Friederichs, W.J.; März, M. ChatGPT in medical school: How successful is AI in progress testing? Med. Educ. Online 2023, 28, 2220920. [Google Scholar] [CrossRef]
- Riedel, M.; Kaefinger, K.; Stuehrenberg, A.; Ritter, V.; Amann, N.; Graf, A.; Recker, F.; Klein, E.; Kiechle, M.; Riedel, F. ChatGPT’s performance in German OB/GYN exams–paving the way for AI-enhanced medical education and clinical practice. Front. Med. 2023, 10, 1296615. [Google Scholar] [CrossRef]
- Rudan, D.; Marčinko, D.; Degmečić, D.; Jakšić, N. Scarcity of research on psychological or psychiatric states using validated questionnaires in low-and middle-income countries: A ChatGPT-assisted bibliometric analysis and national case study on some psychometric properties. J. Glob. Health 2023, 13, 04102. [Google Scholar] [CrossRef]
- Biswas, S.; Dobaria, D.; Cohen, H.L. Focus: Big data: ChatGPT and the future of journal reviews: A feasibility study. Yale J. Biol. Med. 2023, 96, 415. [Google Scholar] [CrossRef]
- Saad, A.; Jenko, N.; Ariyaratne, S.; Birch, N.; Iyengar, K.P.; Davies, A.M.; Vaishya, R.; Botchu, R. Exploring the potential of ChatGPT in the peer review process: An observational study. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 102946. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, R.; He, J.; Xiang, Y. Evaluating ChatGPT-4.0’s data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R. J. Glob. Health 2024, 14, 04070. [Google Scholar] [CrossRef]
- Gebrael, G.; Sahu, K.K.; Chigarira, B.; Tripathi, N.; Mathew Thomas, V.; Sayegh, N.; Maughan, B.L.; Agarwal, N.; Swami, U.; Li, H. Enhancing triage efficiency and accuracy in emergency rooms for patients with metastatic prostate cancer: A retrospective analysis of artificial intelligence-assisted triage using ChatGPT 4.0. Cancers 2023, 15, 3717. [Google Scholar] [CrossRef] [PubMed]
- Meral, G.; Ateş, S.; Günay, S.; Öztürk, A.; Kuşdoğan, M. Comparative analysis of ChatGPT, Gemini and emergency medicine specialist in ESI triage assessment. Am. J. Emerg. Med. 2024, 81, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.Y.; Zack, T.; Miao, B.Y.; Sushil, M.; Wang, M.; Kornblith, A.E.; Butte, A.J. Use of a large language model to assess clinical acuity of adults in the emergency department. JAMA Netw. Open 2024, 7, e248895. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Kadomatsu, S.; Fujisawa, M.; Fukaguchi, K.; Ishizawa, R.; Kanda, N.; Kasugai, D.; Nakajima, M.; Goto, T.; Tsugawa, Y. The accuracy and potential racial and ethnic biases of GPT-4 in the diagnosis and triage of health conditions: Evaluation study. JMIR Med. Educ. 2023, 9, e47532. [Google Scholar] [CrossRef] [PubMed]
- Sapp, R.F.; Brice, J.H.; Myers, J.B.; Hinchey, P. Triage performance of first-year medical students using a multiple-casualty scenario, paper exercise. Prehosp. Disaster Med. 2010, 25, 239–245. [Google Scholar] [CrossRef]
- Gan, R.K.; Ogbodo, J.C.; Wee, Y.Z.; Gan, A.Z.; González, P.A. Performance of Google bard and ChatGPT in mass casualty incidents triage. Am. J. Emerg. Med. 2024, 75, 72–78. [Google Scholar] [CrossRef]
- Masanneck, L.; Schmidt, L.; Seifert, A.; Kölsche, T.; Huntemann, N.; Jansen, R.; Mehsin, M.; Bernhard, M.; Meuth, S.G.; Böhm, L. Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study. J. Med. Internet Res. 2024, 26, e53297. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.K.; Choi, J.; Lee, Y. Reliability of ChatGPT for performing triage task in the emergency department using the Korean Triage and Acuity Scale. Digit. Health 2024, 10, 20552076241227132. [Google Scholar] [CrossRef]
- Sarbay, İ.; Berikol, G.B.; Özturan, İ.U. Performance of emergency triage prediction of an open access natural language processing based chatbot application (ChatGPT): A preliminary, scenario-based cross-sectional study. Turk. J. Emerg. Med. 2023, 23, 156–161. [Google Scholar] [CrossRef]
- Zaboli, A.; Brigo, F.; Sibilio, S.; Mian, M.; Turcato, G. Human intelligence versus Chat-GPT: Who performs better in correctly classifying patients in triage? Am. J. Emerg. Med. 2024, 79, 44–47. [Google Scholar] [CrossRef]
- Zandi, R.; Fahey, J.D.; Drakopoulos, M.; Bryan, J.M.; Dong, S.; Bryar, P.J.; Bidwell, A.E.; Bowen, R.C.; Lavine, J.A.; Mirza, R.G. Exploring diagnostic precision and triage proficiency: A comparative study of GPT-4 and Bard in addressing common ophthalmic complaints. Bioengineering 2024, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Kanithi, P.K.; Christophe, C.; Pimentel, M.A.; Raha, T.; Saadi, N.; Javed, H.; Maslenkova, S.; Hayat, N.; Rajan, R.; Khan, S. MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications. arXiv 2024, arXiv:2409.07314. [Google Scholar]
- Gauss, T.; de Jongh, M.; Maegele, M.; Cole, E.; Bouzat, P. Trauma systems in high socioeconomic index countries in 2050. Crit. Care 2024, 28, 84. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Oh, M.Y.; Kim, N.R.; Jung, Y.J.; Ro, Y.S.; Shin, S.D. Comparison of trauma care systems in Asian countries: A systematic literature review. Emerg. Med. Australas. 2017, 29, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Dijkink, S.; Nederpelt, C.J.; Krijnen, P.; Velmahos, G.C.; Schipper, I.B. Trauma systems around the world: A systematic overview. J. Trauma Acute Care Surg. 2017, 83, 917–925. [Google Scholar] [CrossRef]
- Meskó, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. npj Digit. Med. 2023, 6, 120. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Yang, H.; Guo, J.; Wu, Y.; Liu, J. Ethical considerations of using ChatGPT in health care. J. Med. Internet Res. 2023, 25, e48009. [Google Scholar] [CrossRef]
- Price, W.N.; Cohen, I.G. Privacy in the age of medical big data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef]
- Shikino, K.; Shimizu, T.; Otsuka, Y.; Tago, M.; Takahashi, H.; Watari, T.; Sasaki, Y.; Iizuka, G.; Tamura, H.; Nakashima, K. Evaluation of ChatGPT-Generated Differential Diagnosis for Common Diseases with Atypical Presentation: Descriptive Research. JMIR Med. Educ. 2024, 10, e58758. [Google Scholar] [CrossRef]
- Mannuru, N.R.; Shahriar, S.; Teel, Z.A.; Wang, T.; Lund, B.D.; Tijani, S.; Pohboon, C.O.; Agbaji, D.; Alhassan, J.; Galley, J. Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Inf. Dev. 2023, 02666669231200628. [Google Scholar] [CrossRef]
- Mirzaei, T.; Amini, L.; Esmaeilzadeh, P. Clinician voices on ethics of LLM integration in healthcare: A thematic analysis of ethical concerns and implications. BMC Med. Inform. Decis. Mak. 2024, 24, 250. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Barnato, A.E.; Rosengart, M.R.; Farris, C.; Yealy, D.M.; Switzer, G.E.; Fischhoff, B.; Saul, M.; Angus, D.C. Trauma triage in the emergency departments of nontrauma centers: An analysis of individual physician caseload on triage patterns. J. Trauma Acute Care Surg. 2013, 74, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J. ChatGPT: Friend or Foe?—Utility in Trauma Triage. Indian J. Crit. Care Med. 2023, 27, 563. [Google Scholar] [CrossRef] [PubMed]
- Minssen, T.; Vayena, E.; Cohen, I.G. The Challenges for Regulating Medical Use of ChatGPT and Other Large Language Models. JAMA 2023, 330, 315–316. [Google Scholar] [CrossRef]
Triage System | Target Age Group | Key Features | Triage Categories | Region of Use |
---|---|---|---|---|
START (Simple Triage and Rapid Treatment) | 8 years and above | - Considers vital signs, bleeding, ability to follow instructions | - Ambulatory, immediate, delayed, minor, deceased | USA |
JumpSTART | Children | - Focuses on paediatric respiratory failure and ability to follow commands | - Ambulatory, immediate, delayed, minor, deceased | USA |
Emergency Severity Index (ESI) | All ages | - Five-tier system - Assesses stability of vital signs and resource needs | - 1 (Immediate life-saving intervention needed) - 5 (Non-urgent) | USA |
SALT (Sort, Assess, Life-Saving Interventions, Treatment/Transport) | All ages | - Similar to START, but adds life-saving interventions - Five broad categories based on mobility and response | - Immediate, expectant, delayed, minimal, deceased | USA, Global |
Australasian Triage Scale (ATS) | All ages | - Five-level scale - Considers patient appearance, physiological findings, presenting complaints | - 1 (Life-threatening) - 5 (Non-urgent) | Australia, New Zealand |
Canadian Triage and Acuity Scale (CTAS) | All ages | - Five levels - Based on symptoms and clinical urgency | - 1 (Immediate) - 5 (Non-urgent) | Canada |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, K.; Chen, J.; Mai, D.; Le, K.D.R. An Evaluation on the Potential of Large Language Models for Use in Trauma Triage. Emerg. Care Med. 2024, 1, 350-367. https://doi.org/10.3390/ecm1040035
Le K, Chen J, Mai D, Le KDR. An Evaluation on the Potential of Large Language Models for Use in Trauma Triage. Emergency Care and Medicine. 2024; 1(4):350-367. https://doi.org/10.3390/ecm1040035
Chicago/Turabian StyleLe, Kelvin, Jiahang Chen, Deon Mai, and Khang Duy Ricky Le. 2024. "An Evaluation on the Potential of Large Language Models for Use in Trauma Triage" Emergency Care and Medicine 1, no. 4: 350-367. https://doi.org/10.3390/ecm1040035
APA StyleLe, K., Chen, J., Mai, D., & Le, K. D. R. (2024). An Evaluation on the Potential of Large Language Models for Use in Trauma Triage. Emergency Care and Medicine, 1(4), 350-367. https://doi.org/10.3390/ecm1040035