Application of Machine Learning to Estimate Ammonia Atmospheric Emissions and Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Sites and Data
- Hourly measured ammonia concentrations;
- Hourly measured meteorological variables;
- Ammonia emission estimates.
2.1.1. Ammonia Measurement Sites
2.1.2. Meteorological Parameters of the Measurement Sites
2.1.3. Annual Emission Estimates
- Em = NH3 annual emission for the municipality;
- s = source type;
- f = fuel type;
- Is,f,m = activity indicator;
- EFs,f = NH3 emission factor.
- = emission for each station;
- = total municipal NH3 emission;
- = total municipal area;
- = municipal area within circle area station.
2.1.4. Machine Learning Method and Random Forest
2.1.5. Sampling of Training Data and Cross-Validation
3. Results
Data | Spatial Resolution | Time Resolution | Years | Method | Source | Ref. |
---|---|---|---|---|---|---|
DECSO v6.1 | 0.2° × 0.2° | Monthly | 2020–2022 | Satellite observation (CrIS) and chemical transport model (DECSO v6.1) | (SEEDS website): https://www.seedsproject.eu/data/monthly-nh3-emissions (accessed on 5 May 2023) | [59] |
VERATTI et al., 2023 | All grids | Monthly | 2019 | Four air quality modelling systems based on three chemical transport models | Veratti, G. et al. (2023) Impact of NOx and NH3 Emission Reduction on Particulate Matter across Po Valley: A LIFE-IP-PREPAIR Study | [17] |
CAMS-GLOB v6.1 | 0.1° × 0.1° | Monthly | 2000–2022 | Annual emission (EDGAR v4.3.2) with temporal profile from CAMS-GLOB-TEMPO (2000–2012) or a linear trend fit to the 2012–2014 data from the CEDS inventory | Emissions of Atmospheric Compounds and Compilation of Ancillary Data website [60] | [61] |
HTAPv3 | 0.1° × 0.1° | Monthly | 2000–2018 | Ad hoc global mosaic of anthropogenic inventories that use EMEP data (CAMS-REG) for Europe | Emissions of Atmospheric Compounds and Compilation of Ancillary Data website [60] | [62] |
EDGAR v4.3.2 | 0.1° × 0.1° | Monthly | 2010 | The Emissions Database for Global Atmospheric Research uses the same anthropogenic sectors, covers the same period (1970–2012), and utilizes the same international activity data that are used for greenhouse gas emissions | Emissions of Atmospheric Compounds and Compilation of Ancillary Data website [60] | [63] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Backes, A.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory. Atmos. Environ. 2016, 131, 55–66. [Google Scholar] [CrossRef]
- Hempel, S.; Adolphs, J.; Landwehr, N.; Janke, D.; Amon, T. How the Selection of Training Data and Modeling Approach Affects the Estimation of Ammonia Emissions from a Naturally Ventilated Dairy Barn—Classical Statistics Versus Machine Learning. Sustainability 2020, 12, 1030. [Google Scholar] [CrossRef]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A. Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr. Cycl. Agroecosyst. 2001, 60, 123–132. [Google Scholar] [CrossRef]
- Hristov, A.N. Technical note: Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J. Dairy Sci. 2011, 94, 3130–3136. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Erisman, J.W.; Abrol, Y.P.; Bekunda, M.; Datta, A.; Davidson, E.; de Vries, W.; Oenema, O.; et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution; The Centre for Ecology and Hydrology (CEH): Edinburgh, UK, 2013. [Google Scholar]
- Hempel, S.; Menz, C.; Pinto, S.; Galán, E.; Janke, D.; Estellés, F.; Müschner-Siemens, T.; Wang, X.; Heinicke, J.; Zhang, G.; et al. Heat stress risk in European dairy cattle husbandry under different climate change scenarios-uncertainties and potential impacts. Earth Syst. Dyn. 2019, 10, 859–884. [Google Scholar] [CrossRef]
- EU. DIRECTIVE (EU) 2016/2284—On the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC; European Parliament; EUR-Lex: Luxembourg, 2016. [Google Scholar]
- European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016: Technical Guidance to Prepare National Emission Inventories; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- European Environment Agency. European Union Emission Inventory Report 1990/2019; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Italian Emission Inventory 1990–2019. Informative Inventory Report 2021; ISPRA IIR: Roma, Italy, 2021. Available online: www.isprambiente.gov.it (accessed on 10 May 2023).
- Marongiu, A.; Angelino, E.; Moretti, M.; Malvestiti, G.; Fossati, G. Atmospheric Emission Sources in the Po-Basin from the LIFE-IP PREPAIR Project. Open J. Air Pollut. 2022, 11, 70–83. [Google Scholar] [CrossRef]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving air quality in the Po valley, Italy: Some results by the LIFE-IP-PREPAIR project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef]
- BDN—Anagrafe Nazionale Zootecnica. Available online: https://www.vetinfo.it/j6_statistiche/#/ (accessed on 12 April 2023).
- Thunis, P.; Clappier, A.; Beekmann, M.; Putaud, J.P.; Cuvelier, C.; Madrazo, J.; de Meij, A. Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): Consequences for air quality plans. Atmos. Chem. Phys. 2021, 21, 9309–9327. [Google Scholar] [CrossRef]
- Veratti, G.; Stortini, M.; Amorati, R.; Bressan, L.; Giovannini, G.; Bande, S.; Bissardella, F.; Ghigo, S.; Angelino, E.; Colombo, L.; et al. Impact of NOx and NH3 Emission Reduction on Particulate Matter across Po Valley: A LIFE-IP-PREPAIR Study. Atmosphere 2023, 14, 762. [Google Scholar] [CrossRef]
- Asman, W.A. Ammonia Emission in Europa: Updated Emission and Emission Variations; Report No. 228471008; National Institute for Public Health and Environmental Protection: Biltoven, The Netherlands, 1992. [Google Scholar]
- Gon, H.D.; Hendriks, C.; Kuenen, J.; Segers, A.; Visschedijk, A. Description of Current Temporal Emission Patterns and Sensitivity of Predicted AQ for Temporal Emission Patterns EU FP7 MACC Deliverable Report D_D-EMIS_1.3; TNO: Utrecht, The Netherlands, 2011. [Google Scholar]
- Reis, S.; Ambelas-Skjoth, C.; Vieno, M.; Geels, C.; Steinle, S.; Lang, M.; Sutton, M.A. Why time and space matters-arguments for the improvement of temporal emission profiles for atmospheric dispersion modeling of air pollutant emissions. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011. [Google Scholar]
- Sutton, P.; Chemel, C.; Griffiths, S.; Sokhi, R.S. Investigation, using CMAQ, of sensitivity of air quality modelling to input ammonia emissions. In Air Pollution Modeling and its Application XXII; Springer International Publishing: Cham, Switzerland, 2012; Volume 96. [Google Scholar]
- Huang, X.; Song, Y.; Li, M.; Li, J.; Huo, Q.; Cai, X.; Zhu, T.; Hu, M.; Zhang, H. A high-resolution ammonia emission inventory in China. Glob. Biogeochem. Cycles 2012, 26, GB1030. [Google Scholar] [CrossRef]
- Gyldenkærne, S.; Skjøth, C.A.; Hertel, O.; Ellermann, T. A dynamical ammonia emission parameterization for use in air pollution models. J. Geophys. Res. Atmos. 2005, 110, D07108. [Google Scholar] [CrossRef]
- Ambelas SkjøTh, C.; Hertel, O.; GyldenkæRne, S.; Ellermann, T. Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP. J. Geophys. Res. Atmos. 2004, 109, D06306. [Google Scholar] [CrossRef]
- Hutchings, N.J.; Sommer, S.G.; Andersen, J.M.; Asman, W.A.H. A detailed ammonia emission inventory for Denmark. Atmos. Environ. 2001, 35, 1959–1968. [Google Scholar] [CrossRef]
- Arogo, J.; Zhang, R.H.; Riskowski, G.L.; Christianson, L.L.; Day, D.L. Mass Transfer Coefficient of Ammonia in Liquid Swine Manure and Aqueous Solutions. J. Agric. Eng. Res. 1999, 73, 77–86. [Google Scholar] [CrossRef]
- Cortus, E.L.; Lemay, S.P.; Barber, E.M.; Hill, G.A. Modelling ammonia emission from swine slurry based on chemical and physical properties of the slurry. Can. Biosyst. Eng. 2009, 51, 6–9. [Google Scholar]
- De Visscher, A.; Harper, L.A.; Westerman, P.W.; Liang, Z.; Arogo, J.; Sharpe, R.R.; Van Cleemput, O. Ammonia Emissions from Anaerobic Swine Lagoons: Model Development. J. Appl. Meteorol. Climatol. 2002, 41, 426–433. [Google Scholar] [CrossRef]
- Sommer, S.G.; Christensen, M.L.; Schmidt, T.; Jensen, L.S. (Eds.) Animal Manure Recycling—Treatment and Management; John Wiley & Sons Ltd.: West Sussex, UK, 2013. [Google Scholar]
- Sommer, S.G.; Zhang, G.Q.; Bannink, A.; Chadwick, D.; Misselbrook, T.; Harrison, R.; Hutchings, N.J.; Menzi, H.; Monteny, G.J.; Ni, J.Q.; et al. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores. Adv. Agron. 2006, 89, 261–335. [Google Scholar] [CrossRef]
- Teye, F.K.; Hautala, M. Adaptation of an ammonia volatilization model for a naturally ventilated dairy building. Atmos. Environ. 2008, 42, 4345–4354. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Mansell, G.; Fadel, J.; Rumsey, T.; Xin, H.; Arogo, J. Development of an Improved Process-Based Ammonia Model for Agricultural Sources; Report for Lake Michigan Air Directors Consortium; Lake Michigan Air Directors Consortium: Des Plaines, IL, USA, 2005; Available online: https://www.researchgate.net/publication/265880715 (accessed on 9 May 2023).
- Wang, C.Y.; Li, B.M.; Zhang, G.Q.; Rom, H.B.; Shi, Z.X. Comparison between the Statistical Method and Artificial Neural Networks in Estimating Ammonia Emissions from Naturally Ventilated Dairy Cattle Buildings. In Livestock Environment VIII, Proceedings of the 8th International Symposium, Iguassu Falls, Brazil, 31 August–4 September 2008; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009; p. 7. [Google Scholar] [CrossRef]
- Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. Atmos. Environ. 2012, 57, 49–54. [Google Scholar] [CrossRef]
- Stamenković, L.J.; Antanasijević, D.Z.; Ristić, M.; Perić-Grujić, A.A.; Pocajt, V.V. Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach. Environ. Sci. Pollut. Res. Int. 2015, 22, 18849–18858. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Zhang, Y.; Vu, T.V.; Sun, J.; He, J.; Shen, X.; Lin, W.; Zhang, X.; Zhong, J.; Gao, W.; Wang, Y.; et al. Significant Changes in Chemistry of Fine Particles in Wintertime Beijing from 2007 to 2017: Impact of Clean Air Actions. Environ. Sci. Technol. 2020, 54, 1344–1352. [Google Scholar] [CrossRef]
- Petetin, H.; Bowdalo, D.; Soret, A.; Guevara, M.; Jorba, O.; Serradell, K.; García-Pando, C.P. Meteorology-normalized impact of the COVID-19 lockdown upon NO2 pollution in Spain. Atmos. Chem. Phys. 2020, 20, 11119–11141. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Wang, Y.; Zhang, S.; Zhang, K.M.; Zheng, H.; Xing, J.; Wu, Y.; Hao, J. Four-Month Changes in Air Quality during and after the COVID-19 Lockdown in Six Megacities in China. Environ. Sci. Technol. Lett. 2020, 7, 802–808. [Google Scholar] [CrossRef]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Van Vu, T.; Elliott, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhang, Q.; Sun, Q.; Gu, M.; He, Y.; Walters, W.W.; Sun, Y.; Pan, Y. Revisiting the dynamics of gaseous ammonia and ammonium aerosols during the COVID-19 lockdown in urban Beijing using machine learning models. Sci. Total Environ. 2023, 905, 166946. [Google Scholar] [CrossRef]
- Huang, L.; Liu, S.; Yang, Z.; Xing, J.; Zhang, J.; Bian, J.; Li, S.; Sahu, S.K.; Wang, S.; Liu, T.-Y. Exploring deep learning for air pollutant emission estimation. Geosci. Model Dev. 2021, 14, 4641–4654. [Google Scholar] [CrossRef]
- Fassò, A.; Rodeschini, J.; Moro, A.F.; Shaboviq, Q.; Maranzano, P.; Cameletti, M.; Finazzi, F.; Golini, N.; Ignaccolo, R.; Otto, P. Agrimonia: A dataset on livestock, meteorology and air quality in the Lombardy region, Italy. Sci. Data 2023, 10, 143. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). 2023. Available online: https://www.randomforestsrc.org/ (accessed on 1 April 2023).
- Ishwaran, H.; Kogalur, U.B. Random Survival Forests for R. R News 2007, 7, 25–31. [Google Scholar]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random Survival Forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Ishwaran, H.; Lu, M.; Lauer, M.S.; Blackstone, E.H.; Kogalur, U.B. randomForestSRC: Getting Started with randomForestSRC Vignette. 2021. Available online: http://randomforestsrc.org/articles/survival.html (accessed on 22 June 2023).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. Proc. Int. Conf. Doc. Anal. Recognit. ICDAR 1995, 1, 278–282. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. Available online: https://CRAN.R-project.org/doc/Rnews/ (accessed on 17 April 2023).
- Asman, W.A.H.; Sutton, M.A.; Schjørring, J.K. Ammonia: Emission, atmospheric transport and deposition. New Phytol. 1998, 139, 27–48. [Google Scholar] [CrossRef]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Briant, R.; Cholakian, A.; Couvidat, F.; Mailler, S.; Pennel, R.; Siour, G.; Tuccella, P.; Turquety, S.; et al. The CHIMERE v2020r1 online chemistry-transport model. Geosci. Model Dev. 2021, 14, 6781–6811. [Google Scholar] [CrossRef]
- Gariazzo, C.; Silibello, C.; Finardi, S.; Radice, P.; Piersanti, A.; Calori, G.; Cecinato, A.; Perrino, C.; Nussio, F.; Cagnoli, M.; et al. A gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model. Atmos. Environ. 2007, 41, 7286–7303. [Google Scholar] [CrossRef]
- Silibello, C.; Calori, G.; Brusasca, G.; Giudici, A.; Angelino, E.; Fossati, G.; Peroni, E.; Buganza, E. Modelling of PM10 concentrations over Milano urban area using two aerosol modules. Environ. Model. Softw. 2008, 23, 333–343. [Google Scholar] [CrossRef]
- Dalla-Fontana, A.; Pillon, S.; Patti, S. A performance evaluation of the CAMx air quality model to forecast ozone and PM10 over the Italian region of Veneto. Tethys 2021, 18, 177–185. [Google Scholar] [CrossRef]
- Ciarelli, G.; Aksoyoglu, S.; Crippa, M.; Jimenez, J.L.; Nemitz, E.; Sellegri, K.; Äijälä, M.; Carbone, S.; Mohr, C.; O’Dowd, C.; et al. Evaluation of European air quality modelled by CAMx including the volatility basis set scheme. Atmos. Chem. Phys. 2016, 16, 10313–10332. [Google Scholar] [CrossRef]
- Nopmongcol, U.; Koo, B.; Tai, E.; Jung, J.; Piyachaturawat, P.; Emery, C.; Yarwood, G.; Pirovano, G.; Mitsakou, C.; Kallos, G. Modeling Europe with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII). Atmos. Environ. 2012, 53, 177–185. [Google Scholar] [CrossRef]
- Sentinel EO-based Emission and Deposition Service—SEEDS. Available online: https://www.seedsproject.eu/data/monthly-nh3-emissions (accessed on 5 May 2023).
- Emissions of Atmospheric Compounds and Compilation of Ancillary Data—ECCAD. 2023. Available online: https://eccad.sedoo.fr/#/catalogue (accessed on 8 May 2023).
- Granier, C.; Darras, S.; van Der Gon, H.D.; Jana, D.; Elguindi, N.; Bo, G.; Michael, G.; Marc, G.; Jalkanen, J.-P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions (April 2019 Version); Copernicus Atmosphere Monitoring Service: Toulouse, France, 2019; Available online: https://hal.science/hal-02322431v2 (accessed on 18 April 2023).
- Crippa, M.; Guizzardi, D.; Butler, T.; Keating, T.; Wu, R.; Kaminski, J.; Kuenen, J.; Kurokawa, J.; Chatani, S.; Morikawa, T.; et al. HTAP_v3 emission mosaic: A global effort to tackle air quality issues by quantifying global anthropogenic air pollutant sources. Earth Syst. Sci. Data Discuss. 2023, 1–34. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef]
- Guevara, M.; Jorba, O.; Tena, C.; van der Gon, H.D.; Kuenen, J.; Elguindi, N.; Darras, S.; Granier, C.; García-Pando, C.P. Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): Global and European emission temporal profile maps for atmospheric chemistry modelling. Earth Syst. Sci. Data 2021, 13, 367–404. [Google Scholar] [CrossRef]
- Emissions of Atmospheric Compounds and Compilation of Ancillary Data—ECCAD. 2024. Available online: https://eccad.sedoo.fr/#/catalogue (accessed on 7 February 2024).
- Soulie, A.; Granier, C.; Darras, S.; Zilbermann, N.; Doumbia, T.; Guevara, M.; Jalkanen, J.P.; Keita, S.; Liousse, C.; Crippa, M.; et al. Global Anthropogenic Emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service Simulations of Air Quality Forecasts and Reanalyses. Earth Syst. Sci. Data 2023, 1–45. [Google Scholar] [CrossRef]
- Hosseini, B.; Stockie, J.M. Bayesian estimation of airborne fugitive emissions using a Gaussian plume model. Atmos. Environ. 2016, 141, 122–138. [Google Scholar] [CrossRef]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems. In Applied Mathematical Sciences; Springer: New York, NY, USA, 2006. [Google Scholar]
- Therneau, T.; Atkinson, B.; Ripley, B. Recursive Partitioning and Regression Trees. 2022. Available online: https://cran.r-project.org/package=rpart (accessed on 1 April 2023).
Station ID | Measurement Site | NH₃ [µg/m3] | Wind Velocity [m/s] | NH3 [t/Year] 2014 | NH3 [t/Year] 2017 | Agriculture [%] 2017 | Road Transport [%] 2017 | Other Sources [%] 2017 | NH3 [t/Year] 2019 |
---|---|---|---|---|---|---|---|---|---|
1_RB | Bertonico | 33.65 | 1.46 | 404.9 | 385.9 | 99.2 | 0.2 | 0.6 | 371.4 |
2_SU | Colico | 4.36 | 1.26 | 51.6 | 50.0 | 94.1 | 1.8 | 4.1 | 43.8 |
3_RB | Corte de Cortesi | 44.5 | 1.9 | 698.4 | 685.9 | 99.7 | 0.1 | 0.2 | 668.4 |
4_UB | Cremona—Via Fatebenefratelli | 8.78 | 1.12 | 205.0 | 162.1 | 95.9 | 2.6 | 1.5 | 137.2 |
5_RB | Cremona—Via Gerre Borghi | 15.41 | 1.16 | 256.3 | 222.9 | 98.0 | 1.2 | 0.8 | 208.6 |
6_UB | Milano—Pascal Città Studi | 9.08 | 1.82 | 26.5 | 28.2 | 47.6 | 41.3 | 11.1 | 34.2 |
7_RB | Moggio | 2.77 | 1.21 | 16.9 | 17.4 | 86.5 | 4.7 | 8.9 | 13.2 |
8_UB | Pavia—Via Folperti | 7.7 | 1.11 | 49.7 | 70.2 | 87.6 | 4.5 | 7.9 | 76.3 |
9_UI | Sannazzaro de’ Burgondi | 8.38 | 2.23 | 58.5 | 111.4 | 57.8 | 0.8 | 41.4 | 84.0 |
10_RB | Schivenoglia | 16.27 | 1.68 | 155.7 | 132.9 | 98.3 | 0.4 | 1.3 | 70.9 |
Station ID | 1_RB | 2_SU | 3_RB | 4_UB | 5_RB | ||||||
Trial n | R-squared | Error Rate | R-squared | Error Rate | R-squared | Error Rate | R-squared | Error Rate | R-squared | Error Rate | |
Train | 1 | 0.230 | 331.62 | 0.194 | 6.20 | 0.204 | 959.78 | 0.219 | 31.25 | 0.143 | 98.19 |
2 | 0.886 | 49.31 | 0.902 | 0.75 | 0.885 | 137.53 | 0.888 | 4.51 | 0.857 | 16.50 | |
3 | 0.961 | 16.98 | 0.969 | 0.24 | 0.961 | 46.73 | 0.963 | 1.50 | 0.950 | 5.73 | |
4 | 0.985 | 6.50 | 0.987 | 0.10 | 0.983 | 20.09 | 0.985 | 0.61 | 0.982 | 2.02 | |
5 | 0.993 | 3.00 | 0.994 | 0.05 | 0.991 | 10.27 | 0.993 | 0.30 | 0.992 | 0.95 | |
6 | 0.996 | 1.79 | 0.996 | 0.03 | 0.995 | 5.98 | 0.996 | 0.18 | 0.995 | 0.57 | |
7 | 0.997 | 1.21 | 0.997 | 0.02 | 0.997 | 3.90 | 0.997 | 0.12 | 0.996 | 0.42 | |
8 | 0.998 | 0.87 | 0.998 | 0.02 | 0.997 | 3.12 | 0.998 | 0.09 | 0.997 | 0.36 | |
9 | 0.998 | 0.77 | 0.998 | 0.02 | 0.998 | 2.53 | 0.998 | 0.08 | 0.998 | 0.28 | |
Test | 1 | 0.229 | 342.87 | 0.201 | 6.12 | 0.202 | 950.34 | 0.224 | 31.47 | 0.143 | 96.61 |
2 | 0.883 | 51.81 | 0.900 | 0.77 | 0.888 | 134.67 | 0.891 | 4.40 | 0.858 | 15.78 | |
3 | 0.961 | 17.29 | 0.969 | 0.23 | 0.960 | 49.33 | 0.963 | 1.50 | 0.954 | 5.08 | |
4 | 0.984 | 6.97 | 0.987 | 0.10 | 0.984 | 18.65 | 0.985 | 0.59 | 0.983 | 1.93 | |
5 | 0.993 | 3.15 | 0.993 | 0.05 | 0.991 | 10.44 | 0.993 | 0.29 | 0.992 | 0.94 | |
6 | 0.996 | 1.69 | 0.996 | 0.03 | 0.995 | 6.28 | 0.996 | 0.17 | 0.995 | 0.59 | |
7 | 0.998 | 1.09 | 0.997 | 0.02 | 0.997 | 4.25 | 0.997 | 0.12 | 0.996 | 0.44 | |
8 | 0.998 | 0.92 | 0.998 | 0.02 | 0.998 | 3.02 | 0.998 | 0.08 | 0.997 | 0.31 | |
9 | 0.999 | 0.61 | 0.998 | 0.01 | 0.998 | 2.68 | 0.998 | 0.07 | 0.997 | 0.40 | |
Station ID | 6_UB | 7_RB | 8_UB | 9_UI | 10_RB | ||||||
Trial n | R-squared | Error rate | R-squared | Error rate | R-squared | Error rate | R-squared | Error rate | R-squared | Error rate | |
Train | 1 | 0.161 | 18.69 | 0.286 | 6.05 | 0.2545 | 21.588 | 0.1653 | 21.253 | 0.1793 | 70.994 |
2 | 0.907 | 2.06 | 0.914 | 0.72 | 0.8998 | 2.8897 | 0.8862 | 2.9025 | 0.8895 | 9.5155 | |
3 | 0.971 | 0.64 | 0.967 | 0.27 | 0.9677 | 0.9373 | 0.9646 | 0.9051 | 0.9673 | 2.8177 | |
4 | 0.990 | 0.23 | 0.985 | 0.13 | 0.9866 | 0.3831 | 0.9863 | 0.351 | 0.9879 | 1.033 | |
5 | 0.995 | 0.11 | 0.992 | 0.07 | 0.9933 | 0.1942 | 0.994 | 0.1539 | 0.9939 | 0.5218 | |
6 | 0.997 | 0.07 | 0.995 | 0.04 | 0.9957 | 0.1232 | 0.9968 | 0.0827 | 0.9962 | 0.3319 | |
7 | 0.998 | 0.05 | 0.996 | 0.03 | 0.9969 | 0.0883 | 0.9979 | 0.055 | 0.9972 | 0.2448 | |
8 | 0.998 | 0.03 | 0.997 | 0.02 | 0.9974 | 0.0734 | 0.9984 | 0.0401 | 0.9976 | 0.2082 | |
9 | 0.999 | 0.03 | 0.998 | 0.02 | 0.9978 | 0.0621 | 0.9988 | 0.0317 | 0.9978 | 0.1859 | |
Test | 1 | 0.159 | 18.45 | 0.287 | 5.90 | 0.2549 | 21.308 | 0.1581 | 21.741 | 0.1906 | 68.923 |
2 | 0.905 | 2.10 | 0.912 | 0.74 | 0.9 | 2.8846 | 0.8891 | 2.8536 | 0.8941 | 9.1244 | |
3 | 0.973 | 0.60 | 0.967 | 0.28 | 0.9665 | 0.9531 | 0.9654 | 0.886 | 0.9675 | 2.7895 | |
4 | 0.989 | 0.24 | 0.985 | 0.12 | 0.9861 | 0.4072 | 0.9876 | 0.3139 | 0.988 | 1.0534 | |
5 | 0.995 | 0.11 | 0.992 | 0.07 | 0.9933 | 0.1923 | 0.9941 | 0.1502 | 0.9942 | 0.4999 | |
6 | 0.997 | 0.06 | 0.995 | 0.04 | 0.996 | 0.1144 | 0.9966 | 0.0867 | 0.9965 | 0.2949 | |
7 | 0.998 | 0.04 | 0.996 | 0.03 | 0.997 | 0.0871 | 0.998 | 0.0512 | 0.9972 | 0.2417 | |
8 | 0.998 | 0.04 | 0.997 | 0.02 | 0.9977 | 0.0679 | 0.9986 | 0.0344 | 0.9977 | 0.2012 | |
9 | 0.999 | 0.03 | 0.998 | 0.02 | 0.9976 | 0.0713 | 0.9988 | 0.0303 | 0.9976 | 0.2131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marongiu, A.; Collalto, A.G.; Distefano, G.G.; Angelino, E. Application of Machine Learning to Estimate Ammonia Atmospheric Emissions and Concentrations. Air 2024, 2, 38-60. https://doi.org/10.3390/air2010003
Marongiu A, Collalto AG, Distefano GG, Angelino E. Application of Machine Learning to Estimate Ammonia Atmospheric Emissions and Concentrations. Air. 2024; 2(1):38-60. https://doi.org/10.3390/air2010003
Chicago/Turabian StyleMarongiu, Alessandro, Anna Gilia Collalto, Gabriele Giuseppe Distefano, and Elisabetta Angelino. 2024. "Application of Machine Learning to Estimate Ammonia Atmospheric Emissions and Concentrations" Air 2, no. 1: 38-60. https://doi.org/10.3390/air2010003
APA StyleMarongiu, A., Collalto, A. G., Distefano, G. G., & Angelino, E. (2024). Application of Machine Learning to Estimate Ammonia Atmospheric Emissions and Concentrations. Air, 2(1), 38-60. https://doi.org/10.3390/air2010003