Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR, NIR, and NMR Techniques
Abstract
:1. Introduction
2. Context and Scope
3. Materials and Methods
- Research Question 1 (RQ1): What are the most prevalent spectroscopic methods in the literature for rapid and noninvasive assessment of Cheddar cheese quality and prediction of maturation length?
- Research Question 2 (RQ2): Based on the literature review, which of these methods is shown to be the most effective?
3.1. Spectroscopy Methods for Cheese Quality and Ripening Prediction
- Gamma rays, with the shortest wavelengths and highest frequencies, are utilised in medical fields.
- X-rays, found next in the spectrum, are used primarily for medical imaging and materials analysis.
- Ultraviolet (UV) light, spanning from wavelengths of about 10 nm to 350 nm, is invisible to the human eye and has applications in sterilisation and scientific research.
- Visible light, ranging from violet (shorter wavelength of approx. 350 nm) to red light (longer wavelength of up to 800 nm), is employed in numerous applications, including lighting, communication, and analysis.
- Infrared (IR) light, ranging from 800 nm to 100 µm and located beyond visible light, is split into near-infrared (NIR), mid-infrared (MIR), and far-infrared (FIR) regions. It is used in thermal imaging, communication, and chemical analysis.
- Microwaves facilitate communication, cooking, and radar technology.
- Lastly, radio waves, with the longest wavelengths, support various wireless communication forms, such as radio and TV.
3.2. Implementation of Spectroscopy Techniques in Cheddar Cheese Quality Assessment and Maturation Prediction
3.2.1. NIR Spectroscopy Implementation
3.2.2. FT-IR Spectroscopy Implementation
3.2.3. NMR Spectroscopy Implementation
3.3. Chemometrics Techniques in Predictive Modelling for Cheese Maturation Assessment
3.3.1. Principal Component Analysis (PCA)
3.3.2. Partial Least Squares Regression (PLS-R)
3.3.3. Artificial Neural Networks (ANNs)
4. Literature Review
4.1. Determining the Most Prevalent Spectroscopy Techniques for Cheddar Cheese Quality Assessment and Maturation Prediction (Answer to RQ1)
4.1.1. Fourier Transform Infrared Spectroscopy (FT-IR)
Method | Instrument Brand | Tested Parameter | Mode (T/R) | Spectral Range | Best Results Spectral Range/Peak Wavelengths (nm) | Analysed Cheese Type (s) | Sample Preparation for Spectroscopy | Reference Method | Number of Samples | Cheese Age | Data Analysis | Software | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FT-IR | Perkin Elmer FT-IR | Molecular changes (amide I and II bands) | R | 4000–400 cm−1 (2500–25,000 nm) | 1720–1134 cm−1 | Cheddar brands: Bega, Great Ocean Road (GOD), Cracker Barrel (CB), Mainland | Flat slices cut near the centre of the block | None | 42 samples | 2–32 months | PCA | MATLAB R2021b (Mathworks Inc., Natick, MA, USA) | [29] |
Raman | PerkinElmer Raman Station 400 | Lipid-associated bands, Phenylalanine residues | R | 3200–400 cm−1 (3125–25,000 nm) | 1800–990 cm−1 | None | 42 samples | 2–32 months | PCA | ||||
FT-IR | Varian 3100 (Varian Inc., Palo Alto, CA, USA) | Amino acids, organic acids | R | 4000–700 cm−1 (2500–14,285 nm) | 1800–900 cm−1 | Cheddar | Water-soluble extract (WSE) of powdered cheese sample | GC-FID for amino acids, HPLC for organic acids | 12 samples | 7, 15, 32, 46, 73 additional days (commercial samples) | PLSR, SIMCA; ANOVA | Pirouette v3.11 (Infometrix Inc., Woodville, WA, USA); Minitab v15 (Minitab Inc., State College, PA, USA) | [20] |
FT-IR | ATI Mattson Infinity Series FT-IR Spectrophotometer (Madison, WI, USA) | Sensory and texture attributes | R | 4000–640 cm⁻1 (2500–15,625 nm) | 930–1767 cm⁻1 2839–4000 cm⁻1 | Processed cheese | None, sample equilibrated to room temperature | Descriptive Sensory Analysis (10 experts) | 32 samples | 2–4 weeks | PLS regression, PCA | Unscrambler v. 8.0 (Camo A/S, Oslo, Norway) | [7] |
FT-IR | FT-MIR spectrophotometer (Bruker, model Vertex70, Billerica, MA, USA) | Detection of adulterations in butter cheese with soybean oil | R | 4000–650 cm⁻1 (2500–15,385 nm) | 3100–2800 cm⁻1 1800–960 cm⁻1 | Butter cheese | Cuts of the core and surface area | AOAC standard methods of chemical analysis | 12 samples | Young cheese, unspecified age | PCA, PLS-R | OriginPro 2015 Software | [10] |
FT-IR | Portable spectrometer FT-IR 4500a (Agilent Technologies, Santa Clara, CA, USA) | Organic acids, Amino acids, Fatty acids, | R | 4000–650 cm−1 (2500–14,285 nm) | 1800–900 cm⁻1 3700–2850 cm⁻1; 1700–1000 cm⁻1 | Turkish white cheese | Water-soluble extract (WSE) of powdered cheese sample | HPLC (organic acids); GC-MS (amino acids); GC-FID (fatty acids) | 12 samples | Various stages of ripening (100 days) | SIMCA; PLS-R; ANOVA | Pirouette v. 4.5 (Infometrix Inc., Bothell, WA, USA); SPSS v.25 (IBM Corp., Armonk, NY, USA) | [12] |
FT-MIR | Nicolet iS50 (Thermo Fisher Scientific, Madison Wis., USA) | Chemical composition (moisture, fat, protein, salt) and physical properties (pH, acidity, texture) | R | 4000–700 cm⁻1 (2500–14,286 nm) | 1800–650 cm⁻1 (all features) | Turkish Ezine cheese from bovine, caprine, and ovine milk mixtures | Hand-crushed cheese | Traditional gold standard methods (e.g., Gerber, Soxhlet, Kjeldahl); Texture profile analysis | 81 samples | Various stages of ripening | PCA, PLS-R | Pirouette v. 4.5 (Infometrix, Inc., Bothell, WA, USA) | [11] |
NIRS | Nicolet iS50 (Thermo Fisher Scientific) with InGaAs (Indium Gallium Arsenide) detector | R | 1000–2500 nm (10,000–4000 cm⁻1) | 8695–4000 cm⁻1 (Protein); 5827–4000 cm⁻¹ (WSN); 10,000–4000 cm⁻¹ (composition, pH, titr. acidity) | Cheese cubes | PCA, PLS-R | |||||||
Vis/ NIRS | Portable VisNIRS-R (LabSpec 2500, Boulder, CO, USA) | Chemical composition (moisture, fat, protein, salt) and physical properties (pH, texture, colour) | R | 350–1830 nm | Various ranges specified per instrument | 37 different cheese types | Different sites of a freshly cut cheese surface | AOAC methods (Chemical components) Kjeldahl (for protein) Texture analysis; Colour measurements | 197 samples | Various (from 20 days to >20 months), depending on a cheese type | PLS-R; GLM procedure | Not specified | [8] |
Benchtop NIRS-R (NIRSystem 5000, Foss Electric A/S, Hillerod, Denmark) | R | 1100–2498 nm | Grated cheese in a small cup | Not specified | |||||||||
Benchtop NIRS-T (FoodScan, Foss Electric A/S, DK) | T | 850–1048 nm | Ground cheese in a petri-dish | Not specified | |||||||||
NIRS | 6500 Scanning Monochromator (FOSS NIR Systems, Silversprings, MD, USA) | Maturity age and 11 sensory attributes | R | 400–2498 nm | 750–1098 nm (sensory, age); 1100–2498 nm (age) | Experimental Cheddar made using 5 renneting enzymes | Sliced | Descriptive Sensory Analysis (10 experts) | 24 samples | 2, 6, 4, 9 months | PCA, PLS-R | WINISI II software (v. 1.04a; Infrasoft International, Port Matilda, MD, USA). | [13] |
NIRS | Fox NFoss NIR 5000 with 1.5 m 210/7210- bundle fibre-optic probe | 9 sensory attributes | R | 1100–2000 nm | Not specified | Raw cow’s, goat’s and ewe’s milk pilot-plant cheese from winter and summer milk | 1 cm thick slices | Quantitative Descriptive Sensory Analysis (8 experts) | 64 samples | 4, 6 months | PCA; Modified Partial least squares (MPLS) | WinISI II version 1.50 (Intrasoft International, LLC) | [43] |
NIRS | Pocket-sized handheld NIR device (SCiO, Consumer Physics, Tel Aviv, Israel) | Moisture, Fat | R | 800–1070 nm | 900–1100 nm | Variety of cheese | Whole and grated | N/A | 46 samples | N/A | PLS-R; Multivariate data analysis | The Unscrambler X version 10.5; Cloud-based web-application SCiO Lab (Consumer Physics, Tel Aviv, Israel) | [15] |
Benchtop NIRFlex N-500 i | R | 1000–2500 nm | 1100–2100 nm | The Unscrambler X version 10.5 (Camo Software, Oslo, Norway) | |||||||||
NIRS | Foss NIR 5000 with 1.5 m 210/7210- bundle fibre-optic probe | 19 sensory attributes | R | 1100–2000 nm | 1210, 1450, 1730, 1930 nm | Variety of cheese from winter and summer milk | Sliced | Quantitative Descriptive Sensory Analysis (8 experts) | 64 samples | 2, 4 months | PCA | Not specified | [9] |
ANN | Java NNS application within the Multi-Layer Perception network (MLP) | ||||||||||||
NIRS | Handheld NIR’ (Trek-ASD Inc., Boulder, CO, USA) | Fatty acids | R | (1) 350–2500 nm (2) 900–1700 nm, | Not specified | 36 types (cow, goat, ewe, buffalo) Feta, Camembert, Blue, Cottage, Colby Gouda, Parmesan | No sample preparation | Gas Chromatography-Flame Ionization Detection (GC-FID) | 68 samples | Various ages (not specified) | PLS-R, SVM | Not specified | [14] |
Miniaturised NIR (NIRscan Nano-Texas Instruments Inc., Texas, USA) | Fatty acids | R | 900–1700 nm | No sample preparation | 68 samples | Not specified | |||||||
Vis/NIRS | FieldSpec® 3 FR Spectroradiometer Devices (ASD, Inc. Boulder, CO, USA) | Protein content | R | 350–2500 nm | Not specified | Bayerische brotzeit, Anchor, Milkana cheese | None | Dumas combustion method | 92 samples | Various | DOSC-KPLS, SVM, BP-ANN, MSC, SNV | Not specified | [44] |
NMR | Bruker 800 MHz Avance III spectrometer using a 5 mm QCI Cryoprobe | Amino acids, organic acids, ripening markers | N/A | N/A | N/A | Cheddar | Cheese extract | Descriptive sensory analysis | 36 samples | 56, 90, 180, 270, 360, 450 days | PCA, PLS; ANOVA | Unscrambler X (CAMO ASA, Trondheim, Norway); XLSTAT (Addinsoft, France) | [33] |
NMR | Bruker DMX 500 MHz | Free amino acids, fatty acids, organic acids | N/A | 0.4 to 10.5 ppm | N/A | Italian Parmigiano Reggiano, East-Europe “Grana type” | Supernatant from dissolved in D2O and centrifuged | None | 33 samples (25 Parmigiano Reggiano, 8 Grana type) | 14, 24, 30 months | PCA, PLS-DA, O-PLS | ACD/Spec Manager v. 8.12 (ACD Labs), SIMCA-P V. 11 (Umetrics, Umea, Sweden) | [17] |
4.1.2. Near-Infrared Spectroscopy (NIR)
4.1.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
4.2. Comparative Analysis of Spectroscopic Techniques in Predicting Cheese Maturity (Answer to RQ2)
Most Effective Spectroscopic Method in Cheddar Cheese Analysis
5. Discussion
5.1. Efficacy and Comparison of Spectroscopic Methods
5.2. Integration of PCA, PLS, and Machine Learning
5.3. Implications for Cheese Quality Control, Challenges, and Considerations
5.4. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraggerud, H.; Solem, S.; Abrahamsen, R.K. Quality scoring—A tool for sensory evaluation of cheese? Food Qual. Prefer. 2012, 26, 221–230. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Delahunty, C.M.; Drake, M.A. Sensory character of cheese and its evaluation. In Cheese: Chemistry, Physics and Microbiology, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2004; pp. 455–487. [Google Scholar]
- Fox, P.F.; Cogan, T.M. Factors that affect the quality of cheese. In Cheese: Chemistry, Physics and Microbiology, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2004; pp. 583–608. [Google Scholar]
- Subramanian, A.; Rodriguez-Saona, L.E. Chemical and instrumental approaches to cheese analysis. In Advances in Food and Nutrition Research; Taylor, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 59, pp. 167–213. [Google Scholar]
- Bittante, G.; Patel, N.; Cecchinato, A.; Berzaghi, P. Invited review: A comprehensive review of visible and near-infrared spectroscopy for predicting the chemical composition of cheese. J. Dairy Sci. 2022, 105, 1817–1836. [Google Scholar] [CrossRef]
- Fagan, C.; Everard, C.; O’donnell, C.; Downey, G.; Sheehan, E.; Delahunty, C.; O’callaghan, D. Evaluating mid-infrared spectroscopy as a new technique for predicting sensory texture attributes of processed cheese. J. Dairy Sci. 2007, 90, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Stocco, G.; Cipolat-Gotet, C.; Ferragina, A.; Berzaghi, P.; Bittante, G. Accuracy and biases in predicting the chemical and physical traits of many types of cheeses using different visible and near-infrared spectroscopic techniques and spectrum intervals. J. Dairy Sci. 2019, 102, 9622–9638. [Google Scholar] [CrossRef]
- Curto, B.; Moreno, V.; García-Esteban, J.A.; Blanco, F.J.; González, I.; Vivar, A.; Revilla, I. Accurate prediction of sensory attributes of cheese using near-infrared spectroscopy based on artificial neural network. Sensors 2020, 20, 3566. [Google Scholar] [CrossRef]
- Nunes-Leite, S.; Goncalves, C.; Pinheiro, A.C.; Silva, S.; Madureira, A.R. Application of FTIR-ATR spectroscopy combined with chemometrics for the detection of adulteration in cheese with soy oil. J. Food Sci. Technol. 2019, 56, 3016–3024. [Google Scholar]
- Ayvaz, H.; Mortas, M.; Dogan, M.A.; Atan, M.; Tiryaki, G.Y.; Yuceer, Y.K. Near- and mid-infrared determination of some quality parameters of cheese manufactured from the mixture of different milk species. J. Food Sci. Technol. 2020, 58, 3981–3992. [Google Scholar] [CrossRef]
- Yaman, H.; Aykas, D.P.; Rodriguez-Saona, L.E. Monitoring Turkish white cheese ripening by portable FT-IR spectroscopy. Front. Nutr. 2023, 10, 1107491. [Google Scholar] [CrossRef]
- Downey, G.; Sheehan, E.; Delahunty, C.; O’callaghan, D.; Guinee, T.; Howard, V. Prediction of maturity and sensory attributes of Cheddar cheese using near-infrared spectroscopy. Int. Dairy J. 2005, 15, 701–709. [Google Scholar] [CrossRef]
- Reis, N.; Silva, S.; Pinheiro, A.C.; Gonçalves, C.; Martins, G.; Madureira, A.R. Comparative evaluation of miniaturized and conventional NIR spectrophotometer for estimation of fatty acids in cheeses. Food Chem. 2022, 383, 132377. [Google Scholar] [CrossRef] [PubMed]
- Wiedemair, V.; Langore, D.; Garsleitner, R.; Dillinger, K.; Huck, C. Investigations into the performance of a novel pocket-sized near-infrared spectrometer for cheese analysis. Molecules 2019, 24, 428. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, E. Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 18, 189–220. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L. Ripening and geographical characterization of Parmigiano Reggiano cheese by 1H NMR spectroscopy. Talanta 2008, 76, 200–205. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science, 4th ed.; Springer: Boston, MA, USA, 2017; pp. 185–229. [Google Scholar] [CrossRef]
- Bodyfelt, F.; Drake, M.; Rankin, S. Developments in dairy foods sensory science and education: From student contests to impact on product quality. Int. Dairy J. 2008, 18, 729–734. [Google Scholar] [CrossRef]
- Subramanian, A.; Alvarez, V.B.; Harper, W.J.; Rodriguez-Saona, L.E. Monitoring amino acids, organic acids, and ripening changes in Cheddar cheese using Fourier-transform infrared spectroscopy. Int. Dairy J. 2011, 21, 434–440. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Subramanian, A.; Rodriguez-Saona, L.E. Rapid Extraction Method for Analysis of Cheese Flavour Using Infrared Spectroscopy; Provisional Appln. Ser. No. 61/059,890; The Ohio State University: Columbus, OH, USA, 2008. [Google Scholar]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons, Ltd.: Chichester, UK, 2004; ISBN 0470854278. [Google Scholar]
- Balthazar, C.F.; Guimarães, J.T.; Rocha, R.S.; Pimentel, T.C.; Neto, R.P.; Tavares, M.I.B.; Graça, J.S.; Filho, E.G.A.; Freitas, M.Q.; Esmerino, E.A.; et al. Nuclear magnetic resonance as an analytical tool for monitoring the quality and authenticity of dairy foods. Trends Food Sci. Technol. 2020, 108, 84–91. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; O’Donnell, C.; Tobin, J.T.; O’Shea, N. Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. Int. Dairy J. 2019, 103, 104623. [Google Scholar] [CrossRef]
- Dufour, E. Principles of infrared spectroscopy. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.W., Ed.; Elsevier Science: San Diego, CA, USA, 2009; Chapter 1; pp. 1–27. [Google Scholar]
- Adamopoulos, K.G.; Goula, A.M.; Petropakis, H.J. Quality control during processing of feta cheese—NIR application. J. Food Compos. Anal. 2001, 14, 431–440. [Google Scholar] [CrossRef]
- Abbas, O.; Baeten, V. Near-infrared spectroscopy. In Spectroscopic Methods in food Analysis, 1st ed.; Franca, A.S., Nollet, L.M.L., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2018; pp. 80–87. [Google Scholar]
- Dewantier, G.R.; Torley, P.J.; Blanch, E.W. Identifying chemical differences in cheddar cheese based on maturity level and manufacturer using vibrational spectroscopy and chemometrics. Molecules 2023, 28, 8051. [Google Scholar] [CrossRef]
- Chen, M.; Irudayaraj, J. Sampling technique for cheese analysis by ftir spectroscopy. J. Food Sci. 1998, 63, 96–99. [Google Scholar] [CrossRef]
- Chen, M.; Irudayaraj, J.; McMahon, D.J. Examination of full fat and reduced fat cheddar cheese during ripening by fourier transform infrared spectroscopy. J. Dairy Sci. 1998, 81, 2791–2797. [Google Scholar] [CrossRef]
- Bittante, G.; Cecchinato, A. Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds. J. Dairy Sci. 2013, 96, 5991–6006. [Google Scholar] [CrossRef]
- Chen, Y.; MacNaughtan, W.; Jones, P.; Yang, Q.; Williams, H.; Foster, T. Selection of potential molecular markers for cheese ripening and quality prediction by NMR spectroscopy. LWT 2020, 136, 110306. [Google Scholar] [CrossRef]
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, The Netherlands, 1997; pp. 1–12. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Priyashantha, H.; Höjer, A.; Saedén, K.H.; Lundh, Å.; Johansson, M.; Bernes, G.; Geladi, P.; Hetta, M. Determining the end-date of long-ripening cheese maturation using NIR hyperspectral image modelling: A feasibility study. Food Control. 2021, 130, 108316. [Google Scholar] [CrossRef]
- Wilkinson, C.; Yuksel, D. Using artificial neural networks to develop prediction models for sensory-instrumental relationships; an overview. Food Qual. Prefer. 1997, 8, 439–445. [Google Scholar] [CrossRef]
- Carvalho, N.B.; Minim, V.P.R.; Silva, R.d.C.d.S.N.; Della Lucia, S.M.; Minim, L.A. Artificial neural networks (ANN): Prediction of sensory measurements from instrumental data. Food Sci. Technol. 2013, 33, 722–729. [Google Scholar] [CrossRef]
- Cevoli, C.; Gori, A.; Nocetti, M.; Cuibus, L.; Caboni, M.F.; Fabbri, A. FT-NIR and FT-MIR spectroscopy to discriminate competitors, non-compliance and compliance grated Parmigiano Reggiano cheese. Food Res. Int. 2013, 52, 214–220. [Google Scholar] [CrossRef]
- Jaggi, N.; Vij, D. Fourier transform infrared spectroscopy. In Handbook of Applied Solid State Spectroscopy; Vij, D., Ed.; Springer: Boston, MA, USA, 2006; pp. 411–450. [Google Scholar]
- Kraggerud, H.; Næs, T.; Abrahamsen, R.K. Prediction of sensory quality of cheese during ripening from chemical and spectroscopy measurements. Int. Dairy J. 2013, 34, 6–18. [Google Scholar] [CrossRef]
- González-Martín, M.; Severiano-Pérez, P.; Revilla, I.; Vivar-Quintana, A.; Hernández-Hierro, J.; González-Pérez, C.; Lobos-Ortega, I. Prediction of sensory attributes of cheese by near-infrared spectroscopy. Food Chem. 2011, 127, 256–263. [Google Scholar] [CrossRef]
- Lin, L.; He, Y.; Wang, L.; Liu, F.; Pan, J.; Wang, R. Study on nonlinear multivariate methods combined with the visible near-infrared spectroscopy of cheese. Food Chem. 2014, 152, 416–422. [Google Scholar]
- Priyashantha, H.; Höjer, A.; Saedén, K.H.; Lundh, Å.; Johansson, M.; Bernes, G.; Geladi, P.; Hetta, M. Use of near-infrared hyperspectral (NIR-HS) imaging to visualize and model the maturity of long-ripening hard cheeses. J. Food Eng. 2019, 264, 109687. [Google Scholar] [CrossRef]
- CIE (International Commission on Illumination). Colorimetry, 3rd ed.; CIE 015; Commission Internationale de l’Éclairage: Vienna, Austria, 2004; Available online: https://cie.co.at/publications/colorimetry-3rd-edition (accessed on 30 September 2024).
- Alinaghi, M.; Nilsson, D.; Singh, N.; Höjer, A.; Saedén, K.H.; Trygg, J. Near-infrared hyperspectral image analysis for monitoring the cheese-ripening process. J. Dairy Sci. 2023, 106, 7407–7418. [Google Scholar] [CrossRef]
- ISO 21543:2020; Milk and Milk Products—Guidelines for the Application of Near-Infrared Spectrometry, Updated Guideline. ISO: Geneva, Switzerland, 2020.
- Cattaneo, T.M.; Barzaghi, S. Outer product analysis applied to near infrared and mid infrared spectra to study a spanish protected denomination of origin cheese. J. Near Infrared Spectrosc. 2009, 17, 135–140. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Brescia, M.; Monfreda, M.; Buccolieri, A.; Carrino, C. Characterisation of the geographical origin of buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chem. 2005, 89, 139–147. [Google Scholar] [CrossRef]
- Margolies, B.J.; Barbano, D.M. Determination of fat, protein, moisture, and salt content of Cheddar cheese using mid-infrared transmittance spectroscopy. J. Dairy Sci. 2018, 101, 924–933. [Google Scholar] [CrossRef]
- Martín-Del-Campo, S.; Picque, D.; Cosío-Ramírez, R.; Corrieu, G. Evaluation of chemical parameters in soft mold-ripened cheese during ripening by mid-infrared spectroscopy. J. Dairy Sci. 2007, 90, 3018–3027. [Google Scholar] [CrossRef]
- McQueen, D.H.; Wilson, R.; Kinnunen, A.; Jensen, E.P. Comparison of two infrared spectroscopic methods for cheese analysis. Talanta 1995, 42, 2007–2015. [Google Scholar] [CrossRef]
- Mayr, S.; Beć, K.B.; Grabska, J.; Wiedemair, V.; Pürgy, V.; Popp, M.A.; Bonn, G.K.; Huck, C.W. Challenging handheld NIR spectrometers with moisture analysis in plant matrices: Performance of PLSR vs. GPR vs. ANN modelling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 249, 119342. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seratlic, S.; Guha, B.; Moore, S. Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR, NIR, and NMR Techniques. NDT 2024, 2, 392-416. https://doi.org/10.3390/ndt2040024
Seratlic S, Guha B, Moore S. Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR, NIR, and NMR Techniques. NDT. 2024; 2(4):392-416. https://doi.org/10.3390/ndt2040024
Chicago/Turabian StyleSeratlic, Sanja, Bikash Guha, and Sean Moore. 2024. "Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR, NIR, and NMR Techniques" NDT 2, no. 4: 392-416. https://doi.org/10.3390/ndt2040024
APA StyleSeratlic, S., Guha, B., & Moore, S. (2024). Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR, NIR, and NMR Techniques. NDT, 2(4), 392-416. https://doi.org/10.3390/ndt2040024