Emission Characteristics and Potential Exposure Assessment of Aerosols and Ultrafine Particles at Two French Airports
Abstract
:1. Introduction
2. Materials and Methods
- Study design
- Source emissions: engine exhaust sampling
- Aerosol sampling at the medium-haul work area
- Single-probe trolley devices for simultaneous aerosol analyses
- Compact device for particle collection on membranes
- Membrane analyses
3. Results
3.1. Source Emissions: Engine Exhausts
3.2. Aerosol Measurements at the Medium-Haul Area Workstation
4. Discussion
4.1. Source Emissions: Engine Exhausts
4.2. Aerosol Measurements at the Medium-Haul Workstation Area
4.3. Exposure Assessment of Aerosols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahim, M.F.; Pal, D.; Ariya, P.A. Physicochemical Studies of Aerosols at Montreal Trudeau Airport: The Importance of Airborne Nanoparticles Containing Metal Contaminants. Environ. Pollut. 2019, 246, 734–744. [Google Scholar] [CrossRef]
- Shirmohammadi, F.; Sowlat, M.H.; Hasheminassab, S.; Saffari, A.; Ban-Weiss, G.; Sioutas, C. Emission Rates of Particle Number, Mass and Black Carbon by the Los Angeles International Airport (LAX) and Its Impact on Air Quality in Los Angeles. Atmos. Environ. 2017, 151, 82–93. [Google Scholar] [CrossRef]
- Stacey, B.; Harrison, R.M.; Pope, F. Evaluation of Ultrafine Particle Concentrations and Size Distributions at London Heathrow Airport. Atmos. Environ. 2020, 222, 117148. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, S.; Lang, J.; Xu, R.; Lv, Z. Characterization of Aircraft Emissions and Air Quality Impacts of an International Airport. J. Environ. Sci. 2018, 72, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Stacey, B. Measurement of Ultrafine Particles at Airports: A Review. Atmos. Environ. 2019, 198, 463–477. [Google Scholar] [CrossRef]
- Zhu, Y.; Fanning, E.; Yu, R.C.; Zhang, Q.; Froines, J.R. Aircraft Emissions and Local Air Quality Impacts from Takeoff Activities at a Large International Airport. Atmos. Environ. 2011, 45, 6526–6533. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer IARC: Diesel Engine Exhaust Carcinogenic. Available online: https://www.iarc.who.int/news-events/iarc-diesel-engine-exhaust-carcinogenic/ (accessed on 9 March 2021).
- Bendtsen, K.M.; Bengtsen, E.; Saber, A.T.; Vogel, U. A Review of Health Effects Associated with Exposure to Jet Engine Emissions in and around Airports. Environ. Health 2021, 20, 10. [Google Scholar] [CrossRef]
- Touri, L.; Marchetti, H.; Sari-Minodier, I.; Molinari, N.; Chanez, P. The Airport Atmospheric Environment: Respiratory Health at Work. Eur. Respir. Rev. 2013, 22, 124–130. [Google Scholar] [CrossRef]
- Schlenker, W.; Walker, W.R. Airports, Air Pollution, and Contemporaneous Health. Rev. Econ. Stud. 2016, 83, 768–809. [Google Scholar] [CrossRef]
- Marie-Desvergne, C.; Dubosson, M.; Touri, L.; Zimmermann, E.; Gaude-Môme, M.; Leclerc, L.; Durand, C.; Klerlein, M.; Molinari, N.; Vachier, I.; et al. Assessment of Nanoparticles and Metal Exposure of Airport Workers Using Exhaled Breath Condensate. J. Breath Res. 2016, 10, 036006. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications: Third Edition; John Wiley and Sons: Hoboken, NJ, USA, 2011; ISBN 9780470387412. [Google Scholar]
- Molinari, N. L’exposition Aux Nanoparticules En Milieu Aéroportuaire. Les Cah. Rech. Santé Environ. Trav. 2018, 11, 34–35. [Google Scholar]
- Touri, L.-S.; Suehs, C.; Nogué, E.; Marie-Desvergne, C.; Dubosson, M.; Tarantini, A.; Dauba, A.; Ravanat, J.-L.; Chamel, V.; Klerlein, M.; et al. Occupational Exposure to Aerosols in Two French Airports: Multi-Year Lung Function Changes. Ann. Work. Expo. Health 2024. in submission. [Google Scholar]
- Zimmermann, E.; Derrough, S.; Locatelli, D.; Durand, C.; Fromaget, J.L.; Lefranc, E.; Ravanel, X.; Garrione, J. Results of Potential Exposure Assessments during the Maintenance and Cleanout of Deposition Equipment. J. Nanoparticle Res. 2012, 14, 1209. [Google Scholar] [CrossRef]
- OECD. Harmonized Tiered Approach to Measure and Assess the Potential Exposure to Airborne Emissions of Engineered Nano-Objects and Their Agglomerates and Aggregates at Workplaces; Env/Jm/Mono(2015)19; OECD: Paris, France, 2015. [Google Scholar]
- EN 17058:2018; Workplace Exposure—Assessment of Exposure by Inhalation of Nano-Objects and Their Aggregates and Agglomerates. European Committee for Standardization: Brussels, Belgium, 2018.
- Petzold, A.; Ström, J.; Schröder, F.P.; Kärcher, B. Carbonaceous Aerosol in Jet Engine Exhaust: Emission Characteristics and Implications for Heterogeneous Chemical Reactions. Atmos. Environ. 1999, 33, 2689–2698. [Google Scholar] [CrossRef]
- Bendtsen, K.M.; Brostrøm, A.; Koivisto, A.J.; Koponen, I.; Berthing, T.; Bertram, N.; Kling, K.I.; Dal Maso, M.; Kangasniemi, O.; Poikkimäki, M.; et al. Airport Emission Particles: Exposure Characterization and Toxicity Following Intratracheal Instillation in Mice. Part. Fibre Toxicol. 2019, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Kim, J.; Ko, A.; Myung, C.L.; Park, S.; Lee, J. Size-Resolved Engine Exhaust Aerosol Characteristics in a Metal Foam Particulate Filter for GDI Light-Duty Vehicle. J. Aerosol Sci. 2013, 57, 1–13. [Google Scholar] [CrossRef]
- Hu, S.; Fruin, S.; Kozawa, K.; Mara, S.; Winer, A.M.; Paulson, S.E. Aircraft Emission Impacts in a Neighborhood Adjacent to a General Aviation Airport in Southern California. Environ. Sci. Technol. 2009, 43, 8039–8045. [Google Scholar] [CrossRef]
- Hudda, N.; Gould, T.; Hartin, K.; Larson, T.V.; Fruin, S.A. Emissions from an International Airport Increase Particle Number Concentrations 4-Fold at 10 km Downwind. Environ. Sci. Technol. 2014, 48, 6628–6635. [Google Scholar] [CrossRef] [PubMed]
- Vander Wal, R.L.; Bryg, V.M.; Huang, C.H. Aircraft Engine Particulate Matter: Macro- Micro- and Nanostructure by HRTEM and Chemistry by XPS. Combust. Flame 2014, 161, 602–611. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Prashumn; Valera, H.; Nath Mustafi, N. Di-Ethyl Ether-Diesel Blends Fuelled off-Road Tractor Engine: Part-II: Unregulated and Particulate Emission Characteristics. Fuel 2022, 308, 121973. [Google Scholar] [CrossRef]
- Corporan, E.; Quick, A.; DeWitt, M.J. Characterization of Particulate Matter and Gaseous Emissions of a C-130H Aircraft. In Proceedings of the 100th Annual Conference and Exhibition of the Air and Waste Management Association 2007, ACE 2007, Pittsburgh, PA, USA, 26–29 June 2007; Taylor & Francis Group: Abingdon, UK, 2007; Volume 6, pp. 3987–4002. [Google Scholar]
- Rogers, F.; Arnott, P.; Zielinska, B.; Sagebiel, J.; Kelly, K.E.; Wagner, D.; Lighty, J.A.S.; Sarofim, A.F. Real-Time Measurements of Jet Aircraft Engine Exhaust. J. Air Waste Manag. Assoc. 2005, 55, 583–593. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Aircraft Engine Exhaust Emissions and Other Airport-Related Contributions to Ambient Air Pollution: A Review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef]
- Austin, E.; Xiang, J.; Gould, T.R.; Shirai, J.H.; Yun, S.; Yost, M.G.; Larson, T.V.; Seto, E. Distinct Ultrafine Particle Profiles Associated with Aircraft and Roadway Traffic. Environ. Sci. Technol. 2021, 55, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
- Riley, E.A.; Gould, T.; Hartin, K.; Fruin, S.A.; Simpson, C.D.; Yost, M.G.; Larson, T. Ultrafine Particle Size as a Tracer for Aircraft Turbine Emissions. Atmos. Environ. 2016, 139, 20–29. [Google Scholar] [CrossRef]
- Lobo, P.; Hagen, D.E.; Whitefield, P.D.; Raper, D. PM Emissions Measurements of In-Service Commercial Aircraft Engines during the Delta-Atlanta Hartsfield Study. Atmos. Environ. 2015, 104, 237–245. [Google Scholar] [CrossRef]
- Riley, K.; Cook, R.; Carr, E.; Manning, B. A Systematic Review of the Impact of Commercial Aircraft Activity on Air Quality near Airports. City Environ. Interact. 2021, 11, 100066. [Google Scholar] [CrossRef] [PubMed]
- Westerdahl, D.; Fruin, S.A.; Fine, P.L.; Sioutas, C. The Los Angeles International Airport as a Source of Ultrafine Particles and Other Pollutants to Nearby Communities. Atmos. Environ. 2008, 42, 3143–3155. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Pingue, P.; Todea, A.M.; Asbach, C. Assessment of Occupational Exposure to Engineered Nanomaterials in Research Laboratories Using Personal Monitors. Sci. Total Environ. 2018, 627, 689–702. [Google Scholar] [CrossRef]
- Asbach, C.; Alexander, C.; Clavaguera, S.; Dahmann, D.; Dozol, H.; Faure, B.; Fierz, M.; Fontana, L.; Iavicoli, I.; Kaminski, H.; et al. Review of Measurement Techniques and Methods for Assessing Personal Exposure to Airborne Nanomaterials in Workplaces. Sci. Total Environ. 2017, 603–604, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Jagatha, J.V.; Klausnitzer, A.; Chacón-Mateos, M.; Laquai, B.; Nieuwkoop, E.; van der Mark, P.; Vogt, U.; Schneider, C. Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research. Sensors 2021, 21, 3960. [Google Scholar] [CrossRef]
TXRF Chemical Identification | SEM-EDX Chemical Identification | |||
---|---|---|---|---|
Sources of Emission | Micrometric Size | Submicronic Size | Micrometric Particles | Nanometric Particles |
Aircraft engine GE90 (long haul) | Fe, S, Si | Br, Fe, S, Ti, | Al, Ca, Cl, O, Si, S, Ti | C, O |
Aircraft engine CFM56-5B (medium haul) | Br, Ca, Fe, K, Mn, S, Si, Ti | Fe, S, Ti, Zn | Al, Ca, Fe, K, Na, O, Si, S, Zn | C, O, Na, S |
Pushback tractor 256 (old generation) | Ca, Fe, K, S, Si, Ti, Zn | Ca, S, Fe | Ca, F, O | C, O |
Pushback tractor 270 (new generation) | Ca, Fe, S, Si | Br, Fe, S, Ti, Zn | Cr, O, S | C, O |
Generator set | -- | -- | -- | -- |
Gasoline car | Ca, K, S, Si | Ca, K, S, Si | Cr, Mo, O | C, O |
Diesel van |
Aethelometer at the Medium-Haul Area | Integrative Filter Sampling at Ambient Concentration (Distance 5 km) | TXRF Chemical Identification at the Medium-Haul Area | SEM-EDX Chemical Identification at the Medium-Haul Area | |||
---|---|---|---|---|---|---|
Source of Emission | [EC] (μg/m3) | [EC] (μg/m3) | Micrometric Size | Submicronic Size | Micrometric Particles | Nanometric Particles |
Medium-haul aircraft area | 1.8 ± 0.6 | 4.8 ± 0.6 | Ca, Fe, K, S, Si, Ti | Br, Ca, Zn | Al, Ca, Mg, O, Si | Ca, C, O, S, Si |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artous, S.; Zimmermann, E.; Philippot, C.; Jacquinot, S.; Locatelli, D.; Tarantini, A.; Suehs, C.; Touri, L.; Clavaguera, S. Emission Characteristics and Potential Exposure Assessment of Aerosols and Ultrafine Particles at Two French Airports. Air 2024, 2, 73-85. https://doi.org/10.3390/air2010005
Artous S, Zimmermann E, Philippot C, Jacquinot S, Locatelli D, Tarantini A, Suehs C, Touri L, Clavaguera S. Emission Characteristics and Potential Exposure Assessment of Aerosols and Ultrafine Particles at Two French Airports. Air. 2024; 2(1):73-85. https://doi.org/10.3390/air2010005
Chicago/Turabian StyleArtous, Sébastien, Eric Zimmermann, Cécile Philippot, Sébastien Jacquinot, Dominique Locatelli, Adeline Tarantini, Carey Suehs, Léa Touri, and Simon Clavaguera. 2024. "Emission Characteristics and Potential Exposure Assessment of Aerosols and Ultrafine Particles at Two French Airports" Air 2, no. 1: 73-85. https://doi.org/10.3390/air2010005
APA StyleArtous, S., Zimmermann, E., Philippot, C., Jacquinot, S., Locatelli, D., Tarantini, A., Suehs, C., Touri, L., & Clavaguera, S. (2024). Emission Characteristics and Potential Exposure Assessment of Aerosols and Ultrafine Particles at Two French Airports. Air, 2(1), 73-85. https://doi.org/10.3390/air2010005