Scrubber Filter in the Phosphate Fertilizer Factory Reduces Fluorine Emission and Accumulation in Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region Characterization
2.2. Sample Collecting
2.3. Data Analysis
3. Results
3.1. F in Leaves and Soil
3.2. Corn Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, H.; Dong, Y.; Li, Y.; Li, D.; Peng, C.; Zhang, Z.; Wan, X. Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves. Acta Physiol. Plant 2016, 38, 144. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Blum, W.E.H. Effects of fluorine deposition on the chemistry of acid luvisols. Int. J. Environ. Anal. Chem. 1992, 46, 223–231. [Google Scholar] [CrossRef]
- Rizzu, M.; Tanda, A.; Cappai, C.; Roggero, P.P.; Seddaiu, G. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Sci. Total Environ. 2021, 787, 147650. [Google Scholar] [CrossRef]
- Petersen, P.E.; Lennon, M.A. Effective use of fluorides for the prevention of dental caries in the 21st century: The WHO approach. Community Dent. Oral Epidemiol. 2004, 32, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Cronin, S.J.; Manoharan, V.; Hedley, M.J.; Loganathan, P. Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. N. Z. J. Agric. Res. 2000, 43, 295–321. [Google Scholar] [CrossRef]
- Gadi, B.R.; Pooja, V.; Ram, A. Influence of NaF on seed germination, membrane stability and some biochemical content in Vigna seedlings. J. Chem. Biol. Phys. Sci. 2012, 2, 1371–1378. [Google Scholar]
- Vithanage, M.; Bhattacharya, P. Fluoride in the environment: Sources, distribution and defluoridation. Environ. Chem. Lett. 2015, 13, 131–147. [Google Scholar] [CrossRef]
- World Health Organization. Fluoride in Drinking-Water: Background Document forDevelopment of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004; pp. 1–5. [Google Scholar]
- Santos, H.J.M. Flúor: Elemento potencialmente tóxico para plantas, animais e seres humanos. Rev. Educ. 2013, 10, 78–92. [Google Scholar]
- Amaral, F.C.S. Efeito do Flúor Sobre o Alumínio e o Fósforo em um Podzólico Vermelho-Amarelo e sua Acumulação em Algumas Espécies Vegetais. Ph.D. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil, 1997. [Google Scholar]
- Zavaschi, E.; De-Almeida, R.F.; Faria, L.A.; Otto, R.; Vitti, A.C.; Vitti, G.C. Application of superphosphate complexed with humic acid in sugarcane production. Rev. Cienc. Agron. 2020, 51, 1–8. [Google Scholar] [CrossRef]
- Zavaschi, E.; Faria, L.A.; Ferraz-Almeida, R.; Nascimento, C.A.C.; Pavinato, P.S.; Otto, R.; Vitti, A.C.; Vitti, G.C. Dynamic of P Flux in Tropical Acid Soils Fertilized with Humic Acid-Complexed Phosphate. J. Soil Sci. Plant Nutr. 2020, 20, 1937–1948. [Google Scholar] [CrossRef]
- Khabarov, N.; Obersteiner, M. Global Phosphorus Fertilizer Market and National Policies: A Case Study Revisiting the 2008 Price Peak. Front. Nutr. 2017, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Bhardawaj, N. Bioaccumulation of fluoride in different plants parts of Hordeum vulgare (Barley) var. RD-2683 form irrigation water. Fluoride 2010, 43, 57–60. [Google Scholar]
- Wendling, B.; Jucksch, I.; Mendonca, E.S.; Almeida, R.F.; Alvarenga, R.C. Simulação dos estoques de Carbono e Nitrogênio pelo Modelo Century em Latossolos, no Cerrado Brasileiro. Rev. Ciênc. Agron. 2014, 45, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.F.; Machado, H.A.; Martins, F.P.; Queiroz, I.D.S.; Teixeira, W.G.; Mikhael, J.E.R.; Borges, E.N. Correlação do tamanho e da distribuição dos agregados em Latossolos amarelo da região do Triângulo Mineiro com diferentes ambientes. Biosci. J. 2014, 30, 1325–1334. [Google Scholar]
- Mirlean, N.; Casartelli, M.R.; Garcia, M.R.D. Propagação da poluição atmosférica por flúor nas águas subterrâneas e solos de regiões próximas às indústrias de fertilizantes (Rio Grande, RS). Quim. Nova 2022, 25, 191–195. [Google Scholar] [CrossRef]
- Bhat, N.; Jain, S.; Asawa, K.; Tak, M.; Shinde, K.; Singh, A.; Gandhi, N.; Gupta, V.V. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. J. Clin. Diagn. Res. 2015, 9, ZC63–ZC66. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.S.; Dhakaand, K.P.; Singh, A. Effect of fluoride toxicity on the growth and yield of wheat (Triticum aestivum L.). Int. J. Forest. Crop Improv. 2013, 4, 59–62. [Google Scholar]
- Choudhary, S.; Rani, M.; Devika, O.S.; Patra, A.; Singh, R.K.; Prasad, S.K.; Devika. Impact of fluoride on agriculture: A review on it’s sources. toxicity in plants and mitigation strategies. Int. J. Chem. Stud. 2019, 7, 1675–1680. [Google Scholar]
- Sant’Anna-Santos, B.F.; Azevedo, A.A. Toxicidade e acúmulo de flúor em hortaliças nas adjacências de uma fábrica de alumínio. Acta Bot. Bras. 2010, 24, 952–963. [Google Scholar] [CrossRef]
- Poli, M.C. Emissões de Flúor nas Indústrias de Pisos Cerâmicos dos Municípios de Cordeirópolis e Santa Gertrudes, Situação e Recomendações; Faculdade de Engenharia Mecânica, UNICAMP: Campinas, Brazil, 2002. [Google Scholar]
- Silva, L.C.; Azevedo, A.A.; Da Silva, E.A.M.; Oliva, M.A. Flúor em chuva simulada: Sintomatologia e efeitos sobre a estrutura foliar e o crescimento de plantas arbóreas. Braz. J. Bot. 2000, 23, 385–393. [Google Scholar] [CrossRef]
- Panda, D. Fluoride toxicity stress: Physiological and biochemical consequences on plants. Int. J. Biores. Environ. Agric. Sci. 2015, 1, 70–84. [Google Scholar]
- Campos, N.V.; Azevedo, A.A.; Sant’anna-Santos, B.F. Acúmulo e efeitos fitotóxicos do flúor em folhas de boldo-gambá e capim-cidreira utilizadas para chás. Pesq. Agropec. Bras. 2010, 45, 646–653. [Google Scholar] [CrossRef]
- Andrade, L.F.; Ferraz-Almeida, R. Perfil dos produtores da agricultura familiar e uso dos critérios de Environmental, Social and Governance [ESG] na Região Baixo Sul, Bahia. Rev. Ext. Cid. 2022, 10, 5–23. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R.; da Mota, R.P. Routes of soil uses and conversions with the main crops in brazilian Cerrado: A scenario from 2000 to 2020. Land 2021, 10, 1135. [Google Scholar] [CrossRef]
- Cantarella, H.; Quaggio, J.A.; Mattos, D.; Boaretto, R.M.; Van Raij, B. Boletim 100: Recomendações de Adubação e Calagem para o Estado de São Paulo; Instituto Agronômico de Campinas: Campinas, São Paulo, Brazil, 2022; p. 489. [Google Scholar]
- Jacobson, J.S.; Weinsten, L.H.; Mccune, D.C.; Hitchcock, A.E. The accumulation of fluorine by plants. J. Air Pollut. Control. Assoc. 1966, 16, 412–417. [Google Scholar] [CrossRef]
- Sokolova, L.G.; Zorina, S.Y.; Belousova, E.N. Zonal cultivars of field crops as a reserve for the phytoremediation of fluorides polluted soils. Int. J. Phytoremediat. 2019, 21, 577–582. [Google Scholar] [CrossRef]
- Divan, A.M., Jr.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Effects of fluoride emissions on two tropical grasses: Chloris gayana and Panicum maximum, cv. Colonião. Ecotoxicol. Environ. Saf. 2022, 67, 247–253. [Google Scholar] [CrossRef]
- Brewer, R.F.; Guillemet, F.B.; Shutherland, F.H. The effects of atmospheric fluiride on gladiolus growth, flowering and corn production. Alexandria 1965, 88, 634–644. [Google Scholar]
- Adamek, E.; Pawłowska-Góral, K.; Bober, K. In vitro and in vivo effects of fluoride ions on enzyme activity. Ann Acad Med Stetin. 2005, 51, 69–85. [Google Scholar]
- Fortes, C.; Duarte, A.P.; Matsuoka, S.; Hoffmann, H.P.; Lavorentti, A.N. Trabalho sobre Toxicidade de flúor em cultivares de milho em área próxima a uma indústria cerâmica. Bragantia 2003, 62, 275–281. [Google Scholar] [CrossRef]
- Pelc, J.; Śnioszek, M.; Wróbel, J.; Telesiński, A. Effect of Fluoride on Germination, Early Growth and Antioxidant Enzymes Activity of Three Winter Wheat (Triticum aestivum L.) Cultivars. Appl. Sci. 2020, 10, 6971. [Google Scholar] [CrossRef]
- Peixoto, P.H.P.; Pimenta, D.S.; Antunes, F. Efeitos do flúor em folhas de plantas aquáticas de Salvinia auriculata. Pesq. Agropec. Bras. 2005, 40, 727–734. [Google Scholar] [CrossRef]
- Pushnik, J.C.; Miller, G.W. The influences of elevated environmental fluoride on the physiology and metabolism of higher plants. Fluoride 1990, 23, 5–19. [Google Scholar]
- Mackowiak, P.R.; Grossl, B.G. Bugbee Biogeochemistry of fluoride in a plant-solution system. J. Environ. Qual. 2003, 32, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Camarena-Rangel, N.; Rojas-Velázquez, Á.N.; del Socorro Santos-Díaz, M. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.). Chemosphere 2015, 136, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Nan, Z.; Zang, F.; Sun, H.; Zhang, Q.; Huang, W.; Bao, L. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. Sci. Total Environ. 2019, 663, 307–314. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.; Chen, L.; Yuan, X.; Liao, Q.; Ji, J. The transfer of fluorine in the soil-wheat system and the principal source of fluorine in wheat under actual field conditions. Field Crop Res. 2012, 137, 163–169. [Google Scholar] [CrossRef]
- Martins, F.P.; De-Almeida, R.F.; Mikhael, J.E.R.; Machado, H.A.; Queiroz, I.D.S.; Teixeira, W.G.; Borges, E.N. Porosidade e Carbono orgânico em Latossolo com diferentes usos e manejos no Cerrado Mineiro. Rev. Agrogeoambient. 2015, 7, 81–90. [Google Scholar]
- Ferraz-Almeida, R. How does organic carbon operate in the pore distribution of fine-textured soils. Rev. Bras. Eng. Agric. Ambient. 2022, 26, 743–746. [Google Scholar] [CrossRef]
- Almeida, R.F.; Joseph, E.R.M.; Franco, F.O.; Santana, L.M.F.; Wendling, B. Measuring the labile and recalcitrant pools of carbon and nitrogen in forested and agricultural soils: A study under tropical conditions. Forests 2019, 10, 544. [Google Scholar] [CrossRef]
- Assumpção, D.S.; Uliana, J.V.T.; Castro, T.A.M.G.; Beruski, G.C.; Caldana, C.R.G. Fluoride issued by ceramic industries reduces corn yield in Cesário Lange SP. Braz. J. Develop. 2020, 6, 28703–28713. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R.; Albuquerque, C.J.B.; Camargo, R.; Lemes, E.M.; Soares de Faria, R.; Quintão Lana, R.M. Sorghum–grass intercropping systems under varying planting densities in a semi-arid region: Focusing on soil carbon and grain yield in the conservation systems. Agriculture 2022, 12, 1762. [Google Scholar] [CrossRef]
- CONAB—Companhia Nacional de Abastecimento. Série Histórica de Produção de Milho no Brasil. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/910-Milho (accessed on 20 November 2022).
- Faria, I.K.P.; Vieira, J.L.V.; Tenelli, S.; Almeida, R.E.M.; Campos, L.J.M.; Costa, R.V.; Zavaschi, E.; Almeida, R.F.; Carneiro, L.M.E.S.; Otto, R. Optimal plant density and nitrogen rates for improving off-season corn yields in Brazil. Sci. Agric. 2019, 76, 344–352. [Google Scholar] [CrossRef]
- Altarugio, L.M.; Savieto, J.; Machado, B.A.; Migliavacca, R.A.; Almeida, R.F.; Zavaschi, E.; Almeida, R.F.; Carneiro, L.M.E.S.; Vitti, G.C.; Otto, R. Differences of optimal management practices for corn cultivated during summer and fall in the tropics. Commun. Soil Sci. Plant Anal. 2018, 50, 1–12. [Google Scholar]
- Bacilieri, F.S.; Oliveira, R.C.; Ferraz-Almeida, R.; Magela, M.L.M.; Lana, R.M.Q. Testing foliar biofertilizer based on natural fungal extract andnutrients on corn yield. J. Plant Nutr. 2023, 46, 1–9. [Google Scholar]
Farms | Corn Yield |
---|---|
t ha−1 | |
Farm 1 | 5.7 ± 3.2 A |
Farm 2 | 5.0 ± 0.1 A |
Farm 3 | 2.6 ± 0.5 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.J.; Ferraz-Almeida, R. Scrubber Filter in the Phosphate Fertilizer Factory Reduces Fluorine Emission and Accumulation in Corn. Air 2023, 1, 69-79. https://doi.org/10.3390/air1010005
Silva GJ, Ferraz-Almeida R. Scrubber Filter in the Phosphate Fertilizer Factory Reduces Fluorine Emission and Accumulation in Corn. Air. 2023; 1(1):69-79. https://doi.org/10.3390/air1010005
Chicago/Turabian StyleSilva, Gleidson Junior, and Risely Ferraz-Almeida. 2023. "Scrubber Filter in the Phosphate Fertilizer Factory Reduces Fluorine Emission and Accumulation in Corn" Air 1, no. 1: 69-79. https://doi.org/10.3390/air1010005