Sorghum–Legume Mixtures to Improve Forage Yield and Nutritive Value in Semiarid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Study Layout and Management
2.3. Measurements
2.4. Statistical Description
3. Results
3.1. Sorghum Yield and Nutritive Value
3.2. Legume Yield and Nutritive Value
3.3. Mixture Yield and Nutritive Value
4. Discussion
4.1. Sorghum Yield and Nutritive Value
4.2. Legume Yield and Nutritive Value
4.3. Mixture Yield and Nutritive Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angadi, S.; Umesh, M.R.; Contreras-Govea, F.; Annadurai, K.; Begna, S.B.; Marsalis, M.A.; Cole, A.; Gowda, P.H.; Hagevoort, G.R.; Lauriault, L.M. In search of annual legumes to improve forage sorghum yield and nutritive value in the Southern High Plains. Crop Forage Turfgrass Manag. 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Bybee-Finley, K.A.; Mirsky, S.B.; Ryan, M.R. Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the Northeast. Weed Sci. 2017, 65, 6669–6680. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Lauriault, L.M.; Marsalis, M.A.; Angadi, S.V.; Puppala, N. Performance of forage sorghum-legume mixtures in Southern High Plains, USA. Forage Grazinglands 2009, 7, 1–8. [Google Scholar] [CrossRef]
- Darapuneni, M.K.; Angadi, S.V.; Umesh, M.R.; Contreras-Govea, F.C.; Annadurai, K.; Begna, S.H.; Marsalis, M.A.; Cole, N.A.; Gowda, P.H.; Hagevoort, G.R.; et al. Canopy Development of annual legumes an dforage sorghum intercrops and its relation to dry matter accumulation. Agron. J. 2018, 110, 939–949. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Iqbal, Z.; Ayub, M.; Mubeen, K.; Ibrahim, M. Effect of nitrogen application on forage yield and quality of maize sown alone or in mixture with legumes. Pak. J. Life Soc. Sci. 2009, 7, 161–167. [Google Scholar]
- Bosworth, S.C.; Hoveland, C.S.; Buchanan, G.A.; Anthony, W.B. Forage quality of selected warm-season weed species. Agron. J. 1980, 72, 1050–1054. [Google Scholar] [CrossRef]
- Dan, T.H.; Brix, H. Effects of soil type and water saturation on growth, nutrient and mineral content of the perennial forage shrub, Sesbania sesban. Agrofor. Syst. 2017, 91, 173–184. [Google Scholar] [CrossRef]
- Farghaly, M.M.; Youssef, I.M.I.; Radwan, M.A.; Hamdon, H.A. Effect of feeding Sesbania sesban and reed grass on growth performance, blood parameters, and meat quality of growing lambs. Trop. Anim. Health Prod. 2022, 54, 3. [Google Scholar] [CrossRef]
- Khanum, S.A.; Hussain, H.N.; Hussain, M.; Ishaq, M. Digestibility studies in sheep fed sorghum, sesbania and various grasses grown on medium saline lands. Small Rumin. Res. 2010, 91, 63–68. [Google Scholar] [CrossRef]
- Mengistu, S.; Keftasa, D.; Yami, A. Productivity of four sesbania species on two soil types in Ethiopia. Agrofor. Syst. 2002, 54, 235–244. [Google Scholar] [CrossRef]
- Kondo, M.; Yanagisawa, J.; Kozuka, S.; Kaneko, A.; Kita, K.; Yokota, H. Plant growth and ensiled characteristics of intercropped maize/sesbania bi-crop silages. Jpn. Soc. Grassl. Sci. 2006, 52, 41–44. [Google Scholar] [CrossRef]
- Rasool, T.; Zohaid, A.; Ehsanullah; Ahmad, R.; Abbas, T.; Tabassum, T.; Nadeem, M.A.; ul-Hassan, M. Forage yield and quality in pearl millet-sesbania intercropping system under various geometrical patterns. Pak. J. Agric. Res. 2017, 30, 10. Available online: https://www.researchgate.net/publication/315807725_forage_yield_and_quality_in_pearl_millet-sesbania_intercropping_system_under_various_geometrical_patterns (accessed on 3 May 2024).
- Marshall, D.L.; Fowler, N.L.; Levin, D.A. Plasticity in yield components in natural populations of three species of Sesbania. Ecology 1985, 66, 753–761. [Google Scholar] [CrossRef]
- Marshall, D.L. Effect of seed size on seedling success in three species of Sesbania (Fabaceae). Am. J. Bot. 1986, 73, 457–464. [Google Scholar] [CrossRef]
- Marshall, D.L.; Abrahamson, N.J.; Avritt, J.L.; Hall, P.M.; Medeiros, J.S.; Reynolds, J.; Shaner, M.G.M.; Simpson, H.L.; Trafton, A.N.; Tyler, A.P.; et al. Differences in plastic responses to defoliation due variation in the timing of treatments for two species of Sesbania (Fabaceae). Ann. Bot. 2005, 95, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, C.M. Plant Guide for Bigpod Sesbania (Sesbania exaltata); USDA-NRCS, Cape May Plant Materials Center: Cape May, NJ, USA, 2013. Available online: https://plants.usda.gov/DocumentLibrary/plantguide/doc/pg_sehe8.docx (accessed on 12 April 2024).
- Mohler, C.L.; Teasdale, J.R.; DiTommaso, A. Manage Weeds on Your Farm: A Guide to Ecological Strategies; SARE Handbook Series 16; USDA SARE and University of Maryland: College Park, MD, USA, 2021; p. 461. Available online: https://www.sare.org/resources/manage-weeds-on-your-farm/ (accessed on 3 May 2024).
- Baligar, V.C.; Fageria, A.Q.; Paiva, A.; Silveira, A.; Pomella, A.W.V.; Machado, R.C.R. Light intensity effects on growth and micronutrient uptake by tropical legume cover crops. J. Plant Nutr. 2006, 29, 1959–1974. [Google Scholar] [CrossRef]
- Dawo, M.I.; Wilkinson, J.M.; Sanders, F.E.T.; Pilbeam, D.J. The yield and quality of fresh and ensiled plant material from intercropped corn (Zea mays) and beans (Phaseolus vulgaris). J. Sci. Food Agric. 2007, 87, 1391–1399. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Effect of deficit irrigation on physiology and forage yield of forage sorghum, pearl millet and corn. Crop Sci. 2020, 60, 2167–2179. [Google Scholar] [CrossRef]
- Walsh, G.E.; Weber, D.E.; Nguyen, M.T.; Esry, L.K. Responses of wetland plants to effluents in water and sediments. Environ. Exp. Bot. 1991, 31, 351–358. [Google Scholar] [CrossRef]
- NMED. NMED Ground Water Quality Bureau Guidance: Above Ground Use of Reclaimed Domestic Wastewater. Available online: https://cloud.env.nm.gov/water/?r=5582&k=cdcde6cbdf (accessed on 26 May 2021).
- SAS Institute. The SAS 9.3 for Windows; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Ramsey, F.L.; Schafer, D.W. The Statistical Sleuth: A Course in Methods of Data Analysis, 2nd ed.; Duxbury: Pacific Grove, CA, USA, 2002; p. 42. [Google Scholar]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; Jansen, L., Ed.; SAS Institute: Cary, NC, USA, 1998; pp. 1243–1246. [Google Scholar]
- Iqbal, M.A.; Hamid, A.; Hussain, I.; Siddiqui, M.H.; Ahmad, T.; Khaliq, A.; Ahmad, Z. Competitive indices in cereal and legume mixtures in a south Asian environment. Agron. J. 2019, 111, 242–249. [Google Scholar] [CrossRef]
- Contreras-Govea, F.; Soto-Navarro, S.A.; Calderon-Mendoza, D.; Marsalis, M.A.; Lauriault, L.M. Dry matter yield and nutritive value of cowpea and lablab in the Southern High Plains of the USA. Forage Grazinglands 2011, 9, 1–6. [Google Scholar] [CrossRef]
- Enishi, O.; Shijimaya, Y.; Shoya, T.; Ikeda, K.; Kariya, Y. Quality of sesbania (Sesbania cannabina PERS.)—Corn (Zea mays L.) mixed silage and its intake and digestibility by goat. J. Jpn. Grassl. Sci. 2006, 37, 213–218. (In Japanese) [Google Scholar]
- Lauriault, L.M.; Darapuneni, M.K.; Martinez, G.K. Pearl millet-cowpea forage mixture planting arrangement influences mixture yield and nutritive value in semiarid regions. Crops 2023, 3, 266–275. [Google Scholar] [CrossRef]
Year | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sep. | Oct. | Nov. | Dec. | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, °C | |||||||||||||
2019 | 3.4 | 2.7 | 9.1 | 15.7 | 21.4 | 26.0 | 29.0 | 25.9 | 23.9 | 15.4 | 7.6 | 4.7 | 15.4 |
2022 | 3.8 | 5.7 | 8.6 | 14.3 | 17.4 | 23.9 | 27.8 | 27.6 | 25.0 | 12.3 | 3.2 | 5.7 | 14.6 |
Long-term | 3.5 | 5.6 | 9.5 | 14.2 | 19.1 | 24.3 | 26.2 | 25.2 | 21.6 | 15.2 | 8.6 | 4.0 | 14.7 |
Precipitation/irrigation, mm | |||||||||||||
2019 | 4 | 5 | 19 | 0 | 3/25 | 54/140 | 48/165 | 86/57 | 1/127 | 50/0 | 7 | 0 | 278/514 |
2022 | 4 | 1 | 6 | 24 | 47/102 | 31/133 | 51/203 | 34/159 | 43/74 | 35/32 | 25 | 15 | 316/703 |
Long-term | 10 | 12 | 19 | 28 | 47 | 47/--- | 67/--- | 68/--- | 39 | 34 | 17 | 16 | 398/--- |
Effect | Yield | CP | NDF | NDFD | IVTDMD |
---|---|---|---|---|---|
Year | Mg DM ha−1 | g kg−1 | g kg−1 | g kg−1 | g kg−1 |
2019 | 14.68 | 49.9 | 622.6 | 478.1 | 689.1 |
2022 | 13.77 | 95.3 | 635.0 | 545.9 | 733.9 |
Treatment (TRT) | |||||
Sole FS | 17.89 A | 68.6 | 645.4 | 516.3 | 711.9 |
FS+Cowpea | 14.13 B | 69.9 | 625.3 | 509.6 | 708.6 |
FS+Lablab | 12.48 B | 76.8 | 622.5 | 510.0 | 712.4 |
FS+Sesbania | 12.40 B | 75.3 | 621.9 | 512.2 | 713.1 |
LSD, 0.05 | 3.76 | NS | NS | NS | NS |
p-Values | |||||
Year | 0.6715 | <0.0001 | 0.4537 | <0.0001 | <0.0001 |
TRT | 0.0272 | 0.3788 | 0.5532 | 0.9545 | 0.9793 |
Year × TRT | 0.0971 | 0.2919 | 0.5019 | 0.8410 | 0.8595 |
Treatment | Year | |
---|---|---|
2019 | 2022 | |
Sole FS | 16 AB | 20 A |
FS+Cowpea | 14 B | 14 B |
FS+Lablab | 13 B | 12 B |
FS+Sesbania | 17 AB | 8 B |
Effect | Yield | CP | NDF | NDFD | IVTDMD |
---|---|---|---|---|---|
Year | Mg DM ha−1 | g kg−1 | g kg−1 | g kg−1 | g kg−1 |
2019 | 3.48 | 126.4 | 493.9 | 438.2 | 726.9 |
2022 | 4.97 | 129.0 | 520.7 | 390.0 | 693.4 |
Treatment (TRT) | |||||
Sole Cowpea | 4.79 AB | 145.1 A | 464.9 B | 477.5 A | 776.1 A |
FS+Cowpea | 1.95 B | 128.5 AB | 477.4 B | 454.6 A | 758.3 A |
Sole Lablab | 8.15 A | 147.4 A | 459.6 B | 477.5 A | 779.5 A |
FS+Lablab | 2.42 B | 136.0 A | 453.9 B | 477.5 A | 782.0 A |
Sole Sesbania | 5.66 AB | 112.7 BC | 574.2 A | 314.2 B | 599.5 B |
FS+Sesbania | 2.40 B | 96.5 C | 613.8 A | 283.3 B | 565.3 B |
LSD, 0.05 | 4.77 | 28.6 | 70.4 | 40.2 | 50.2 |
p-Values | |||||
Year | 0.1982 | 0.6942 | 0.1158 | <0.0001 | 0.0085 |
TRT | 0.0138 | 0.0031 | <0.0001 | <0.0001 | <0.0001 |
Year × TRT | 0.3101 | 0.0042 | 0.0346 | 0.0097 | 0.0266 |
Variable/Treatment | Year | |
---|---|---|
2019 | 2022 | |
Legume CP (g kg−1) | ||
Sole Cowpea | 166 A | 124 BC |
FS+Cowpea | 139 ABC | 118 BC |
Sole Lablab | 145 AB | 150 AB |
FS+Lablab | 112 CD | 160 A |
Sole Sesbania | 112 CD | 114 CD |
FS+Sesbania | 84 D | 109 BCD |
Legume NDF (g kg−1) | ||
Sole Cowpea | 398 F | 532 BCD |
FS+Cowpea | 468 DEF | 487 CDE |
Sole Lablab | 427 EF | 492 CDE |
FS+Lablab | 466 DEF | 442 EF |
Sole Sesbania | 562 BC | 587 AB |
FS+Sesbania | 643 A | 585 ABC |
Legume NDFD (g kg−1) | ||
Sole Cowpea | 503 A | 453 C |
FS+Cowpea | 463 ABC | 447 C |
Sole Lablab | 495 AB | 460 BC |
FS+Lablab | 478 ABC | 478 ABC |
Sole Sesbania | 375 D | 253 F |
FS+Sesbania | 317 E | 250 EF |
Legume IVTDMD (g kg−1) | ||
Sole Cowpea | 823 A | 730 C |
FS+Cowpea | 771 ABC | 745 BC |
Sole Lablab | 794 AB | 766 BC |
FS+Lablab | 767 BC | 798 AB |
Sole Sesbania | 638 D | 561 E |
FS+Sesbania | 570 E | 561 DE |
Effect | Yield | Legume Proportion | LER | CP | NDF | NDFD | IVTDMD |
---|---|---|---|---|---|---|---|
Year | Mg DM ha−1 | % | g kg−1 | g kg−1 | g kg−1 | g kg−1 | |
2019 | 15.83 | 9.5 | 1.2 | 54.6 | 616.1 | 475.1 | 691.3 |
2022 | 16.10 | 22.0 | 1.1 | 101.0 | 614.7 | 515.4 | 724.9 |
Treatment (TRT) | |||||||
Sole FS | 17.89 | ---- | 1.0 | 68.6 B | 645.4 | 516.3 A | 711.9 |
FS+Cowpea | 16.10 | 12.1 | 1.3 | 77.4 AB | 607.1 | 503.4 A | 715.1 |
FS+Lablab | 14.90 | 16.3 | 1.1 | 86.1 A | 594.4 | 501.4 A | 722.6 |
FS+Sesbania | 14.97 | 18.8 | 1.1 | 79.1 AB | 614.8 | 460.0 B | 682.8 |
LSD, 0.05 | NS | NS | NS | 14.1 | NS | 29.9 | NS |
p-Values | |||||||
Year | 0.9156 | 0.0016 | 0.7150 | <0.0001 | 0.9339 | 0.0044 | 0.0010 |
TRT | 0.4042 | 0.0813 | 0.2469 | 0.0224 | 0.0613 | 0.0266 | 0.0522 |
Year × TRT | 0.2592 | 0.0045 | 0.3316 | 0.0971 | 0.9197 | 0.1987 | 0.1290 |
Treatment | Year | |
---|---|---|
2019 | 2022 | |
FS+Cowpea | 12.4 B | 11.7 B |
FS+Lablab | 8.9 B | 23.7 A |
FS+Sesbania | 7.1 B | 30.6 A |
Treatment | Year | |
---|---|---|
2019 | 2022 | |
Sole FS | 39.8 D | 97.5 B |
FS+Cowpea | 60.0 C | 94.8 B |
FS+Lablab | 58.0 C | 114.3 A |
FS+Sesbania | 60.8 C | 97.5 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriault, L.M.; Darapuneni, M.K.; Martinez, G.K. Sorghum–Legume Mixtures to Improve Forage Yield and Nutritive Value in Semiarid Regions. Grasses 2024, 3, 163-173. https://doi.org/10.3390/grasses3030012
Lauriault LM, Darapuneni MK, Martinez GK. Sorghum–Legume Mixtures to Improve Forage Yield and Nutritive Value in Semiarid Regions. Grasses. 2024; 3(3):163-173. https://doi.org/10.3390/grasses3030012
Chicago/Turabian StyleLauriault, Leonard M., Murali K. Darapuneni, and Gasper K. Martinez. 2024. "Sorghum–Legume Mixtures to Improve Forage Yield and Nutritive Value in Semiarid Regions" Grasses 3, no. 3: 163-173. https://doi.org/10.3390/grasses3030012
APA StyleLauriault, L. M., Darapuneni, M. K., & Martinez, G. K. (2024). Sorghum–Legume Mixtures to Improve Forage Yield and Nutritive Value in Semiarid Regions. Grasses, 3(3), 163-173. https://doi.org/10.3390/grasses3030012