Skeletal Muscle Oxidative Metabolism during Exercise Measured with Near Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
- Participants
- Study Design
- Muscle assessments
- Knee extension exercise protocol
- Free-moving exercise protocols
- NIRS data analysis
- Statistical analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouchard, C.; Daw, E.W.; Rice, T.; Perusse, L.; Gagnon, J.; Province, M.A.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H. Familial Resemblance for Vo2max in the Sedentary State: The Heritage Family Study. Med. Sci. Sports Exerc. 1998, 30, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Foulds, H.J.; Bredin, S.S.; Charlesworth, S.A.; Ivey, A.C.; Warburton, D.E. Exercise Volume and Intensity: A Dose-Response Relationship with Health Benefits. Eur. J. Appl. Physiol. 2014, 114, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Chacko, B.; Ballinger, S.W.; Bailey, S.M.; Zhang, J.; Darley-Usmar, V. Convergent Mechanisms for Dysregulation of Mitochondrial Quality Control in Metabolic Disease: Implications for Mitochondrial Therapeutics. Biochem. Soc. Trans. 2013, 41, 127–133. [Google Scholar] [CrossRef]
- Mitchell, T.; Chacko, B.K.; Darley-Usmar, V. Controlling Radicals in the Powerhouse: Development of Mitosod. Chem. Biol. 2012, 19, 1217–1218. [Google Scholar] [CrossRef]
- Zurlo, F.; Larson, K.; Bogardus, C.; Ravussin, E. Skeletal Muscle Metabolism Is a Major Determinant of Resting Energy Expenditure. J. Clin. Investig. 1990, 86, 1423–1427. [Google Scholar] [CrossRef]
- Boutcher, S.H. High-Intensity Intermittent Exercise and Fat Loss. J. Obes. 2011, 2011, 868305. [Google Scholar] [CrossRef]
- Bergstrom, J. Percutaneous Needle Biopsy of Skeletal Muscle in Physiological and Clinical Research. Scand. J. Clin. Lab. Investig. 1975, 35, 609–616. [Google Scholar] [CrossRef]
- Gollnick, P.D.; Armstrong, R.B.; Saubert, C.W., 4th; Piehl, K.; Saltin, B. Enzyme Activity and Fiber Composition in Skeletal Muscle of Untrained and Trained Men. J. Appl. Physiol. 1972, 33, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Holloszy, J.O.; Booth, F.W. Biochemical Adaptations to Endurance Exercise in Muscle. Annu. Rev. Physiol. 1976, 38, 273–291. [Google Scholar] [CrossRef]
- Befroy, D.E.; Falk Petersen, K.; Rothman, D.L.; Shulman, G.I. Assessment of in Vivo Mitochondrial Metabolism by Magnetic Resonance Spectroscopy. Methods Enzym. 2009, 457, 373–393. [Google Scholar]
- Dawson, M.; Gadian, D.; Wilkie, D. Muscular Fatigue Investigated by Phosphorus Nuclear Magnetic Resonance. Nature 1978, 274, 861–866. [Google Scholar] [CrossRef] [PubMed]
- McCully, K.K.; Boden, B.P.; Tuchler, M.; Fountain, M.R.; Chance, B. Wrist Flexor Muscles of Elite Rowers Measured with Magnetic Resonance Spectroscopy. J. Appl. Physiol. 1989, 67, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J. Corp: Understanding near Infrared Spectroscopy (Nirs) and Its Application to Skeletal Muscle Research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, T.; McCully, K.K. Review of Early Development of near-Infrared Spectroscopy and Recent Advancement of Studies on Muscle Oxygenation and Oxidative Metabolism. J. Physiol. Sci. 2019, 69, 799–811. [Google Scholar] [CrossRef]
- Lucero, A.A.; Addae, G.; Lawrence, W.; Neway, B.; Credeur, D.P.; Faulkner, J.; Rowlands, D.; Stoner, L. Reliability of Muscle Blood Flow and Oxygen Consumption Response from Exercise Using near-Infrared Spectroscopy. Exp. Physiol. 2018, 103, 90–100. [Google Scholar] [CrossRef]
- Hampson, N.; Piantadosi, C. Near Infrared Monitoring of Human Skeletal Muscle Oxygenation during Forearm Ischemia. J. Appl. Physiol. 1988, 64, 2449–2457. [Google Scholar] [CrossRef]
- DeBlasi, R.; Ferrari, M.; Natali, A.; Conti, G.; Mega, A.; Gasparetto, A. Noninvasive Measurement of Forearm Blood Flow and Oxygen Consumption by near-Infrared Spectroscopy. J. Appl. Physiol. 1994, 76, 1388–1393. [Google Scholar] [CrossRef]
- van Beekvelt, M.C.; Borghuis, M.S.; van Engelen, B.G.; Wevers, R.A.; Colier, W.N. Adipose Tissue Thickness Affects in Vivo Quantitative near-Ir Spectroscopy in Human Skeletal Muscle. Clin. Sci. 2001, 101, 21–28. [Google Scholar] [CrossRef]
- Nagasawa, T.; Hamaoka, T.; Sako, T.; Murakami, M.; Kime, R.; Homma, T.; Ueda, C.; Ichimura, S.; Katsumura, T. A Practical Indicator of Muscle Oxidative Capacity Determined by Recovery of Muscle O 2 Consumption Using Nir Spectroscopy. Eur. J. Sport Sci. 2003, 3, 1–10. [Google Scholar] [CrossRef]
- Motobe, M.; Murase, N.; Osada, T.; Homma, T.; Ueda, C.; Nagasawa, T.; Kitahara, A.; Ichimura, S.; Kurosawa, Y.; Katsumura, T.; et al. Noninvasive Monitoring of Deterioration in Skeletal Muscle Function with Forearm Cast Immobilization and the Prevention of Deterioration. Dyn. Med. 2004, 3, 2. [Google Scholar] [CrossRef]
- Southern, W.M.; Ryan, T.E.; Reynolds, M.A.; McCully, K. Reproducibility of near-Infrared Spectroscopy Measurements of Oxidative Function and Postexercise Recovery Kinetics in the Medial Gastrocnemius Muscle. Appl. Physiol. Nutr. Metab. 2014, 39, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hodges, B.; McCully, K.M. Reliability and Reproducibility of a Four Arterial Occlusions Protocol for Assessing Muscle Oxidative Metabolism at Rest and after Exercise Using near-Infrared Spectroscopy. Physiol. Meas. 2020, 41, 065002. [Google Scholar] [CrossRef] [PubMed]
- Hesford, C.M.; Laing, S.J.; Cardinale, M.; Cooper, C.E. Asymmetry of Quadriceps Muscle Oxygenation during Elite Short-Track Speed Skating. Med. Sci. Sports Exerc. 2012, 44, 501–508. [Google Scholar] [CrossRef]
- Ryan, T.E.; Erickson, M.L.; Brizendine, J.T.; Young, H.J.; McCully, K.K. Noninvasive Evaluation of Skeletal Muscle Mitochondrial Capacity with near-Infrared Spectroscopy: Correcting for Blood Volume Changes. J. Appl. Physiol. 2012, 113, 175–183. [Google Scholar] [CrossRef]
- Jobsis, F.F. Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science 1977, 198, 1264–1267. [Google Scholar] [CrossRef]
- Miura, H.; McCully, K.; Hong, L.; Nioka, S.; Chance, B. Regional Difference of Muscle Oxygen Saturation and Blood Volume during Exercise Determined by near Infrared Imaging Device. Jpn. J. Physiol. 2001, 51, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Wolf, U.; Wolf, M.; Choi, J.H.; Levi, M.; Choudhury, D.; Hull, S.; Coussirat, D.; Paunescu, L.A.; Safonova, L.P.; Michalos, A.; et al. Localized Irregularities in Hemoglobin Flow and Oxygenation in Calf Muscle in Patients with Peripheral Vascular Disease Detected with Near-Infrared Spectrophotometry. J. Vasc. Surg. 2003, 37, 1017–1026. [Google Scholar] [CrossRef]
- Nelson, D.L.C.; Lehninger, M.M. Principals of Biochemistry; W.H. Freeman & Co.: New York, NY, USA, 2009. [Google Scholar]
- Lakens, D. Equivalence Tests: A Practical Primer for T Tests, Correlations, and Meta-Analyses. Soc. Psychol. Personal. Sci. 2017, 8, 355–362. [Google Scholar] [CrossRef]
- Jones, S.; D’Silva, A.; Bhuva, A.; Lloyd, G.; Manisty, C.; Moon, J.C.; Sharma, S.; Hughes, A.D. Improved Exercise-Related Skeletal Muscle Oxygen Consumption Following Uptake of Endurance Training Measured Using near-Infrared Spectroscopy. Front. Physiol. 2017, 8, 1018. [Google Scholar] [CrossRef]
- Rogers, E.M.; Banks, N.F.; Jenkins, N.D.M. Metabolic and Microvascular Function Assessed Using near-Infrared Spectroscopy with Vascular Occlusion in Women: Age Differences and Reliability. Exp. Physiol. 2023, 108, 123–134. [Google Scholar] [CrossRef]
- Erickson, M.L.; Ryan, T.E.; Young, H.J.; McCully, K.K. Near-Infrared Assessments of Skeletal Muscle Oxidative Capacity in Persons with Spinal Cord Injury. Eur. J. Appl. Physiol. 2013, 113, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.E.; Southern, W.M.; Reynolds, M.A.; McCully, K.K. A Cross-Validation of near-Infrared Spectroscopy Measurements of Skeletal Muscle Oxidative Capacity with Phosphorus Magnetic Resonance Spectroscopy. J. Appl. Physiol. 2013, 115, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, T.; Iwane, H.; Shimomitsu, T.; Katsumura, T.; Murase, N.; Nishio, S.; Osada, T.; Kurosawa, Y.; Chance, B. Noninvasive Measures of Oxidative Metabolism on Working Human Muscles by near-Infrared Spectroscopy. J. Appl. Physiol. 1996, 81, 1410–1417. [Google Scholar] [CrossRef]
- Binzoni, T.; Cooper, C.E.; Wittekind, A.L.; Beneke, R.; Elwell, C.E.; Van De Ville, D.; Leung, T.S. A New Method to Measure Local Oxygen Consumption in Human Skeletal Muscle during Dynamic Exercise Using Near-Infrared Spectroscopy. Physiol. Meas. 2010, 31, 1257–1269. [Google Scholar] [CrossRef]
- McCully, K.K.; Turner, T.N.; Langley, J.; Zhao, Q. The Reproducibility of Measurements of Intramuscular Magnesium Concentrations and Muscle Oxidative Capacity Using 31p Mrs. Dyn. Med. 2009, 8, 5. [Google Scholar] [CrossRef]
- Ericson, M.O.; Bratt, A.; Nisell, R.; Arborelius, U.P.; Ekholm, J. Power Output and Work in Different Muscle Groups during Ergometer Cycling. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 229–235. [Google Scholar] [CrossRef]
- Kooistra, R.D.; Blaauboer, M.E.; Born, J.R.; de Ruiter, C.J.; de Haan, A. Knee Extensor Muscle Oxygen Consumption in Relation to Muscle Activation. Eur. J. Appl. Physiol. 2006, 98, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Leigh, J.; Kent, J.; McCully, K.; Nioka, S.; Clark, B.; Maris, J.; Graham, T. Multiple Controls of Oxidative Metabolism of Living Tissues as Studied by 31-P Mrs. Proc. Natl. Acad. Sci. USA 1986, 83, 9458–9462. [Google Scholar] [CrossRef]
- McCully, K.K.; Vandenborne, K.; DeMeirleir, K.; Posner, J.D.; Leigh, J.S., Jr. Muscle Metabolism in Track Athletes, Using 31p Magnetic Resonance Spectroscopy. Can. J. Physiol. Pharmacol. 1992, 70, 1353. [Google Scholar] [CrossRef]
- Meyer, R.A. A Linear Model of Muscle Respiration Explains Monoexponential Phosphocreatine Changes. Am. J. Physiol. 1988, 254, C548–C553. [Google Scholar] [CrossRef]
- McCully, K.K.; Iotti, S.; Kendrick, K.; Wang, Z.; Posner, J.D.; Leigh, J., Jr.; Chance, B. Simultaneous In Vivo Measurements of Hbo2 Saturation and Pcr Kinetics after Exercise in Normal Humans. J. Appl. Physiol. 1994, 77, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Sako, T.; Hamaoka, T.; Higuchi, H.; Kurosawa, Y.; Katsumura, T. Validity of Nir Spectroscopy for Quantitatively Measuring Muscle Oxidative Metabolic Rate in Exercise. J. Appl. Physiol. 2001, 90, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.E.; Brizendine, J.T.; McCully, K.K. A Comparison of Exercise Type and Intensity on the Noninvasive Assessment of Skeletal Muscle Mitochondrial Function Using near-Infrared Spectroscopy. J. Appl. Physiol. 2013, 114, 230–237. [Google Scholar] [CrossRef]
- Biddulph, B.; Morris, J.G.; Lewis, M.; Hunter, K.; Sunderland, C. Reliability of near-Infrared Spectroscopy with and without Compression Tights during Exercise and Recovery Activities. Sports 2023, 11, 23. [Google Scholar] [CrossRef]
- Brizendine, J.T.; Ryan, T.E.; Larson, R.D.; McCully, K.K. Skeletal Muscle Metabolism in Endurance Athletes with near-Infrared Spectroscopy. Med. Sci. Sports Exerc. 2013, 45, 869–875. [Google Scholar] [CrossRef]
- Pilotto, A.M.; Adami, A.; Mazzolari, R.; Brocca, L.; Crea, E.; Zuccarelli, L.; Pellegrino, M.A.; Bottinelli, R.; Grassi, B.; Rossiter, H.B.; et al. Near-Infrared Spectroscopy Estimation of Combined Skeletal Muscle Oxidative Capacity and O2 Diffusion Capacity in Humans. J. Physiol. 2022, 600, 4153–4168. [Google Scholar] [CrossRef] [PubMed]
- Esaki, K.; Hamaoka, T.; Radegran, G.; Boushel, R.; Hansen, J.; Katsumura, T.; Haga, S.; Mizuno, M. Association between Regional Quadriceps Oxygenation and Blood Oxygen Saturation during Normoxic One-Legged Dynamic Knee Extension. Eur. J. Appl. Physiol. 2005, 95, 361–370. [Google Scholar] [CrossRef]
- Bennincasa, M.T.; Serra, E.; Albano, D.; Vastola, R. Comparing Muscle Oxygen Saturation Patterns in Swimmers of Different Competitive Levels. J. Phys. Educ. Sport. 2024, 24, 1920–1926. [Google Scholar]
- Hesford, C.; Cardinale, M.; Laing, S.; Cooper, C.E. Nirs Measurements with Elite Speed Skaters: Comparison between the Ice Rink and the Laboratory. Adv. Exp. Med. Biol. 2013, 765, 81–86. [Google Scholar]
- Hiroyuki, H.; Hamaoka, T.; Sako, T.; Nishio, S.; Kime, R.; Murakami, M.; Katsumura, T. Oxygenation in Vastus Lateralis and Lateral Head of Gastrocnemius during Treadmill Walking and Running in Humans. Eur. J. Appl. Physiol. 2002, 87, 343–349. [Google Scholar] [CrossRef]
- Koga, S.; Poole, D.C.; Ferreira, L.F.; Whipp, B.J.; Kondo, N.; Saitoh, T.; Ohmae, E.; Barstow, T.J. Spatial Heterogeneity of Quadriceps Muscle Deoxygenation Kinetics during Cycle Exercise. J. Appl. Physiol. 2007, 103, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Quaresima, V.; Colier, W.N.; van der Sluijs, M.; Ferrari, M. Nonuniform Quadriceps O2 Consumption Revealed by near Infrared Multipoint Measurements. Biochem. Biophys. Res. Commun. 2001, 285, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
Progressive work test: time from the last knee extension | ||||
Exercise | Day 1 | Day 2 | ||
Rate | Time | SD | Mean | SD |
#/minute | seconds | seconds | seconds | seconds |
5 | 2.8 | 1.2 | 3.0 | 0.7 |
6 | 2.8 | 0.9 | 2.9 | 0.9 |
7.5 | 2.8 | 0.8 | 2.9 | 1.1 |
10 | 2.8 | 0.4 | 3.2 | 0.8 |
12 | 2.7 | 0.8 | 3.2 | 0.9 |
15 | 2.6 | 0.6 | 2.9 | 0.6 |
Exercise test: time from the last leg movement | ||||
Walking | Day 1 | Day 2 | ||
speed | Time | SD | Mean | SD |
MPH | seconds | seconds | seconds | seconds |
2 | 2.6 | 1.1 | 2.9 | 1.3 |
3 | 2.2 | 0.7 | 2.1 | 0.8 |
4 | 1.9 | 0.5 | 2.4 | 0.9 |
lunges | 2.5 | 0.7 | 2.3 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCully, K.K.; Stoddard, S.N.; Reynolds, M.A.; Ryan, T.E. Skeletal Muscle Oxidative Metabolism during Exercise Measured with Near Infrared Spectroscopy. NDT 2024, 2, 417-429. https://doi.org/10.3390/ndt2040025
McCully KK, Stoddard SN, Reynolds MA, Ryan TE. Skeletal Muscle Oxidative Metabolism during Exercise Measured with Near Infrared Spectroscopy. NDT. 2024; 2(4):417-429. https://doi.org/10.3390/ndt2040025
Chicago/Turabian StyleMcCully, Kevin K., Sarah N. Stoddard, Mary Ann Reynolds, and Terence E. Ryan. 2024. "Skeletal Muscle Oxidative Metabolism during Exercise Measured with Near Infrared Spectroscopy" NDT 2, no. 4: 417-429. https://doi.org/10.3390/ndt2040025
APA StyleMcCully, K. K., Stoddard, S. N., Reynolds, M. A., & Ryan, T. E. (2024). Skeletal Muscle Oxidative Metabolism during Exercise Measured with Near Infrared Spectroscopy. NDT, 2(4), 417-429. https://doi.org/10.3390/ndt2040025