Research Progress in the Application of Google Earth Engine for Grasslands Based on a Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. WOS and Scopus Retrieved Data Description
3.2. Annual Scientific Production Trends per Document of Grasslands and GEE Studies
3.3. Geographical Spatial Distribution and Most Globally Cited Scientific Research Contributions per Country
3.4. Journals Analysis
3.5. Top Globally Cited Published Documents on Grasslands and GEE Research
3.6. Remote Sensing Data from GEE Used in Grassland Research
3.7. Application Areas
3.8. Authors’ Keywords and Co-Occurrence Network on Grasslands and GEE Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Description | Scopus | Wos |
---|---|---|
“ Grassland*” AND “Google Earth Engine*” | 168 | 142 |
“Prairie*” AND “Google Earth Engine*” | 9 | 9 |
“Steppe*” AND “Google Earth Engine*” | 11 | 7 |
“Savanna*” AND “Google Earth Engine*” | 38 | 33 |
“Rangeland*” AND “Google Earth Engine*” | 26 | 30 |
“Meadow*” AND “Google Earth Engine*” | 25 | 20 |
“Pampas*” AND “Google Earth Engine*” | 2 | 1 |
“Veld*” AND “Google Earth Engine*” | 0 | 0 |
“Pasture*” AND “Google Earth Engine*” | 44 | 38 |
“Heath*” AND “Google Earth Engine*” | 1 | 0 |
“Scrubland*” AND “Google Earth Engine*” | 1 | 1 |
“Tundra*” OR “Arctic grasslands*” AND “Google Earth Engine*” | 20 | 16 |
“Fernland*” AND “Google Earth Engine*” | 0 | 0 |
“Fescue grassland*” AND “Google Earth Engine*” | 0 | 0 |
“Bromegrass*” AND “Google Earth Engine*” | 0 | 0 |
“Sward*” AND “Google Earth Engine*” | 0 | 0 |
“Wild grass*” AND “Google Earth Engine*” | 0 | 0 |
“Cereal pasture*” AND “Google Earth Engine*” | 0 | 0 |
“Herbaceous cover*” AND “Google Earth Engine*” | 0 | 0 |
References
- Habel, J.C.; Dengler, J.; Janišová, M.; Török, P.; Wellstein, C.; Wiezik, M. European Grassland Ecosystems: Threatened Hotspots of Biodiversity. Biodivers. Conserv. 2013, 22, 2131–2138. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Dass, P.; Houlton, B.Z.; Wang, Y.; Warlind, D. Grasslands May Be More Reliable Carbon Sinks than Forests in California. Environ. Res. Lett. 2018, 13, 074027. [Google Scholar] [CrossRef]
- Gibon, A. Managing Grassland for Production, the Environment and the Landscape. Challenges at the Farm and the Landscape Level. Livest. Prod. Sci. 2005, 96, 11–31. [Google Scholar] [CrossRef]
- O’Mara, F.P. The Role of Grasslands in Food Security and Climate Change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- Qi, J.; Chen, J.; Wan, S.; Ai, L. Understanding the Coupled Natural and Human Systems in Dryland East Asia. Environ. Res. Lett. 2012, 7, 015202. [Google Scholar] [CrossRef]
- Nkonya, E.; Mirzabaev, A.; Von Braun, J. Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer Nature: Cham, Switzerland, 2016. [Google Scholar]
- Yan, Z.; Gao, Z.; Sun, B.; Ding, X.; Gao, T.; Li, Y. Global degradation trends of grassland and their driving factors since 2000. Int. J. Digit. Earth 2023, 16, 1. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Wang, S.; Jia, L.; Cai, L.; Wang, Y.; Zhan, T.; Huang, A.; Fan, D. Assessment of Grassland Degradation on the Tibetan Plateau Based on Multi-Source Data. Remote Sens. 2022, 14, 6011. [Google Scholar] [CrossRef]
- Yuan, Y.; Wen, Q.; Zhao, X.; Liu, S.; Zhu, K.; Hu, B. Identifying Grassland Distribution in a Mountainous Region in Southwest China Using Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 1472. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial Analysis of Land Use Change in the Savannah River Basin Using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors 2019, 19, 2118. [Google Scholar] [CrossRef] [PubMed]
- Sulova, A.; Jokar Arsanjani, J. Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sens. 2020, 13, 10. [Google Scholar] [CrossRef]
- Ploton, P.; Pélissier, R.; Proisy, C.; Flavenot, T.; Barbier, N.; Rai, S.N.; Couteron, P. Assessing Aboveground Tropical Forest Biomass Using Google Earth Canopy Images. Ecol. Appl. 2012, 22, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Adelisardou, F.; Zhao, W.; Chow, R.; Mederly, P.; Minkina, T.; Schou, J.S. Spatiotemporal Change Detection of Carbon Storage and Sequestration in an Arid Ecosystem by Integrating Google Earth Engine and InVEST (the Jiroft Plain, Iran). Int. J. Environ. Sci. Technol. 2022, 19, 5929–5944. [Google Scholar] [CrossRef]
- Liu, S.; Bai, J.; Chen, J. Measuring SDG 15 at the county scale: Localization and practice of SDGs indicators based on geospatial information. ISPRS Int. J. Geo-Inf. 2019, 8, 515. [Google Scholar] [CrossRef]
- Tarantino, C.; Aquilino, M.; Labadessa, R.; Adamo, M. Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1. 2 Indicator: The Case of Murgia Alta Protected Area. Remote Sens. 2023, 15, 505. [Google Scholar] [CrossRef]
- Wang, T.; Giuliani, G.; Lehmann, A.; Jiang, Y.; Shao, X.; Li, L.; Zhao, H. Supporting SDG 15, life on land: Identifying the main drivers of land degradation in Honghe Prefecture, China, between 2005 and 2015. ISPRS Int. J. Geo-Inf. 2020, 9, 710. [Google Scholar] [CrossRef]
- Xoxo, S.; Mantel, S.; De Vos, A.; Mahlaba, B.; Le Maitre, D.; Tanner, J. Towards SDG 15.3: The biome context as the appropriate degradation monitoring dimension. Environ. Sci. Policy 2022, 136, 400–412. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Soubry, I.; Doan, T.; Chu, T.; Guo, X. A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sens. 2021, 13, 3262. [Google Scholar] [CrossRef]
- Li, T.; Cui, L.; Xu, Z.; Hu, R.; Joshi, P.K.; Song, X.; Tang, L.; Xia, A.; Wang, Y.; Guo, D.; et al. Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. Remote Sens. 2021, 13, 1279. [Google Scholar] [CrossRef]
- Nduku, L.; Kalumba, A.M.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Chirima, G.J.; Afuye, G.A.; Busayo, E.T. Earth Observation Systems and Pasture Modeling: A Bibliometric Trend Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 793. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What Is Going on within Google Earth Engine? A Systematic Review and Meta-Analysis. Remote Sens. Appl. Soc. Environ. 2023, 29, 100907. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A Global Analysis and Future Trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual; Leiden Univeristeit: Leiden, The Netherlands, 2019; pp. 1–53. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.10.pdf (accessed on 11 October 2023).
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software Tools for Conducting Bibliometric Analysis in Science: An up-to-Date Review. EPI 2020, 29, e290103. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; A. Alencar, A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; G. Ferreira, L.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual Dynamics of Global Land Cover and Its Long-Term Changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Jones, M.O.; Allred, B.W.; Naugle, D.E.; Maestas, J.D.; Donnelly, P.; Metz, L.J.; McIver, J.D. Innovation in Rangeland Monitoring: Annual, 30 m, Plant Functional Type Percent Cover Maps for U.S. Rangelands, 1984–2017. Ecosphere 2018, 9, e02430. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 5289697. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A., Jr.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Radeloff, V.C. Monitoring Cropland Abandonment with Landsat Time Series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Saravanakumar, R.; Arulanandam, M.; Ilakkiya, S. Google Earth Engine: Empowering Developing Countries with Large-Scale Geospatial Data Analysis—A Comprehensive Review. Arab. J. Geosci. 2024, 17, 139. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, M.; Qing, X.; Li, G.; Tian, C. Bibliometric Analysis of Global Remote Sensing Research during 2010–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 332. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, J.; An, Y.; Xin, X.; Xu, D.; Yan, R.; Hou, L. Grassland Ecosystem Progress: A Review and Bibliometric Analysis Based on Research Publication over the Last Three Decades. Agronomy 2023, 13, 614. [Google Scholar] [CrossRef]
- Feng, S.; Li, W.; Xu, J.; Liang, T.; Ma, X.; Wang, W.; Yu, H. Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sens. 2022, 14, 5361. [Google Scholar] [CrossRef]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the Pasturelands and Livestock Dynamics in Brazil, from 1985 to 2017: A Novel Approach Based on High Spatial Resolution Imagery and Google Earth Engine Cloud Computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the World’s Degraded Lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G. Measuring the Impacts of Anthropogenic Activities on Inner Mongolian Temperate Grassland. Land Degrad. Dev. 2018, 29, 2942–2950. [Google Scholar] [CrossRef]
- Majdaldin, R.A.; Osunmadewa, B.A.; Csaplovics, E.; Aralova, D. Remote Sensing-Based Vegetation Indices for Monitoring Vegetation Change in the Semi-Arid Region of Sudan; Christopher, M., Neale, U., Maltese, A., Eds.; Proceedings of SPIE—The International Society for Optical Engineering: Edinburgh, UK, 2016. [Google Scholar] [CrossRef]
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Dehghan-Shoar, M.H.; Pullanagari, R.R.; Kereszturi, G.; Orsi, A.A.; Yule, I.J.; Hanly, J. A Unified Physically Based Method for Monitoring Grassland Nitrogen Concentration with Landsat 7, Landsat 8, and Sentinel-2 Satellite Data. Remote Sens. 2023, 15, 2491. [Google Scholar] [CrossRef]
- Killough, B. Overview of the Open Data Cube Initiative. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8629–8632. [Google Scholar] [CrossRef]
- Kadunc, M.; Milcinski, G.; Vrecko, A.; Repse, M.; Kolaric, P.; Yuan, F.; Killough, B. Sentinel Hub—On-Demand ARD Generation. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 1024–1025. [Google Scholar] [CrossRef]
- Di Leo, M.; Minghini, M.; Kona, A.; Spadaro, N.; Kotsev, A.; Dusart, J.; Tzotsos, A. Digital earth observation infrastructures and initiatives: A review framework based on open principles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-4/W7-2023, 33–40. [Google Scholar] [CrossRef]
- FORIS, Open. SEPAL.System for Earth Observation Data Access, Processing and Analysis for Land Monitoring. Available online: http://www.fao.org/3/CA1085EN/ca1085en.pdf (accessed on 8 March 2024).
- Gomes, V.C.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Brisco, B. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 2016–2023 |
Documents | 323 |
Sources (journals, books, etc.) | 111 |
Keywords plus | 1937 |
Author’s keywords | 1006 |
Average citations per document | 23 |
Authors | 1418 |
Co-authors per document | 5.75 |
Annual growth rate (%) | 73.59 |
Document type | |
Articles | 290 |
Conference papers | 20 |
Review | 4 |
Book chapters | 3 |
Data paper | 6 |
Rank | Country | TCP * (%) | Articles | TC * | AAC * | SCP * | MCP * |
---|---|---|---|---|---|---|---|
1 | China | 31.3% | 101 | 3238 | 32.10 | 99 | 2 |
2 | USA | 13.6% | 44 | 1660 | 37.70 | 44 | 0 |
3 | Brazil | 9.9% | 32 | 1165 | 36.40 | 31 | 1 |
4 | South Africa | 3.1% | 10 | 113 | 11.30 | 10 | 0 |
5 | Australia | 2.8% | 9 | 172 | 19.10 | 8 | 1 |
6 | India | 2.8% | 9 | 43 | 4.80 | 9 | 0 |
7 | Germany | 2.2% | 7 | 26 | 3.70 | 7 | 0 |
8 | Italy | 2.2% | 7 | 191 | 27.30 | 7 | 0 |
9 | Canada | 1.9% | 6 | 112 | 18.70 | 6 | 0 |
10 | United Kingdom | 1.9% | 6 | 64 | 10.70 | 6 | 0 |
Rank | Sources | Articles | Impact Factor |
---|---|---|---|
1 | Remote Sensing | 66 | 5.0 |
2 | Remote Sensing Environment | 22 | 13.5 |
3 | Land | 16 | 3.9 |
4 | Ecological Indicators | 11 | 6.9 |
5 | Remote Sensing Applications: Society and Environment | 9 | 4.7 |
6 | Environmental Monitoring and Assessment | 7 | 3.0 |
7 | Geocarto International | 7 | 3.8 |
8 | International Journals of Applied Earth Observation and Geoinformation | 7 | 7.5 |
9 | Earth System Science Data | 5 | 11.4 |
10 | Environmental Research Letters | 5 | 6.7 |
Rank | Articles Title | TC | TC per Year | Data Used | Reference |
---|---|---|---|---|---|
1 | The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 | 686 | 171.50 | Landsat-5/7/8 | [34] |
2 | Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine | 603 | 120.60 | Landsat-5/7/8, SRTM | [32] |
3 | Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine | 324 | 40.50 | Landsat-5/7/8 | [35] |
4 | Annual dynamics of global land cover and its long-term changes from 1982 to 2015 | 184 | 36.40 | Global Land Surface Satellite Products | [36] |
5 | Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine | 163 | 23.29 | Landsat-5/7/8 | [12] |
6 | Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for US rangelands | 140 | 20.00 | Landsat-5/7/8 | [37] |
7 | Mapping three decades of changes in the brazilian savanna native vegetation using landsat data processed in the Google Earth Engine platform | 123 | 24.60 | Landsat-5/7/8 | [33] |
8 | Land use/land cover changes and their driving factors in the Northeastern Tibetan Plateau based on Geographical Detectors and Google Earth Engine: A case study in Gannan Prefecture | 99 | 19.80 | Landsat TM and OLI | [38] |
9 | Finer-resolution mapping of global land cover: Recent developments, consistency analysis, and prospects | 98 | 24.50 | Landsat-5/7/8 | [39] |
10 | Monitoring cropland abandonment with Landsat time series | 98 | 19.60 | Landsat-4/5/7/8 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashaba-Munghemezulu, Z.; Nduku, L.; Munghemezulu, C.; Chirima, G.J. Research Progress in the Application of Google Earth Engine for Grasslands Based on a Bibliometric Analysis. Grasses 2024, 3, 69-83. https://doi.org/10.3390/grasses3020006
Mashaba-Munghemezulu Z, Nduku L, Munghemezulu C, Chirima GJ. Research Progress in the Application of Google Earth Engine for Grasslands Based on a Bibliometric Analysis. Grasses. 2024; 3(2):69-83. https://doi.org/10.3390/grasses3020006
Chicago/Turabian StyleMashaba-Munghemezulu, Zinhle, Lwandile Nduku, Cilence Munghemezulu, and George Johannes Chirima. 2024. "Research Progress in the Application of Google Earth Engine for Grasslands Based on a Bibliometric Analysis" Grasses 3, no. 2: 69-83. https://doi.org/10.3390/grasses3020006
APA StyleMashaba-Munghemezulu, Z., Nduku, L., Munghemezulu, C., & Chirima, G. J. (2024). Research Progress in the Application of Google Earth Engine for Grasslands Based on a Bibliometric Analysis. Grasses, 3(2), 69-83. https://doi.org/10.3390/grasses3020006