Invasive Pigweed (Amaranthus spinosus) as a Potential Source of Plant Secondary Metabolites to Mitigate Enteric Methane Emissions in Beef Cattle †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Experimental Animals
2.2. General Description of Experiments
2.2.1. Experiment 1—In Vitro Batch Culture of Morphological Parts of Pigweed
2.2.2. Experiment 2—Batch Culture of Extracts from Pigweed
2.3. Ruminal Collection and Batch Culture Incubations
2.3.1. Collection of Ruminal Fluid and Procession for Batch Culture
2.3.2. Gas Production and Methane Concentration
2.4. Laboratory Analysis
2.4.1. Volatile Fatty Acid Concentration
2.4.2. Ammonia (NH3-N) Concentration
2.4.3. In Vitro Organic Matter Digestibility
2.4.4. Preparation of Pigweed Ethanolic Extracts and Yield
2.4.5. Total Phenol and Flavonoid Content
2.4.6. DPPH Radical Scavenging Activity
2.5. Calculations and Statistical Analysis
3. Results
3.1. Ruminal Fermentation After the Addition of Morphological Parts from Pigweed
3.2. Solid–Liquid Extraction with Solvents
3.3. Ruminal Fermentation After the Addition of Extracts from Pigweed
4. Discussion
4.1. Chemical Composition Effects on Ruminal Fermentation
4.2. Effects on Ruminal Fermentation
4.3. Methane Reduction Potential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- (FAO)-UN. How to Feed the World in 2050; Food and Agricultural Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Drouillard, J.S. Current situation and future trends for beef production in the United States of America—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- (FAO) FaAOotUN. FAOSTAT; Food and Agricultural Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef]
- Rotz, C.A.; Isenberg, B.J.; Stackhouse-Lawson, K.R.; Pollak, E.J. A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems. J. Anim. Sci. 2013, 91, 5427–5437. [Google Scholar] [CrossRef] [PubMed]
- Rotz, C.A.; Asem-Hiablie, S.; Dillon, J.; Bonifacio, H. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas. J. Anim. Sci. 2015, 93, 2509–2519. [Google Scholar] [CrossRef]
- Place, S.E.; McCabe, C.J.; Mitloehner, F.M. Symposium review: Defining a pathway to climate neutrality for US dairy cattle production. J. Dairy Sci. 2022, 105, 8558–8568. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Wofsy, S.C.; Michalak, A.M.; Kort, E.A.; Andrews, A.E.; Biraud, S.C.; Dlugokencky, E.J.; Eluszkiewicz, J.; Fischer, M.L.; Janssens-Maenhout, G.; et al. Anthropogenic emissions of methane in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 20018–20022. [Google Scholar] [CrossRef]
- Smith, P.E.; Kelly, A.K.; Kenny, D.A.; Waters, S.M. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front. Vet. Sci. 2022, 9, 958340. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; Auldist, M.J.; Beauchemin, K.A.; McGinn, S.M.; Waghorn, G.C.; Eckard, R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 2009, 89, 241–251. [Google Scholar] [CrossRef]
- Chen, M.-S. Inducible direct plant defense against insect herbivores: A review. Insect Sci. 2008, 15, 101–114. [Google Scholar] [CrossRef]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural products as manipulators of rumen fermentation. Asian Australas. J. Anim. Sci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Chen, R.J.; Chung, T.Y.; Li, F.Y.; Lin, N.H.; Tzen, J.T. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacol. Sin. 2009, 30, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed. Sci. Technol. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Bradford, B.J. Plant flavonoids to improve productivity of ruminants–A review. Anim. Feed. Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Daehler, C.C. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 183–211. [Google Scholar] [CrossRef]
- Dantas-Queiroz, L.M.; Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Wallau, M.O.; Loures, D.R.S.; da Silva Santos, E.R.; Oduor, K.; Araujo Bernardini, M.; Novo, S.F.; Pereira Neto, J.; et al. Spiny Pigweed Encroachment Affects Animal and Herbage Performance. In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, Baltimore, MD, USA, 6–9 November 2022; Available online: https://scisoc.confex.com/scisoc/2022am/meetingapp.cgi/Paper/143947 (accessed on 17 September 2024).
- Sarker, U.; Oba, S. Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep. 2019, 9, 20413. [Google Scholar] [CrossRef]
- UF IFAS Extension University of Florida. How Weed Infestations in Pastures affect Cattle Performance?—Panhandle Agriculture; UF IFAS Extension University of Florida: Gainesville, FL, USA, 2021; Available online: https://nwdistrict.ifas.ufl.edu/phag/2021/08/06/how-weed-infestations-in-pastures-affect-cattle-performance/ (accessed on 17 September 2024).
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.; Binversie, E.; Fessenden, S.W.; Stern, M.D. Mitigation of in vitro hydrogen sulfide production using bismuth subsalicylate with and without monensin in beef feedlot diets. J. Anim. Sci. 2015, 93, 5346–5354. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Larrauri, M.; Asensio, C.M.; Martin, M.P.; Quiroga, P.R.; Grosso, N.R.; Nepote, V. Soymilk stability increase using polyphenols microcapsules. J. Food Sci. Technol. 2023, 61, 688–696. [Google Scholar] [CrossRef]
- Larrauri, M.; Zunino, M.P.; Zygadlo, J.A.; Grosso, N.R.; Nepote, V. Chemical characterization and antioxidant properties of fractions separated from extract of peanut skin derived from different industrial processes. Ind. Crops Prod. 2016, 94, 964–971. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M.A.; Aruoma, O.I. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem. 2002, 50, 5042–5047. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, P.R.; Riveros, C.G.; Zygadlo, J.A.; Grosso, N.R.; Nepote, V. Antioxidant activity of essential oil of oregano species from Argentina in relation to their chemical composition. Int. J. Food Sci. Technol. 2011, 46, 2648–2655. [Google Scholar] [CrossRef]
- Huff, S.; Rhodes, G.N., Jr. Pasture Weed Fact Sheet Spiny Amaranth. Real Life Solutions; UT Extension, Department of Agriculture, University of Tennessee: Knoxville, TN, USA, 2023; Available online: https://utia.tennessee.edu/publications/wp-content/uploads/sites/269/2023/10/W353.pdf (accessed on 17 September 2024).
- De Andrade Neto, A.Q.; de Almeida Souza, J.C.; de Mendonça, C.L.; Correa, F.R. Intoxicação natural por Amaranthus spinosus (Amaranthaceae) em bovinos no Agreste do Estado de Pernambuco. Rev. Bras. Zootec. 2016, 45, 1–7. [Google Scholar]
- Sun, X.; Cheng, L.; Jonker, A.; Munidasa, S.; Pacheco, D. A Review: Plant Carbohydrate Types—The Potential Impact on Ruminant Methane Emissions. Front. Vet. Sci. 2022, 9, 880115. [Google Scholar] [CrossRef]
- Hazarika, J.M.; Talukdar, B.; Choudhury, P.; Chakraborty, S.; Kumar, S.; Sarkar, S. Effect of Amaranthus spinosus (Meghnads) and Turmeric (Curcuma longa) on Chronic Arsenicosis in Cattle. J. Appl. Pharm. Sci. 2012, 2, 163–166. Available online: https://japsonline.com/abstract.php?article_id=480&sts=2 (accessed on 1 September 2024).
- Amabye, T.G. Evaluation of Physiochemical, Phytochemical, Antioxidant and Antimicrobial Screening Parameters of Amaranthus spinosus Leaves. Nat. Prod. Chem. Res. 2015, 4, 199. [Google Scholar] [CrossRef]
- Rodríguez-Prado, M.; Calsamiglia, S.; Ferret, A. Effects of fiber content and particle size of forage on the flow of microbial amino acids from continuous culture fermenters. J. Dairy Sci. 2004, 87, 1413–1424. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Teng, Z.; Liu, S.; Zhang, L.; Zhang, L.; Liu, S.; Fu, T.; Zhang, N.; Gao, T. Tea polyphenols inhibit methanogenesis and improve rumen epithelial transport in dairy cows. Animals 2024, 14, 2569. [Google Scholar] [CrossRef]
- Ban, C.; Tian, X.; Lu, Q.; Lounglawan, P.; Wen, G. Enhancing rumen fermentation and bacteria community in sika deer (Cervus nippon) through varying levels of dragon fruit peel polyphenolic extract: An in vitro study. Animals 2024, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Hassan, U.F.; Hassan, H.F.; Baba, H.; Lawan, D.A.; Hassan, H.F.; Ajiya, D.A.; Sambo, A.M.; Shehu, K.L.; Bello, U.; Muhammad, K.Y.; et al. Feed quality potentials of the aerial parts of Amaranthus spinosus. Chem. Res. J. 2020, 5, 29–36. [Google Scholar]
- Sutton, J.D. The fermentation of soluble carbohydrates in rumen contents of cows fed diets containing a large proportion of hay. Br. J. Nutr. 1968, 22, 689–712. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.F.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim. Feed. Sci. Technol. 2003, 104, 59–70. [Google Scholar] [CrossRef]
- Sinz, S.; Kunz, C.; Liesegang, A.; Braun, U.; Marquardt, S.; Soliva, C.R.; Kreuzer, M. In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech J. Anim. Sci. 2018, 63, 293–304. [Google Scholar] [CrossRef]
- Patra, A.K.; Min, B.R.; Saxena, J. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In Dietary Phytochemicals and Microbes; Patra, A., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2012, 44, 729–739. [Google Scholar] [CrossRef]
- Yu, S.; Zhao, Y.; Li, L.; Zhao, H.; Liu, M.; Jiang, L. Flavonoids from citrus peel display potential synergistic effects on inhibiting rumen methanogenesis and ammoniagenesis: A microbiome perspective. Environ. Sci. Pollut. Res. 2024, 31, 21208–21223. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2011, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Yineger, H.; Kelbessa, E.; Bekele, T.; Molla, E.L. Plants used in traditional management of human ailments at Bale Mountains National Park, South Eastern Ethiopia. J. Med. Plants Res. 2008, 2, 132–153. [Google Scholar]
- Patra, A.K.; Saxena, J. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Martinez, T.F.; McAllister, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef]
- Guglielmelli, A.; Calabro, S.; Primi, R.; Carone, F.; Cutrignelli, M.I.; Tudisco, R.; Danieli, P.P. In vitro fermentation patterns and methane production of sainfoin (Onobrychis viciifolia Scop.) hay with different condensed tannin contents. Grass Forage Sci. 2011, 66, 488–500. [Google Scholar] [CrossRef]
- Rufino-Moya, P.J.; Blanco, M.; Lobón, S.; Bertolín, J.R.; Armengol, R.; Joy, M. The inclusion of concentrate with quebracho is advisable in two forage-based diets of ewes according to the in vitro fermentation parameters. Animals 2019, 9, 451. [Google Scholar] [CrossRef]
- Bretas, I.L.; Dubeux, J.C.B., Jr.; Cruz, P.J.R.; Queiroz, L.M.D.; Ruiz-Moreno, M.; Knight, C.; Flynn, S.; Ingram, S.; Pereira Neto, J.D. Monitoring the Effect of Weed Encroachment on Cattle Behavior in Grazing Systems Using GPS Tracking Collars. Animals 2023, 13, 3353. [Google Scholar] [CrossRef]
- Hess, H.D.; Beuret, R.A.; Lötscher, M.; Hindrichsen, I.K.; Machmüller, A.; Carulla, J.E.; Lascano, C.E.; Kreuzer, M. Ruminal fermentation, methanogenesis, and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim. Sci. 2004, 79, 177–189. [Google Scholar] [CrossRef]
Item | Basal Diet | Leaves | Root | Seed | Stem | WHO |
---|---|---|---|---|---|---|
Proportion 1, % | - | 19.8 ± 6.9 | 13.49 ± 1.9 | 2.2 ± 1.6 | 59.6 ± 6.2 | - |
Item, g/kg of DM | ||||||
OM | 930.2 ± 2.7 | 847.8 ± 3.1 | 801.6 ± 2.4 | 925 ± 3.4 | 865.83 ± 2.8 | 806.99 ± 5.6 |
CP | 91.5 ± 7.5 | 294.1 ± 15.4 | 87.4 ± 7.2 | 295.8 ± 12.4 | 89.51 ± 6.1 | 202.82 ± 0.4 |
NDF | 727.0 ± 4.9 | 412.3 ± 2.0 | 624.7 ± 4.3 | 309.4 ± 2.1 | 675.9 ± 3.7 | 481.07 ± 13.6 |
ADF | 362.6 ± 1.9 | 167.1 ± 17.7 | 499.4 ± 2.7 | 111.9 ± 10.1 | 431.1 ± 14.1 | 288.07 ± 13.9 |
Inc (%) | Incubated Morphological Portion | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Leaf | Root | Seed | Stem | WHO | SEM | P | I | P × I | |
Acetate, mM | 0 | 45.65 | 45.59 | 45.62 | 45.42 | 45.36 | 0.87 | 0.05 | 0.13 | 0.02 |
2.5 | 46.53 | 39.36 | 46.55 | 47.50 | 47.61 | |||||
5 | 41.31 | 45.50 | 44.73 | 46.43 | 41.57 | |||||
10 | 45.63 | 42.71 | 45.00 | 45.92 | 37.77 | |||||
Propionate, mM | 0 | 24.11 | 24.08 | 24.10 | 24.00 | 23.97 | 0.48 | 0.25 | 0.03 | 0.06 |
2.5 | 26.33 | 22.19 | 26.16 | 26.02 | 26.66 | |||||
5 | 23.66 | 25.65 | 25.16 | 24.73 | 23.52 | |||||
10 | 24.71 | 23.26 | 24.51 | 24.64 | 21.41 | |||||
Butyrate, mM | 0 | 8.93 | 8.92 | 8.92 | 8.89 | 8.87 | 0.12 | <0.001 | 0.001 | 0.001 |
2.5 | 10.18 | 8.06 | 10.09 | 9.64 | 9.37 | |||||
5 | 9.30 | 8.84 | 9.42 | 8.97 | 8.27 | |||||
10 | 9.32 | 8.63 | 9.08 | 8.76 | 7.84 | |||||
BCVFA, mM | 0 | 4.57 | 4.57 | 4.57 | 4.55 | 4.54 | 0.09 | <0.001 | 0.03 | <0.001 |
2.5 | 5.48 | 4.00 | 5.27 | 4.89 | 4.70 | |||||
5 | 4.94 | 4.48 | 4.81 | 4.72 | 3.92 | |||||
10 | 4.82 | 4.65 | 4.79 | 4.78 | 3.81 | |||||
A:P | 0 | 1.88 | 1.88 | 1.88 | 1.87 | 1.87 | 0.02 | 0.27 | <0.001 | 0.92 |
2.5 | 1.73 | 1.74 | 1.74 | 1.79 | 1.75 | |||||
5 | 1.67 | 1.72 | 1.69 | 1.78 | 1.68 | |||||
10 | 1.67 | 1.66 | 1.65 | 1.68 | 1.60 | |||||
Total VFA, mM | 0 | 84.28 | 84.16 | 84.22 | 83.87 | 83.75 | 1.46 | 0.02 | 0.06 | 0.01 |
2.5 | 89.68 | 74.52 | 89.21 | 89.13 | 89.20 | |||||
5 | 80.43 | 85.37 | 85.11 | 85.88 | 78.06 | |||||
10 | 85.46 | 80.24 | 84.25 | 84.94 | 71.76 | |||||
Acetate, mol/100 mol | 0 | 53.79 | 53.71 | 53.75 | 53.53 | 53.45 | 0.22 | 0.02 | <0.001 | 0.10 |
2.5 | 50.57 | 51.47 | 50.85 | 51.95 | 52.06 | |||||
5 | 48.80 | 50.76 | 49.82 | 51.33 | 50.57 | |||||
10 | 48.07 | 47.88 | 47.97 | 48.64 | 47.36 | |||||
Propionate, mol/100 mol | 0 | 28.41 | 28.38 | 28.40 | 28.28 | 28.24 | 0.21 | 0.29 | <0.001 | 0.98 |
2.5 | 28.59 | 28.93 | 28.62 | 28.48 | 29.11 | |||||
5 | 27.91 | 28.28 | 28.23 | 27.39 | 28.62 | |||||
10 | 25.98 | 26.06 | 26.30 | 26.09 | 26.80 | |||||
Butyrate, mol/100 mol | 0 | 10.52 | 10.51 | 10.51 | 10.47 | 10.46 | 0.08 | <0.001 | <0.001 | 0.01 |
2.5 | 11.09 | 10.58 | 11.03 | 10.54 | 10.24 | |||||
5 | 10.99 | 9.86 | 10.53 | 9.94 | 10.08 | |||||
10 | 9.83 | 9.70 | 9.72 | 9.29 | 9.85 | |||||
BCVFA, mol/100 mol | 0 | 5.39 | 5.38 | 5.39 | 5.36 | 5.35 | 0.09 | 0.001 | 0.001 | 0.16 |
2.5 | 5.97 | 5.30 | 5.77 | 5.34 | 5.14 | |||||
5 | 5.86 | 5.05 | 5.32 | 5.22 | 4.77 | |||||
10 | 5.10 | 5.25 | 5.08 | 5.08 | 4.80 |
Variable | CON vs. Portion (p-Value) | Contrast (p-Value) | ||||||
---|---|---|---|---|---|---|---|---|
VFA, mM | Leaf | Root | Seeds | Stem | WHO | L | Q | C |
Acetate, mM | 0.81 | 0.10 | 0.26 | 0.03 | 0.06 | 0.03 | 0.80 | 0.36 |
propionate | 0.54 | 0.13 | 0.21 | 0.35 | 0.20 | 0.18 | 0.04 | 0.08 |
Butyrate | <0.01 | <0.01 | <0.01 | 0.66 | <0.01 | 0.02 | 0.01 | 0.10 |
BCVFA | <0.01 | 0.01 | 0.01 | 0.27 | <0.0001 | 0.41 | 0.21 | 0.10 |
A:P | 0.57 | 0.91 | 0.73 | 0.04 | 0.20 | <0.0001 | <0.01 | 0.17 |
Total VFA | 0.33 | 0.05 | 0.13 | 0.09 | 0.03 | 0.04 | 0.39 | 0.11 |
VFA, mol/100 mol | ||||||||
Acetate | 0.01 | 0.49 | 0.28 | 0.01 | 0.82 | <0.001 | <0.01 | 0.11 |
propionate | 0.49 | 0.76 | 0.87 | 0.12 | 0.08 | <0.001 | <0.001 | 0.47 |
Butyrate | <0.0001 | 0.07 | 0.02 | <0.01 | 0.07 | <0.001 | <0.01 | 0.09 |
BCVFA | <0.01 | 0.53 | 0.25 | 0.56 | <0.01 | <0.01 | 0.29 | 0.07 |
CH4 | ||||||||
mg/mL | 0.57 | 0.23 | 0.31 | 0.23 | 0.05 | 0.23 | 0.86 | 0.75 |
mM/g DMI | 0.03 | <0.01 | 0.49 | <0.01 | <0.01 | <0.01 | <0.01 | 0.39 |
mM/g OMF | 0.01 | <0.01 | 0.22 | <0.01 | <0.01 | <0.01 | <0.01 | 0.44 |
Fermentation | ||||||||
IVOMD | 0.51 | 0.28 | 0.31 | 0.67 | 0.07 | 0.23 | 0.43 | 0.73 |
OMF | 0.01 | <0.01 | 0.001 | <0.0001 | 0.02 | <0.001 | 0.27 | 0.24 |
pH | 0.31 | 0.7 | 0.86 | 0.02 | 0.28 | <0.001 | <0.001 | 0.07 |
Gas | 0.53 | 0.95 | 0.12 | 0.02 | 0.18 | 0.79 | 0.77 | 0.06 |
NH3-N | 0.01 | 0.04 | 0.33 | 0.01 | 0.15 | 0.07 | 0.69 | 0.07 |
Inc (%) | Incubated Morphological Portion | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Leaf | Root | Seed | Stem | WHO | SEM | P | I | P × I | |
CH4, mg/mL | 0 | 0.025 | 0.027 | 0.027 | 0.027 | 0.027 | 0.004 | 0.18 | 0.66 | 0.10 |
2.5 | 0.044 | 0.038 | 0.020 | 0.040 | 0.006 | |||||
5 | 0.034 | 0.032 | 0.020 | 0.030 | 0.033 | |||||
10 | 0.023 | 0.036 | 0.038 | 0.037 | 0.028 | |||||
CH4, mM/g DMI | 0 | 0.044 | 0.044 | 0.065 | 0.051 | 0.064 | 0.004 | <0.01 | <0.01 | <0.01 |
2.5 | 0.029 | 0.054 | 0.026 | 0.058 | 0.022 | |||||
5 | 0.036 | 0.052 | 0.024 | 0.042 | 0.019 | |||||
10 | 0.023 | 0.052 | 0.039 | 0.054 | 0.015 | |||||
CH4, mM/g OMF | 0 | 0.006 | 0.006 | 0.008 | 0.008 | 0.009 | 0.001 | <0.001 | <0.001 | <0.001 |
2.5 | 0.004 | 0.008 | 0.003 | 0.008 | 0.003 | |||||
5 | 0.005 | 0.007 | 0.003 | 0.005 | 0.002 | |||||
10 | 0.003 | 0.007 | 0.005 | 0.007 | 0.002 | |||||
IVOMD,% | 0 | 46.22 | 50.85 | 52.17 | 56.28 | 45.94 | 2.53 | 0.29 | 0.53 | 0.90 |
2.5 | 50.86 | 57.91 | 50.96 | 55.27 | 44.90 | |||||
5 | 54.48 | 57.62 | 58.21 | 53.48 | 48.87 | |||||
10 | 53.19 | 54.28 | 58.65 | 49.69 | 54.12 | |||||
pH | 0 | 6.32 | 6.28 | 6.18 | 6.08 | 6.24 | 0.02 | 0.24 | <0.001 | 0.15 |
2.5 | 6.37 | 6.36 | 6.41 | 6.36 | 6.34 | |||||
5 | 6.37 | 6.36 | 6.41 | 6.39 | 6.42 | |||||
10 | 6.37 | 6.38 | 6.33 | 6.35 | 6.42 | |||||
Gas | 0 | 9.43 | 9.38 | 9.23 | 9.09 | 9.33 | 0.22 | 0.14 | 0.29 | 0.72 |
2.5 | 9.80 | 9.14 | 9.52 | 10.03 | 9.56 | |||||
5 | 9.13 | 9.40 | 8.32 | 10.03 | 8.53 | |||||
10 | 9.46 | 9.37 | 9.06 | 10.01 | 8.85 | |||||
NH3-N | 0 | 9.42 | 9.37 | 9.33 | 9.28 | 9.23 | 0.21 | <0.001 | <0.001 | 0.22 |
2.5 | 7.39 | 7.82 | 8.81 | 8.76 | 8.52 | |||||
5 | 6.94 | 7.97 | 8.19 | 8.78 | 9.17 | |||||
10 | 8.16 | 7.37 | 8.53 | 9.24 | 8.29 |
Item. | Leaves | Root | Seed | Stem | WHO |
---|---|---|---|---|---|
DPPH EC50 (µg/mL) | 169.8 ± 1.1 d | 4164 ± 10.1 a | 133.1 ± 2.4 e | 1639 ± 3.8 b | 1262.50 ± 5.4 c |
Yield (mg/g) | 118.2 ± 18.3 | 135.6 ± 9.7 | 155.2 ± 19.3 | 117.78 ± 7.1 | 131.19 ± 7.9 |
Phenol mg GAE/g DM | 3.2 ± 0.1 a | 0.5 ± 0.02 c | 3.5 ± 0.1 a | 0.8 ± 0.03 c | 1.1 ± 0.04 b |
Flavonoid mg QE/g DM | 19.7 ± 3.5 a | 1.3 ± 0.04 c | 3.7 ± 0.4 b | 1.7 ± 0.2 c | 1.9 ± 0.3 c |
Incubated Extract | p-Value | Tend | |||||||
---|---|---|---|---|---|---|---|---|---|
WHO | Leaves | SEM | P | I | |||||
Inclusion (%) | |||||||||
Variable | CON | 2.5 | 5 | 2.5 | 5 | ||||
VFA, mM | |||||||||
Acetate | 60.2 | 63.6 | 56.27 | 61.05 | 62.54 | 5.12 | 0.63 | 0.85 | L |
Propionate | 15.7 | 16.2 | 15.7 | 15.89 | 19.32 | 0.96 | 0.04 | 0.78 | L |
Butyrate | 6.4 | 6.4 | 5.54 | 6.45 | 7.09 | 0.66 | 0.08 | 0.76 | L |
Total VFA | 85.3 | 88.88 | 79.69 | 85.96 | 91.51 | 6.9 | 0.51 | 0.73 | L |
A:P | 3.8 | 3.93 | 3.56 | 3.85 | 3.28 | 0.19 | 0.19 | 0.02 | L |
VFA, mol/100 mol | |||||||||
Acetate | 70.57 | 71.65 | 70.61 | 71.02 | 68.34 | 4.11 | 0.63 | 0.85 | L |
Propionate | 18.43 | 18.24 | 19.7 | 18.49 | 21.11 | 0.54 | 0.04 | 0.78 | L |
Butyrate | 7.5 | 7.25 | 6.95 | 7.5 | 7.75 | 0.71 | 0.08 | 0.76 | L |
CH4 | |||||||||
mM | 6.36 | 4.87 | 4.63 | 5.73 | 6.12 | 0.48 | 0.01 | 0.03 | L |
mmol/g OMF | 0.38 | 0.27 | 0.24 | 0.33 | 0.39 | 0.04 | 0.02 | 0.05 | L |
Fermentation | |||||||||
pH | 6.61 | 6.57 | 6.53 | 6.46 | 6.45 | 0.05 | 0.03 | 0.2 | L |
IVOMD, % | 49.34 | 53.23 | 53.06 | 51.41 | 52.69 | 1.08 | 0.42 | 0.68 | L |
NH3-N, mM | 7.18 | 8.03 | 8.7 | 7.44 | 8.2 | 0.62 | 0.01 | <0.01 | |
Gas, mL/g OMF | 67.41 | 56.49 | 47.07 | 58.69 | 62 | 8.52 | 0.01 | 0.01 | Q |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuervo, W.; Larrauri, M.; Gomez-Lopez, C.; DiLorenzo, N. Invasive Pigweed (Amaranthus spinosus) as a Potential Source of Plant Secondary Metabolites to Mitigate Enteric Methane Emissions in Beef Cattle. Grasses 2025, 4, 14. https://doi.org/10.3390/grasses4020014
Cuervo W, Larrauri M, Gomez-Lopez C, DiLorenzo N. Invasive Pigweed (Amaranthus spinosus) as a Potential Source of Plant Secondary Metabolites to Mitigate Enteric Methane Emissions in Beef Cattle. Grasses. 2025; 4(2):14. https://doi.org/10.3390/grasses4020014
Chicago/Turabian StyleCuervo, Wilmer, Mariana Larrauri, Camila Gomez-Lopez, and Nicolas DiLorenzo. 2025. "Invasive Pigweed (Amaranthus spinosus) as a Potential Source of Plant Secondary Metabolites to Mitigate Enteric Methane Emissions in Beef Cattle" Grasses 4, no. 2: 14. https://doi.org/10.3390/grasses4020014
APA StyleCuervo, W., Larrauri, M., Gomez-Lopez, C., & DiLorenzo, N. (2025). Invasive Pigweed (Amaranthus spinosus) as a Potential Source of Plant Secondary Metabolites to Mitigate Enteric Methane Emissions in Beef Cattle. Grasses, 4(2), 14. https://doi.org/10.3390/grasses4020014