Insights from a Decade of Optimizing Emergency Medical Services Across Three Major Regions in Switzerland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Study Design
- Description of study backgroundRegional context and specific objectives of each simulation study, defining the decision variables, are presented.
- DES processRule-based DES offers maximum flexibility to account for cantonal conditions and contains the following four steps:
- (a)
- Import, validation, and analysis of historical dataHistorical EMS data of incidents (the “where”, “when”, and “what” happened) and the teams’ availability (rosters for paramedics, emergency doctors, …) for the period under consideration are imported. A standardized import routine ensures a consistent technical validation of historical data provided by EMSs across cantons (e.g., non-negative travel times, missing team labels, missing coordinates, completion of incident) and correct calculation of response time in line with IVR regulations [6]. The result of this process is a validated and accepted dataset called historical scenario, which serves as input for simulation and contains all relevant historical incidents and available teams.
- (b)
- SimulationA rule-based DES processes the historical scenario to create a simulated historical scenario. Any disparities between the historical scenario and simulated historical scenario generally stem from model simplifications, which are discussed with all involved stakeholders. The initial analysis compares the simulated historical scenario against the historical scenario, and uses predefined key performance indicators such as the response time quantiles, a histogram of response time, and the spatial distribution of response time [7]. This is an iterative process with the respective EMS to ensure the simulation’s validity [7].The validated DES uses individual dispatching strategies that take into account the characteristics of incidents and available teams (in most cases, the closest-idle strategy based on incident priority). Simulations may also test individual destination strategies to influence transportation behavior after the initial treatment has been carried out on site (in most cases, the historical destination). The simulation uses the OpenStreetMap routing machine (OSRM) to calculate driving times. A more detailed description of the simulation workflow can be found in Appendix B.
- (c)
- OptimizationDuring optimization, a set of scenarios is generated from the historical scenario, with the option of manipulating the historical composition of incidents (i.e., increase/reduce the number of incidents by sampling) or teams (i.e., add/remove teams or bases). Each of these scenarios will then be simulated with the option of using different dispatch strategies or different destination strategies. The resulting simulated scenarios are ranked and compared with the simulated historical scenario. A visualization of this optimization process can be found in Appendix C.For questions regarding the reserve capacity of teams, an automated optimization process is used to find a minimum set of teams that meet the response time compliance rate. During this process, additional scenarios are iteratively created as long as less than 90% of incidents have been reached within 15 min. In each iteration, a greedy search [24] is used to find the team that can serve the most incidents in the system, thereby improving the total response time. The process stops when (i) 90% is reached or if (ii) the improvement is below a certain threshold [7]. A visualization of this automated optimization process can be found in Appendix D.
- (d)
- Communication of resultsIn each of the preceding steps, results are summarized in reports that are iteratively discussed with all stakeholders involved. Most reports use response time and the response time compliance rate as the main key performance indicator of interest (an example for spatial patterns in response time and response time compliance rate is shown in Figure 2 and Figure A1). The iterative procedure aims to assert consistency and correct the integration of respective cantonal contexts. The provided reports then support decision-making processes of EMSs and healthcare authorities (HAs).
- Further observationsA critical reflection on political constraints and decisions is presented for each simulation study. The role of simulation-based optimization in the respective decision-making processes of prehospital care planning is discussed.
2.2. Ethical Approval
3. Results
3.1. Simulation Study 1—Region Zurich
3.1.1. Background
3.1.2. Simulation-Based Findings
3.1.3. Further Observations
3.2. Simulation Study 2—Central Switzerland
3.2.1. Background
3.2.2. Simulation-Based Findings
3.2.3. Further Observations
3.3. Simulation Study 3—Canton St. Gallen
3.3.1. Background
3.3.2. Simulation-Based Findings
3.3.3. Further Observations
4. Discussion and Future Work
- Resource-neutral performance saturation: Regional gains through optimization of routing, base locations, and scheduling are marginal without increasing resources (e.g., additional teams, bases, or modes of transport). In each case (Zurich, Central Switzerland, and St. Gallen), optimizing the simulated historical scenario indicated that resource neutral strategies only led to improvements of up to 1 percentage point at most. The performance could only be significantly improved through additional resources. This demonstrates how individual resource allocation improvements saturate within planning processes due to the conflict between financial pressure and performance targets. This conflict could be mitigated using mathematical optimization, but requires a fundamental discussion among stakeholders regarding objectives.
- Systemic coordination and collaboration: Besides the conflict between financial and performance perspectives, we identify governance structures as highly relevant. The cases of Zurich, Central Switzerland, and St. Gallen are examples of top–down governance wherein planning processes were adjusted without involving all affected actors (e.g., EMSs).The case of Zurich highlights how a change in dispatch strategy, such as moving from area succession to closest-idle, removed the EMSs’ ability to plan and optimize their own fleet operations. The case of St. Gallen shows how top–down decision processes, such as closing two hospitals, did not consider the trade-off between quality improvements and increasing costs for EMSs. As further hospital closures are possible in the future, this case suggests to systematically involve all stakeholders in prehospital care planning at an early stage. The case of Central Switzerland presents a conflict of interest between capacity utilization of regional hospitals (a political decision) and response time compliance rate (an operational consequence). In all three cases, there are behaviors indicating a lack of awareness of system complexity, resulting in insufficient collaboration.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EMSs | Emergency medical services |
HA | healthcare authorities |
IVR | Inter-association for Rescue Services (“Interverband für Rettungswesen”) |
RTCR | Response time compliance rate |
DES | Discrete Event Simulation |
OSRM | Open Streetmap Routing Machine |
Appendix A. Annual Growth of Incidents in Germany, Austria, and Switzerland
Appendix B. Simulation Process
Appendix C. Overall Optimization Process
Appendix D. Automated Optimization Process
Appendix E. Further Observations for Simulation Study 1—Zurich
References
- Bürger, A.; Wnent, J.; Bohn, A.; Jantzen, T.; Brenner, S.; Lefering, R.; Seewald, S.; Gräsner, J.T.; Fischer, M. The Effect of Ambulance Response Time on Survival Following Out-of-Hospital Cardiac Arrest. Dtsch. Arztebl. Int. 2018, 115, 541–548. [Google Scholar] [CrossRef]
- Fischer, M.; Kehrberger, E.; Marung, H.; Moecke, H.; Prückner, S.; Trentzsch, H.; Urban, B. Eckpunktepapier 2016 zur notfallmedizinischen Versorgung der Bevölkerung in der Prähospitalphase und in der Klinik. Notf. Rettungsmedizin 2016, 19, 387–395. [Google Scholar] [CrossRef]
- Frey, M.; Lobsiger, M.; Trede, I. Rettungsdienste in der Schweiz; Schweizerisches Gesundheitsobservatorium (Obsan): Winterthur, Switzerland, 2017. [Google Scholar]
- Lindner, M. Kosten und Finanzierung des Gesundheitswesens—Detaillierte Ergebnisse 2008 und Jüngste Entwicklung. Bundesamt für Statistik BFS; Eidgenössisches Departement des Innern: Bern, Switzerland, 2011. [Google Scholar]
- Schweizerisches Gesundheitsobservatorium (OBSAN), Kosten des Gesundheitswesens. 2023. Available online: https://ind.obsan.admin.ch/indicator/monam/kosten-des-gesundheitswesens (accessed on 20 December 2023).
- Anselmi, L.; Bildstein, G.; Flacher, A.; Hugentobler-Campell, B.; Keller, H.; Ummenhofer, W.; Baartmans, P. Richtlinien zur Anerkennung von Rettungsdiensten in der Schweiz; Interverband für Rettungswesen (IVR): Zurich, Switzerland, 2022. [Google Scholar]
- Strauss, C.; Bildstein, G.; Efe, J.; Flacher, T.; Hofmann, K.; Huggler, M.; Stämpfli, A.; Schmid, M.; Schmid, E.; Gehring, C.; et al. Optimizing Emergency Medical Service Structures Using a Rule-Based Discrete Event Simulation—A Practitioner’s Point of View. Int. J. Environ. Res. Public Health 2021, 18, 2649. [Google Scholar] [CrossRef]
- Kantonale Walliser Rettungsorganisation (KWRO) Tätigkeitsbericht. 2022. Available online: https://www.ocvs.ch/wp-content/uploads/2023/08/Tatigkeitsbericht-2022.pdf (accessed on 18 January 2024).
- Eubanks, J.B. The EMS Deficit: A Study on the Excessive Staffing Shortages of Paramedics and its Impact on EMS Performance in the States of South Carolina and North Carolina and Interventions for Organizational Improvements. Ph.D. Thesis, Liberty University Graduate School of Business, Lynchburg, VA, USA, 2022. [Google Scholar]
- Gay-Cabrera, A.; Gehring, C.; Groß, S.; Burghofer, K.; Lackner, C. SiMoN: Methodische Grundlage eines Simulationsmodells für die Notfallrettung: Neuentwicklung der Generierung des Einsatzaufkommens mittels stochastischer Verfahren. Notf. Rettungsmedizin 2006, 9, 611–618. [Google Scholar] [CrossRef]
- Kergosien, Y.; Bélanger, V.; Soriano, P.; Gendreau, M.; Ruiz, A. A generic and flexible simulation-based analysis tool for EMS management. Int. J. Prod. Res. 2014, 53, 7299–7316. [Google Scholar] [CrossRef]
- Stämpfli, A.; Strauss, C. Sim911—ein Simulationsprogramm optimiert das Rettungswesen. In Zukunftswerkstatt Rettungsdienst; Neumayr, A., Baubin, M., Schinnerl, A., Eds.; Springer: Berlin, Germany, 2018; pp. 135–142. [Google Scholar]
- Aringhieri, R.; Bruni, M.; Khodaparasti, S.; Van Essen, T. Emergency Medical Services and beyond: Addressing new challenges through a wide literature review. Comput. Oper. Res. 2017, 78, 349–368. [Google Scholar] [CrossRef]
- Brailsford, S.C.; Hilton, N.A. A comparison of discrete event simulation and system dynamics for modelling health care systems. In Planning for the Future: Health Service Quality and Emergency Accessibility. Operational Research Applied to Health Services (ORAHS); Riley, J., Ed.; Glasgow Caledonian University: Glasgow, UK, 2001. [Google Scholar]
- Brailsford, S.C.; Harper, P.R.; Patel, B.; Pitt, M. An analysis of the academic literature on simulation and modelling in healthcare. J. Simul. 2009, 3, 130–140. [Google Scholar] [CrossRef]
- Jagtenberg, C.; Bhulai, S.; Mei, R. Dynamic ambulance dispatching: Is the closest-idle policy always optimal? Health Care Manag. Sci. 2016, 20, 517–531. [Google Scholar] [CrossRef]
- Krafft, T.; Kortevoß, A.; Butsch, C.; Tenelsen, T.; Ziemann, A. Nachfrageorientierte Steuerung von Rettungsdienstsystemen. In Angewandte Geoinformatik; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Beiträge zum 19; AGIT-Symposium: Salzburg, Austria, 2007; pp. 409–418. [Google Scholar]
- Multikopter im Rettungsdienst—Machbarkeitsstudie zum Einsatzpotenzial von Multikoptern als Notarztzubringer. ADAC Luftrettung GmbH. 2020. Available online: https://luftrettung.adac.de/app/uploads/2020/10/Multikopter_im_Rettungsdienst_-_Machbarkeitsstudie_-_ADAC_Luftrettung.pdf (accessed on 3 March 2021).
- Pinciroli, A.; Righini, G.; Trubian, M. An interactive simulator of emergency management systems. In Proceedings of the IEEE Workshop on Health Care Management (WHCM), Venice, Italy, 18–20 February 2010; pp. 1–5. [Google Scholar]
- Birk, A.; Gay-Cabrera, A.; Gehring, C.; Groß, S.; Kerth, J.; Kohlmann, T. Schlussbericht Forschungsprojekt PrimAIR: Konzept zur Primären Luftrettung in Strukturschwachen Gebieten; Ludwig-Maximilians-Universität München, Institut für Notfallmedizin und Medizinmanagement: München, Germany, 2015. [Google Scholar]
- Halbe, J.; Holtz, G.; Ruutu, S. Participatory modeling for transition governance: Linking methods to process phases. Environ. Innov. Soc. Transitions 2020, 35, 60–76. [Google Scholar] [CrossRef]
- Köhler, J.; de Haan, F.; Holtz, G.; Kubeczko, K.; Moallemi, E.; Papachristos, G.; Chappin, E. Modelling Sustainability Transitions: An Assessment of Approaches and Challenges. J. Artif. Soc. Soc. Simul. 2018, 21, 8. [Google Scholar] [CrossRef]
- Ranganathan, P.; Aggarwal, R. Study designs Part 1 An overview and classification. Perspect. Clin. Res. 2018, 9, 184–186. [Google Scholar] [CrossRef]
- Winston, W.L.; Goldberg, J.B. Operations Research: Applications and Algorithms; Thomson/Brooks/Cole: Pacific Grove, CA, USA, 2004. [Google Scholar]
- Kanton Zürich, G. Erläuterung: Projekt Optimierung Rettungs-wesen im Kanton Zürich—Anforderungen an die Rettungs- und Verlegungsdienste. Available online: https://www.zh.ch/content/dam/zhweb/bilder-dokumente/themen/gesundheit/gesundheitsversorgung/notfall_rettung/projekt_optimierung_rettungswesen_anforderungen_erlaeuterungen.pdf (accessed on 14 July 2023).
- Bildstein, G.; Stämpfli, A.; Strauss, C. Verbesserung von Hilfsfristen im Schweizer Rettungswesen mittels Simulationsmodell sim911. In Deutscher Interdisziplinärer Notfallmedizin Kongress; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: New York, NY, USA, 2000; Volume 19. [Google Scholar]
- Chaix-Couturier, C.; Durand-Zaleski, I.; Jolly, D.; Durieux, P. Effects of financial incentives on medical practice: Results from a systematic review of the literature and methodological issues. Int. J. Qual. Health Care 2000, 12, 133–142. [Google Scholar] [CrossRef]
- Rodwin, M.A. Medicine, Money, and Morals: Physicians’ Conflicts of Interest; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Davahli, M.R.; Karwowski, W.; Taiar, R. A System Dynamics Simulation Applied to Healthcare: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 5741. [Google Scholar] [CrossRef]
- Lan, C.-H.; Chuang, L.-L.; Chen, Y.-F. A system dynamics model of the fire department EMS in Taiwan. Int. J. Emerg. Manag. 2010, 7, 323–343. [Google Scholar] [CrossRef]
- Lane, D.C.; Monefeldt, C.; Rosenhead, J.V. Looking in the wrong place for healthcare improvements: A system dynamics study of an accident and emergency department. J. Oper. Res. Soc. 2000, 51, 518–531. [Google Scholar] [CrossRef]
- Martin, R.J.; Bacaksizlar, N.G. Modeling the Dynamics of an Urban Emergency Medical Services System. In Proceedings of the 35th International Conference of the System Dynamics Society, Cambridge, MA, USA, 16–20 July 2017. [Google Scholar]
- Brailsford, S.C. System dynamics: What’s in it for healthcare simulation modelers. In Proceedings of the Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; pp. 1478–1483. [Google Scholar]
- Brailsford, S.C.; Desai, S.M.; Viana, J. Towards the holy grail: Combining system dynamics and discrete-event simulation in healthcare. In Proceedings of the 2010 Winter Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; pp. 2293–2303. [Google Scholar]
- Nguyen, L.K.N.; Megiddo, I.; Howick, S. Hybrid Simulation for Modeling Healthcare-associated Infections: Promising but Challenging. Clin. Infect. Dis. 2021, 72, 1475–1480. [Google Scholar] [CrossRef]
- Carlile, P.R. Transferring Translating and Transforming An Integrative Framework for Managing Knowledge Across Boundaries. Organ. Sci. 2004, 15, 555–568. [Google Scholar] [CrossRef]
- Richardson, G.P.; Andersen, D.F. Systems Thinking, Mapping, and Modeling in Group Decision and Negotiation. In Handbook of Group Decision and Negotiation. Advances in Group Decision and Negotiation; Kilgour, D., Eden, C., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 313–324. [Google Scholar]
- Rouwette, E.A.J.A. The impact of group model building on behavior. In Behavioral Operational Research: Theory, Methodology and Practice; Kunc, M., Malpass, J., White, L., Eds.; Palgrave MacMillan: London, UK, 2016; pp. 213–241. [Google Scholar]
- Rettungsdienstbericht Bayern 2022—Berichtszeitraum 2012 bis 2021, Institut für Notfallmedizin und Medizinmanagement (INM). Available online: https://www.inr.de/images/stories/pdf/RD_BERICHT_2022.pdf (accessed on 14 July 2023).
- Qualitätsbericht Berichtsjahr 2021—Rettungsdienst Baden-Württemberg, Stelle zur trägerübergreifenden Qualitätssicherung im Rettungsdienst Baden-Württemberg (SQR-BW). Available online: https://www.sqrbw.de/fileadmin/SQRBW/Downloads/Qualitaetsberichte/SQRBW_Qualitaetsbericht_2021_web.pdf (accessed on 14 July 2023).
- Rotes Kreuz Vorarlberg. Private communication, January 2023.
2013 | 2015 | 2017 | 2019 | 2021 | 2022 | |
---|---|---|---|---|---|---|
Response time compliance rate [%] | 88 | 93 | 92 | 92 | 93 | 93 |
Incidents (total) | 20,283 | 24,001 | 26,510 | 26,045 | 28,768 | 30,979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strauss, C.; Schmid, M.; Kliem, D.; Müller, M. Insights from a Decade of Optimizing Emergency Medical Services Across Three Major Regions in Switzerland. Emerg. Care Med. 2024, 1, 368-381. https://doi.org/10.3390/ecm1040036
Strauss C, Schmid M, Kliem D, Müller M. Insights from a Decade of Optimizing Emergency Medical Services Across Three Major Regions in Switzerland. Emergency Care and Medicine. 2024; 1(4):368-381. https://doi.org/10.3390/ecm1040036
Chicago/Turabian StyleStrauss, Christoph, Michael Schmid, Daniel Kliem, and Martin Müller. 2024. "Insights from a Decade of Optimizing Emergency Medical Services Across Three Major Regions in Switzerland" Emergency Care and Medicine 1, no. 4: 368-381. https://doi.org/10.3390/ecm1040036
APA StyleStrauss, C., Schmid, M., Kliem, D., & Müller, M. (2024). Insights from a Decade of Optimizing Emergency Medical Services Across Three Major Regions in Switzerland. Emergency Care and Medicine, 1(4), 368-381. https://doi.org/10.3390/ecm1040036