Integration of Non-Destructive Testing Technologies for Effective Monitoring and Evaluation of Road Pavements
Abstract
:1. Introduction
2. Algorithm Development: Methodology and Characteristics
2.1. Description of NDT Data
2.2. Conceptualization
- x1 is the parameter measured at the first test point;
- xm is the mean value of the measured parameter of each main section;
- s1 is the cumulative sum of the deviation from the mean for the first test point;
- xi is the parameter measured at test point i;
- si is the cumulative sum of the deviation from the mean at test point i;
- si−1 is the cumulative sum of the deviation from the mean at test point i − 1.
3. Application
3.1. Test Site
3.2. Data Analysis and Results
4. Conclusions
- Efficiency, as the ITE can be a powerful tool for determining the maintenance needs of road pavements;
- Adaptability, as it can be modified and implemented according to the requirements of individual road operators;
- Applicability, as it is a rational and easy-to-implement testing and evaluation procedure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shekharan, R.A.; Wu, Z.; Chowdhury, T. Pavement Management with a Decentralized Organizational Structure. In Proceedings of the 89th Transportation Research Board Annual Meeting, Washington, DC, USA, 10–14 January 2010. [Google Scholar]
- Scheinberg, T.; Anastasopoulos, P. Pavement Preservation Programming: A Multi-year Multi-constraint Optimization Methodology. In Proceedings of the 89th Transportation Research Board Annual Meeting, Washington, DC, USA, 10–14 January 2010. [Google Scholar]
- Peraka, N.S.; Biligiri, K.P. Pavement asset management systems and technologies: A review. Autom. Constr. 2020, 119, 103336. [Google Scholar] [CrossRef]
- Bertolini, L.; D’Amico, F.; Napolitano, A.; Bianchini Ciampoli, L.; Gagliardi, V.; Romer Diezmos Manalo, J. A BIM-Based Approach for Pavement Monitoring Integrating Data from Non-Destructive Testing Methods (NDTs). Infrastructures 2023, 8, 81. [Google Scholar] [CrossRef]
- Tosti, F.; Gagliardi, V.; D’Amico, F.; Alani, A.M. Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. Transp. Res. Proc. 2020, 45, 771–778. [Google Scholar] [CrossRef]
- Loizos, A.; Plati, C.; Georgiou, P.; Armeni, A. A Practice towards Pavement Monitoring and Evaluation. In Proceeding of the TRB 90th Annual Meeting, Washington, DC, USA, 23–27 January 2011; TRB 90th Annual Meeting Compendium of Papers DVD. p. 15. [Google Scholar]
- Al-Qadi, I.L.; Lahouar, S.; Jiang, K.; McGhee, K.K.; Mokarem, D. Accuracy of Ground-Penetrating Radar for estimating rigid and flexible pavement layer thicknesses. Transp. Res. Rec. 2005, 1940, 69–78. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Al-Qadi, I.L. Real-Time Density and Thickness Estimation of Thin Asphalt Pavement Overlay During Compaction Using Ground Penetrating Radar Data. Surv. Geophys. 2020, 41, 431–445. [Google Scholar] [CrossRef]
- Zaghloul, S.; Ahmed, Z.; Swan, D.J.; Jumikis, A.A.; Vitillo, N. Falling Weight Deflectometer Correlation. Transp. Res. Rec. 2005, 1905, 90–96. [Google Scholar] [CrossRef]
- Perera, R.W.; Kohn, S.D.; Bemanian, S. Comparison of Road Profilers. Transp. Res. Rec. 1996, 1536, 117–124. [Google Scholar] [CrossRef]
- El-Korchi, T.; Collura, J. Comparative Study of Ride Quality Measuring Devices. Transp. Res. Rec. 1998, 1643, 125–135. [Google Scholar] [CrossRef]
- Pomoni, M.; Plati, C.; Loizos, A.; Yannis, G. Investigation of pavement skid resistance and macrotexture on a long-term basis. Int. J. Pavement Eng. 2022, 23, 1060–1069. [Google Scholar] [CrossRef]
- Kouchaki, S.; Roshani, H.; Prozzi, J.; Zuniga-Garcia, N.; Hernandez, J. Field Investigation of Relationship between Pavement Surface Texture and Friction. Transp. Res. Rec. 2018, 2672. [Google Scholar] [CrossRef]
- Shah, U.Y.; Jain, S.S.; Tiwari, D.; Jain, M.K. Development of Overall Pavement Condition Index for Urban Road Network. Procedia Soc. Behav. Sci. 2013, 104, 332–341. [Google Scholar] [CrossRef]
- Xiao, M.; Luo, R.; Yu, X. Assessment of asphalt pavement overall performance condition using functional indexes and FWD deflection basin parameters. Con. Build. Mat. 2022, 341, 127872. [Google Scholar] [CrossRef]
- ASTM D 4748; Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. ASTM International: West Conshohocken, PA, USA, 2020.
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A Review of GPR Application on Transport Infrastructures: Troubleshooting and Best Practices. Remote Sens. 2021, 13, 672. [Google Scholar] [CrossRef]
- Noureldin, A.S.; Zhu, K.; Li, S.; Harris, D. Network Pavement Evaluation with Falling-Weight Deflectometer and Ground-Penetrating Radar. Transp. Res. Rec. 2003, 1860, 90–99. [Google Scholar] [CrossRef]
- Elseicy, A.; Alonso-Díaz, A.; Solla, M.; Rasol, M.; Santos-Assunçao, S. Combined Use of GPR and Other NDTs for Road Pavement Assessment: An Overview. Remote Sens. 2022, 14, 4336. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Lahouar, S. Use of GPR for thickness measurement and quality control of flexible pavements. J. Assoc. Asph. Paving Technol. 2004, 73, 501–528. [Google Scholar]
- Lahouar, S.; Al-Qadi, I.L.; Loulizi, A.; Tenton, C.M.; Lee, D.T. Approach to Determining In Situ Dielectric Constant of Pavements: Development and Implementation at Interstate 81 in Virginia. Transp. Res. Rec. 2002, 1806, 81–87. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Lahouar, S. Measuring layer thicknesses with GPR—Theory to practice. Constr. Build. Mater. 2005, 19, 763–772. [Google Scholar] [CrossRef]
- COST 336—European Cooperation in the Field of Scientific and Technical Research, Use of Falling Weight Deflectometers in Pavement Evaluation; Final Report; European Commission: The Hague, The Netherlands, 2005.
- Perrera, R.W.; Kohn, S.D. Issues in Pavement Smoothness: A Summary Report; NCHRP Web-Only Document; NCHRP: Washington, DC, USA, 2002; p. 42. [Google Scholar]
- Hajek, J.J.; Kazmierowski, T.J.; Musgrove, G. Switching to International Roughness Index. Transp. Res. Rec. 1998, 1643, 116–124. [Google Scholar] [CrossRef]
- Hakim, B.A.; Brown, S.F.; Armitage, R.J. Pavement Evaluation and Strengthening Design: Sixteen Years Experience. In Proceedings of the 9th International Conference on Asphalt Pavements, Copenhagen, Denmark, 17–20 August 2002; p. 15. [Google Scholar]
- Brunton, J.M.; Armitage, R.J.; Brown, S.F. Seven Years Experience on Pavement Evaluation. In Proceedings of the 7th International Conference on Asphalt Pavements, Nottingham, UK, 16–20 August 1992; pp. 17–30. [Google Scholar]
- Sayers, M.; Gillespie, T.; Paterson, W. Guidelines for Conducting and Calibrating Road Roughness Measurements; World Bank Technical Paper No. 46; The World Bank: Washington, DC, USA, 1986. [Google Scholar]
- Loizos, A.; Plati, C. An Alternative Approach to Pavement Roughness Evaluation. Int. J. Pavement Eng. 2008, 9, 69–78. [Google Scholar] [CrossRef]
- Swan, M.; Karamihas, S.M. Use of a Ride Quality Index for Construction Quality Control and Acceptance Specifications. Transp. Res. Rec. 2003, 1861, 10–16. [Google Scholar] [CrossRef]
- Shirazi, H.; Ayres, M.; Speir, R.; Song, W.; Hall, G. Confidence Level and Efficient Sampling Size of Roughness Measurements for Pavement Management in Maryland. In Proceedings of the 89th Transportation Research Board Annual Meeting, Washington, DC, USA, 10–14 January 2010. [Google Scholar] [CrossRef]
- Dynatest. 8002 FWD Test System: Owner’s Manual; Dynatest: Ballerup, Denmark, 2001. [Google Scholar]
- GSSI. Antennas Manual; Geophysical Survey Systems Inc.: Nashua, NH, USA, 2009. [Google Scholar]
- RoadScanners. Road Doctor User’s Guide, Manual; RoadScanners: Rovaniemi, Finland, 2001. [Google Scholar]
- Dynatest. 5051 Mark III/IV, Road Surface Profiler, Test Systems, Owner’s Manual Version 2.3.4; Dynatest: Ballerup, Denmark, 2007. [Google Scholar]
- Sayers, M.; Gillespie, T.; Queiroz, C. WTP-45: The International Road Roughness Experiment. Establishing Correlation and a Calibration Standard for Measurements; The World Bank: Washington, DC, USA, 1986. [Google Scholar]
- Findlay Irvine Ltd. Road Base Grip Tester Survey Software for Roads (User Manual); Findlay Irvine Ltd.: Penicuik, UK, 2002. [Google Scholar]
- Chakravarti, I.M.; Laha, R.G.; Roy, J. Handbook of Methods of Applied Statistics; John Wiley and Sons: Hoboken, NJ, USA, 1967; Volume 1. [Google Scholar]
Condition | Confidence Level | |
---|---|---|
Criterion A | IRI85 ≤ IRIcrA | 85% |
Criterion B | IRI95 ≤ IRIcrB | 95% |
Criterion C | IRI100 ≤ IRIcrC | 100% |
Symbol | Value | Confidence Levels |
---|---|---|
IRIcrA | 1.1 | 85% |
IRIcrB | 1.8 | 95% |
IRIcrC | 2.5 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plati, C.; Armeni, A.; Loizos, A. Integration of Non-Destructive Testing Technologies for Effective Monitoring and Evaluation of Road Pavements. NDT 2024, 2, 430-444. https://doi.org/10.3390/ndt2040026
Plati C, Armeni A, Loizos A. Integration of Non-Destructive Testing Technologies for Effective Monitoring and Evaluation of Road Pavements. NDT. 2024; 2(4):430-444. https://doi.org/10.3390/ndt2040026
Chicago/Turabian StylePlati, Christina, Angeliki Armeni, and Andreas Loizos. 2024. "Integration of Non-Destructive Testing Technologies for Effective Monitoring and Evaluation of Road Pavements" NDT 2, no. 4: 430-444. https://doi.org/10.3390/ndt2040026
APA StylePlati, C., Armeni, A., & Loizos, A. (2024). Integration of Non-Destructive Testing Technologies for Effective Monitoring and Evaluation of Road Pavements. NDT, 2(4), 430-444. https://doi.org/10.3390/ndt2040026