Assessment of Alternative Warm-Season Annual Grasses for Forage Production in Water-Limited Environments
Abstract
1. Introduction
2. Materials and Methods
3. Results & Discussion
3.1. Plant Morphology—Leaf Area, Leaf Count, Plant Height, & Biomass
3.2. Nutritive Value—Nitrogen and Fibrous Components
3.3. Digestibility—IVTD & NDFD
3.4. Water Use Efficiency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caretta, A.M.M.A.; Arfanuzzaman, R.A.B.M.; Morgan, S.M.R.; Kumar, M. Water. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022. [Google Scholar]
- Bhattarai, B.; Singh, S.; West, C.P.; Saini, R. Forage Potential of Pearl Millet and Forage Sorghum Alternatives to Corn under the Water-Limiting Conditions of the Texas High Plains: A Review. Crop Forage Turfgrass Manag. 2019, 5, 190058. [Google Scholar] [CrossRef]
- Zilverberg, C.J.; Philip Brown, C.; Green, P.; Galyean, M.L.; Allen, V.G. Integrated Crop-Livestock Systems in the Texas High Plains: Productivity and Water Use. Agron. J. 2014, 106, 831–843. [Google Scholar] [CrossRef]
- Cardozo, N.P.; Bordonal, R.D.O.; La Scala, N. Greenhouse Gas Emission Estimate in Sugarcane Irrigation in Brazil: Is It Possible to Reduce It, and Still Increase Crop Yield? J. Clean. Prod. 2016, 112, 3988–3997. [Google Scholar] [CrossRef]
- Li, C.; Li, S. Energy Budget and Carbon Footprint in a Wheat and Maize System under Ridge Furrow Strategy in Dry Semi Humid Areas. Sci. Rep. 2021, 11, 9367. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl Millet, and Corn Under Water Limiting Condition. Agric. Water Manag. 2020, 238, 106206. [Google Scholar] [CrossRef]
- Cruz, A.; Saini, D.K.; Aviles, D.; Norris, A.; Jagadish, S.V.K. Sorghum and Pearl Millet as Sustainable Alternative Forage Options for Water Limited Environments: Opportunities and Challenges. Adv. Agron. 2025, 189, 137–192. [Google Scholar] [CrossRef]
- Farhadi, A.; Paknejad, F.; Golzardi, F.; Ilkaee, M.N.; Aghayari, F. Effects of Limited Irrigation and Nitrogen Rate on the Herbage Yield, Water Productivity, and Nutritive Value of Sorghum Silage. Commun. Soil. Sci. Plant Anal. 2022, 53, 576–589. [Google Scholar] [CrossRef]
- Getachew, G.; Putnam, D.H.; De Ben, C.M.; De Peters, E.J. Potential of Sorghum as an Alternative to Corn Forage. Am. J. Plant Sci. 2016, 7, 1106–1121. [Google Scholar] [CrossRef]
- Huang, Z.; Dunkerley, D.; López-Vicente, M.; Wu, G.L. Trade-Offs of Dryland Forage Production and Soil Water Consumption in a Semi-Arid Area. Agric. Water Manag. 2020, 241, 106349. [Google Scholar] [CrossRef]
- Nematpour, A.; Eshghizadeh, H.R.; Zahedi, M. Comparing the Corn, Millet and Sorghum as Silage Crops Under Different Irrigation Regime and Nitrogen Fertilizer Levels. Int. J. Plant Prod. 2021, 15, 351–361. [Google Scholar] [CrossRef]
- National Academies of Sciences and Medicine, E. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-27335-0. [Google Scholar]
- West Texas Mesonet Climate Data Online. Available online: https://www.mesonet.ttu.edu/precip-hst (accessed on 12 May 2024).
- National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov (accessed on 12 May 2024).
- City of Lubbock. 2024 Water Quality Report; City of Lubbock Water Utilities Department: Lubbock, TX, USA, 2024; Available online: https://ci.lubbock.tx.us/departments/water-utilities-department/resources-data (accessed on 25 July 2025).
- McColl, K.A. Practical and Theoretical Benefits of an Alternative to the Penman-Monteith Evapotranspiration Equation. Water Resour. Res. 2020, 56, e2020WR027106. [Google Scholar] [CrossRef]
- Stichler, C.; Fipps, G. Irrigating Sorghum in South and South Central Texas; AGEN-PU-215; Texas A&M AgriLife Extension Service: College Station, TX, USA, 2003. [Google Scholar]
- Texas A&M AgriLife. TexasET Network: Evapotranspiration and Irrigation Management. Texas A&M AgriLife Research and Extension Center. Available online: https://texaset.tamu.edu (accessed on 25 July 2025).
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Van Soest, P.; Robertson, J. Systems of Analysis for Evaluating Fibrous Feeds. In Standardization of Analytical Methodology for Feeds; IDRC: Ottawa, ON, Canada, 1979. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A Two-Stage Technique for The In Vitro Digestion of Forage Crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Boyer, J.S. Advances in Drought Tolerance in Plants. Adv. Agron. 1996, 56, 187–218. [Google Scholar] [CrossRef]
- Berdahl, J.D.; Rasmusson, D.C.; Moss, D.N. Effects of Leaf Area on Photosynthetic Rate, Light Penetration, and Grain Yield in Barley1. Crop Sci. 1972, 12, 177–180. [Google Scholar] [CrossRef]
- Milla, R.; Reich, P.B. The Scaling of Leaf Area and Mass: The Cost of Light Interception Increases with Leaf Size. Proc. R. Soc. B Biol. Sci. 2007, 274, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- McCree, K.J.; Davis, S.D. Effect of Water Stress and Temperature on Leaf Size and on Size and Number of Epidermal Cells in Grain Sorghum1. Crop Sci. 1974, 14, 751–755. [Google Scholar] [CrossRef]
- Chinnamuthu, C.R.; Kailasam, C.; Sankaran, S. Sorghum Leaf Area as a Function of Sixth Leaf Area. J. Agron. Crop Sci. 1989, 162, 300–304. [Google Scholar] [CrossRef]
- Lauri, P.-É.; Marceron, A.; Normand, F.; Dambreville, A.; Regnard, J.-L. Soil Water Deficit Decreases Xylem Conductance Efficiency Relative to Leaf Area and Mass in the Apple. J. Plant Hydraul. 2014, 1, e003. [Google Scholar] [CrossRef]
- Tardieu, F.; Allakhverdiev, S.I. Plant Response to Environmental Conditions: Assessing Potential Production, Water Demand, and Negative Effects of Water Deficit. Front. Physiol. 2013, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Darapuneni, M.K.; Angadi, S.V.; Umesh, M.R.; Contreras-Govea, F.E.; Annadurai, K.; Begna, S.H.; Marsalis, M.A.; Cole, N.A.; Gowda, P.H.; Hagevoort, G.R.; et al. Canopy Development of Annual Legumes and Forage Sorghum Intercrops and Its Relation to Dry Matter Accumulation. Agron. J. 2018, 110, 939–949. [Google Scholar] [CrossRef]
- Kirchner, J.H.; Robaina, A.D.; Peiter, M.X.; Mezzomo, W.; Torres, R.R.; Girardi, L.B.; Pimenta, B.D.; Rosso, R.B.; Pereira, A.C.; Loregian, M.V. Variation of Leaf Area Index of the Forage Sorghum under Different Irrigation Depths in Dynamic of Cuts. Afr. J. Agric. Res. 2017, 12, 111–124. [Google Scholar] [CrossRef]
- Zwirtes, A.L.; Carlesso, R.; Petry, M.T.; Kunz, J.; Reimann, G.K. Productive Performance and Economic Return of Sorghum Cultivation Under Deficit Irrigation. Eng. Agrícola 2015, 35, 676–688. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Singh, S.K.; Kumar, A. Effect of Fertility on Growth Yield and Yield Attributes of Pearl Millet (Pennisetum glaucum L.) under Rainfed Condition. Int. J. Trop. Agric. 2014, 2, 89–93. [Google Scholar]
- Ali, S.A.M.; Bahar, A.H.; Adam, K.I.; Ali, S.A.M. Performance of Some Sorghum (Sorghum bicolor L. Moench) Varieties Under Rain-Fed Condition at Zalingei Area, Sudan (Growth, Yield, Pests and Diseases). Agric. Biol. Sci. J. 2015, 1, 162–166. [Google Scholar]
- Saberi, A.R.; Siti Aishah, H.; Halim, R.A.; Zaharah, A.R. Morphological Responses of Forage Sorghums to Salinity and Irrigation Frequency. Afr. J. Biotechnol. 2011, 10, 9647–9656. [Google Scholar] [CrossRef]
- Gomaa, M.A.; Rehab, I.F.; Salama, F.A.; Al-Deeb, A.S.M. Water-Stress in Relation to Maize (Zea mays L.) Grain Yield, Plant Height and Proline Content. J. Agric. Sci. 2017, 62, 311–317. [Google Scholar] [CrossRef]
- Schittenhelm, S.; Schroetter, S. Comparison of Drought Tolerance of Maize, Sweet Sorghum and Sorghum-Sudangrass Hybrids. J. Agron. Crop Sci. 2014, 200, 46–53. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Mohamed, A.; Raza, M.A.; Ngie, M.; Maitra, S.; Seleiman, M.F.; Wasonga, D.; Gitari, H.I. Optimizing Productivity of Buffel and Sudan Grasses Using Optimal Nitrogen Fertilizer Application under Arid Conditions. Agronomy 2023, 13, 2146. [Google Scholar] [CrossRef]
- Pupo, M.R.; Wallau, M.O.; Ferraretto, L.F. Effects of Season, Variety Type, and Trait on Dry Matter Yield, Nutrient Composition, and Predicted Intake and Milk Yield of Whole-Plant Sorghum Forage. J. Dairy. Sci. 2022, 105, 5776–5785. [Google Scholar] [CrossRef]
- Balasko, J.A.; Nelson, C.J. Grasses for Northern Areas. Forages Introd. Grassl. Agric. 2003, 1, 125–148. [Google Scholar]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry Matter Yield and Nutritive Value of Corn, Forage Sorghum, and BMR Forage Sorghum at Different Plant Populations and Nitrogen Rates. Field Crops Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- Bean, B.W.; Baumhardt, R.L.; McCollum, F.T.; McCuistion, K.C. Comparison of Sorghum Classes for Grain and Forage Yield and Forage Nutritive Value. Field Crops Res. 2013, 142, 20–26. [Google Scholar] [CrossRef]
- Beck, P.A.; Hutchison, S.; Gunter, S.A.; Losi, T.C.; Stewart, C.B.; Capps, P.K.; Phillips, J.M. Chemical Composition and in Situ Dry Matter and Fiber Disappearance of Sorghum × Sudangrass Hybrids. J. Anim. Sci. 2007, 85, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Gholami, H.; Khazaei, A.; Golzardi, F.; Amirsadeghi, M. Evaluation of forage yield and quality in the local and foreign cultivars, lines, and hybrids of forage sorghum [Sorghum bicolor (L.) Moench]. J. Anim. Sci. Res. 2023, 32, fa133–fa156. [Google Scholar] [CrossRef]
- Lyons, S.E.; Ketterings, Q.M.; Godwin, G.S.; Cherney, D.J.; Cherney, J.H.; Van Amburgh, M.E.; Meisinger, J.J.; Kilcer, T.F. Optimal Harvest Timing for Brown Midrib Forage Sorghum Yield, Nutritive Value, and Ration Performance. J. Dairy. Sci. 2019, 102, 7134–7149. [Google Scholar] [CrossRef]
- Arenhardt, E.G.; da Silva, J.A.G.; Gewehr, E.; Arenhardt, L.G.; Arenhardt, C.L.; Nonnenmacher, G. CG PICAÇO: A New Cultivar of Sudangrass with High Forage Performance and Seed Yield. Crop Breed. Appl. Biotechnol. 2015, 15, 51–55. [Google Scholar] [CrossRef]
- Abbasi, P.; Babazadeh, H.; Yargholi, B.; Bakhoda, H. Development of Forage Maize Yield–Water Functions by Applying Simultaneous Different Levels of Irrigation and Treated Municipal Wastewater. Irrig. Drain. 2023, 72, 119–137. [Google Scholar] [CrossRef]
- Farhadi, A.; Paknejad, F.; Golzardi, F.; Ilkaee, M.N.; Aghayari, F. Evaluation of Forage Yield and Quality, and Water Use Efficiency of Forage Sorghum (Sorghum bicolor L. Moench) in Response to Different Levels of Drought Stress and Nitrogen. Environ. Stress. Crop Sci. 2023, 15, 865–879. [Google Scholar] [CrossRef]
- Komainda, M.; Taube, F.; Kluß, C.; Herrmann, A. The Effects of Maize (Zea mays L.) Hybrid and Harvest Date on above- and Belowground Biomass Dynamics, Forage Yield and Quality—A Trade-off for Carbon Inputs? Eur. J. Agron. 2018, 92, 51–62. [Google Scholar] [CrossRef]
- Salama, H.S.A.; Shaalan, A.M.; Nasser, M.E.A. Forage Performance of Pearl Millet (Pennisetum glaucum [L.] R. Br.) in Arid Regions: Yield and Quality Assessment of New Genotypes on Different Sowing Dates. Chil. J. Agric. Res. 2020, 80, 572–584. [Google Scholar] [CrossRef]
- Leng, R.A. Factors Affecting the Utilization of ‘Poor-Quality’ Forages by Ruminants Particularly Under Tropical Conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef]
- Paterson, J.; Cohran, R.; Klopfenstein, T. Degradable and Undegradable Protein Response of Cattle Consuming Forage-Based Diets. In Proceedings of the Proc 3rd Grazing Livestock Nutrition Conference, Custer State Park, SD, USA, 18–19 July 1996; Volume 47, pp. 94–103. [Google Scholar]
- McCuistion, K.; Grigar, M.; Wester, D.B.; Rhoades, R.; Mathis, C.; Tedeschi, L. Can We Predict Forage Nutritive Value With Weather Parameters? Rangelands 2014, 36, 2–9. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. N Uptake and Distribution in Crops: An Agronomical and Ecophysiological Perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef]
- Dovale, J.C.; Delima, R.O.; Fritsche-Neto, R. Breeding for Nitrogen Use Efficiency. In Plant Breeding for Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9783642305535. [Google Scholar]
- Jančík, F.; Homolka, P.; Čermák, B.; Lád, F. Determination of Indigestible Neutral Detergent Fibre Contents of Grasses and Its Prediction from Chemical Composition. Czech J. Anim. Sci. 2008, 53, 128–135. [Google Scholar] [CrossRef]
- Rinne, M.; Nykänen, A. Timing of Primary Growth Harvest Affects the Yield and Nutritive Value of Timothy-Red Clover Mixtures. Agric. Food Sci. Finl. 2000, 9, 121–134. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Fritz, J.O.; Fick, W.H.; Cochran, R.C.; Shirley, J.E. In Situ Dry Matter, Nitrogen, and Fiber Degradation of Alfalfa, Red Clover, and Eastern Gamagrass at Four Maturities. J. Dairy. Sci. 1998, 81, 150–161. [Google Scholar] [CrossRef]
- Cone, J.W.; Van Gelder, A.H.; Soliman, I.A.; De Visser, H.; Van Vuuren, A.M. Different Techniques to Study Rumen Fermentation Characteristics of Maturing Grass and Grass Silage. J. Dairy. Sci. 1999, 82, 957–966. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.E.R.; Kirkland, R.M.; Ferris, C.P.; Steen, R.W.J.; Kilpatrick, D.J.; Gordon, F.J. The Effect of Stage of Perennial Ryegrass Maturity at Harvesting, Fermentation Characteristics and Concentrate Supplementation, on the Quality and Intake of Grass Silage by Beef Cattle. Grass Forage Sci. 2002, 57, 255–267. [Google Scholar] [CrossRef]
- Ferreira, G.; Martin, L.L.; Teets, C.L.; Corl, B.A.; Hines, S.L.; Shewmaker, G.E.; de Haro-Marti, M.E.; Chahine, M. Effect of Drought Stress on in Vitro Neutral Detergent Fiber Digestibility of Corn for Silage. Anim. Feed. Sci. Technol. 2021, 273, 114803. [Google Scholar] [CrossRef]
- Wilson, J.R. Effects of Water Stress on In Vitro Dry Matter Digestibility and Chemical Composition of Herbage of Tropical Pasture Species. Aust. J. Agric. Res. 1983, 34, 377–390. [Google Scholar] [CrossRef]
- Vinyard, J.R.; Hall, J.B.; Sprinkle, J.E.; Chibisa, G.E. Effects of Maturity at Harvest on the Nutritive Value and Ruminal Digestion of Eragrostis Tef (Cv. Moxie) When Fed to Beef Cattle. J. Anim. Sci. 2018, 96, 3420. [Google Scholar] [CrossRef] [PubMed]
- de Alencar, C.A.B.; Cóser, A.C.; de Oliveira, R.A.; Martins, C.E.; Figueiredo, J.L.A.; Leite, C.V. Neutral detergent fiber of six grasses under cutting management and subject to different irrigation depths. In Proceedings of the CIGR—International Conference of Agricultural Engineering, Iguassu Falls City, Brazil, 31 August–4 September 2008. [Google Scholar]
- Ademosum, A.A.; Baumgardt, B.R.; Scholl, J.M. Evaluation of a Sorghum-Sudangrass Hybrid at Varying Stages of Maturity on the Basis of Intake, Digestibility and Chemical Composition. J. Anim. Sci. 1968, 27, 818–823. [Google Scholar] [CrossRef]
- Oskey, M.; Velasquez, C.; Peña, O.M.; Andrae, J.; Bridges, W.; Ferreira, G.; Aguerre, M.J. Yield, Nutritional Composition, and Digestibility of Conventional and Brown Midrib (BMR) Pearl Millet as Affected by Planting and Harvesting Dates and Interseeded Cowpea. Animals 2023, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.; Huhtanen, P.; Collins, M. Perennial Grasses. Silage Sci. Technol. 2015, 42, 665–747. [Google Scholar] [CrossRef]
- Rostamza, M.; Chaichi, M.R.; Jahansouz, M.R.; Alimadadi, A. Forage Quality, Water Use and Nitrogen Utilization Efficiencies of Pearl Millet (Pennisetum americanum L.) Grown under Different Soil Moisture and Nitrogen Levels. Agric. Water Manag. 2011, 98, 1607–1614. [Google Scholar] [CrossRef]
- Singh, B.R.; Singh, D.P. Agronomic and Physiological Responses of Sorghum, Maize and Pearl Millet to Irrigation. Field Crops Res. 1995, 42, 57–67. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; Angadi, S.V.; Begna, S.; Saini, R.; Auld, D. Spring Safflower Water Use Patterns in Response to Preseason and In-Season Irrigation Applications. Agric. Water Manag. 2020, 228, 105876. [Google Scholar] [CrossRef]
- Miller, F.R.; Stroup, J.A. Growth and Management of Sorghums for Forage Production. In Proceedings of the Proceed National Alfalfa Symp, San Diego, CA, USA, 13–15 December 2004. [Google Scholar]
- de Almeida, A.M.; Coelho, R.D.; da Silva Barros, T.H.; de Oliveira Costa, J.; Quiloango-Chimarro, C.A.; Moreno-Pizani, M.A.; Farias-Ramírez, A.J. Water Productivity and Canopy Thermal Response of Pearl Millet Subjected to Different Irrigation Levels. Agric. Water Manag. 2022, 272, 107829. [Google Scholar] [CrossRef]
- Ren-shi, M.; Cong-ze, J.; Na, S.; Wei, G.; Yu-ying, S.; Xian-long, Y.; Ren-shi, M.; Cong-ze, J.; Na, S.; Wei, G.; et al. Effects of Water and Nitrogen Gradients on Growth and Water Use Efficiency of Forage Sweet Sorghum. J. Plant Nutr. Fertil. 2022, 28, 2334–2346. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Jones, R.M.; Read, J.C. Management of Forage Sorghum: Nitrogen, Plant Density and Irrigation Effects on Yield and Quality. Tex. J. Agric. Nat. Resour. 1996, 9, 61–78. [Google Scholar]
- Passioura, J.B. Roots and Drought Resistance. Agric. Water Manag. 1983, 12, 265–280. [Google Scholar] [CrossRef]
- Kaplan, M.; Kara, K.; Unlukara, A.; Kale, H.; Buyukkilic Beyzi, S.; Varol, I.S.; Kizilsimsek, M.; Kamalak, A. Water Deficit and Nitrogen Affects Yield and Feed Value of Sorghum Sudangrass Silage. Agric. Water Manag. 2019, 218, 30–36. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
Results | CL a | Interpretation | |
---|---|---|---|
pH | 8 | 5.8 | Mod. Alkaline |
Conductivity (µS cm−1) | 277 | na | none |
Nitrate-N (ppm) | 8 | na | Very Low |
Phosphorus (ppm) | 25 | 0 | Low |
Potassium (ppm) | 657 | 0 | Very High |
Calcium (ppm) | 4941 | 180 | High |
Magnesium (ppm) | 617 | 50 | Very High |
Sulfur (ppm) | 63 | 13 | Very High |
Sodium (ppm) | 366 | na | Low |
Species | Irrigation | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | FS | PF | PM | SS | SU | SEM | 40% | 80% | SEM | Species | Irrigation | S × I |
35 DAP | ||||||||||||
Leaf area, cm2 | 4.12 a | 4.60 a | 3.23 b | 3.85 ab | 4.08 a | 66.27 | 4.09 | 3.86 | 62.79 | 0.0314 | 0.3691 | 0.2444 |
Leaf number | 5.51 b | 5.43 b | 6.85 a | 5.35 b | 5.43 b | 0.21 | 5.66 | 5.76 | 0.18 | <0.0001 | 0.4409 | 0.1658 |
Plant height, cm | 83.47 b | 86.85 b | 54.68 d | 67.38 c | 106.33 a | 2.21 | 30.79 | 31.99 | 2.09 | <0.0001 | 0.1695 | 0.8042 |
Biomass, kg ha−1 | 4887.08 b | 5633.9 ab | 3301.07 c | 3460.03 c | 6529.92 a | 651.45 | 5043.72 | 4481.07 | 567.8 | <0.0001 | 0.1311 | 0.4518 |
49 DAP | ||||||||||||
Leaf area, cm2 | 3.62 b | 5.85 a | 3.36 b | 2.95 b | 2.78 b | 64.29 | 3.17 y | 4.26 x | 58.2 | <0.0001 | 0.0025 | 0.3245 |
Leaf number | 3.78 b | 5.28 a | 5.20 a | 3.28 b | 3.87 b | 0.50 | 3.92 y | 4.65 x | 0.04 | <0.0001 | 0.0041 | 0.3266 |
Plant height, cm | 102.87 b | 100.75 b | 69.21 c | 77.68 c | 130.81 a | 1.50 | 35.86 y | 39.93 x | 0.95 | <0.0001 | 0.0067 | 0.7347 |
Biomass, kg ha−1 | 9076.80 bc | 13,534 a | 7452.61 cd | 6674.70 d | 10,829 b | 1096.50 | 8512.73 y | 10,514 x | 966.08 | <0.0001 | 0.0013 | 0.6381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviles, D.F.; Cruz, A.; Cooper, C.E.; Crossland, W.L.; Jagadish, S.V.K.; Norris, A.B. Assessment of Alternative Warm-Season Annual Grasses for Forage Production in Water-Limited Environments. Grasses 2025, 4, 36. https://doi.org/10.3390/grasses4030036
Aviles DF, Cruz A, Cooper CE, Crossland WL, Jagadish SVK, Norris AB. Assessment of Alternative Warm-Season Annual Grasses for Forage Production in Water-Limited Environments. Grasses. 2025; 4(3):36. https://doi.org/10.3390/grasses4030036
Chicago/Turabian StyleAviles, Diego F., Alondra Cruz, Caitlyn E. Cooper, Whitney L. Crossland, S. V. Krishna Jagadish, and Aaron B. Norris. 2025. "Assessment of Alternative Warm-Season Annual Grasses for Forage Production in Water-Limited Environments" Grasses 4, no. 3: 36. https://doi.org/10.3390/grasses4030036
APA StyleAviles, D. F., Cruz, A., Cooper, C. E., Crossland, W. L., Jagadish, S. V. K., & Norris, A. B. (2025). Assessment of Alternative Warm-Season Annual Grasses for Forage Production in Water-Limited Environments. Grasses, 4(3), 36. https://doi.org/10.3390/grasses4030036