Influence of Environmental Factors on Species Richness and Diversity in a Semi-Arid Environment, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection: Plot-Based Method
2.3. Climate and Soil Data
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heydari, M.; Mahdavi, A. The survey of plant species diversity and richness between ecological species groups (Zagros ecosystem, Ilam). J. App. Sci. 2009, 9, 745–751. [Google Scholar] [CrossRef]
- Brown, L.R.; Bezuidenhout, H. The vegetation of the farms Ingleside and Welgedacht of the Mountain Zebra National Park, Eastern Cape. Koedoe 2005, 48, 23–42. [Google Scholar] [CrossRef]
- Noss, R.F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Wang, B.; Zha, T.S.; Jia, X.; Gong, J.N.; Wu, B.; Bourque, C.P.A.; Zhang, Y.; Qin, S.G.; Chen, G.P.; Peltola, H. Microtopographic variation in soil respiration and its controlling factors vary with plant phenophases in a desert–shrub ecosystem. Biogeosciences 2015, 12, 5705–5714. [Google Scholar] [CrossRef]
- Pienaar, E.; Esler, K.J.; Mucina, L. Vegetation of mesas and surrounding plains in the southeastern Nama Karoo, South Africa. S. Afr. J. Bot. 2004, 70, 540–558. [Google Scholar] [CrossRef]
- Le Houérou, H.N.; Bingham, R.L.; Skerbek, W. Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J. Arid Environ. 1988, 15, 1–18. [Google Scholar] [CrossRef]
- Eskelinen, A.; Stark, S.; Männistö, M. Links between plant community composition, soil organic matter quality, and microbial communities in contrasting tundra habitats. Oecologia 2009, 161, 113–123. [Google Scholar] [CrossRef]
- Huang, K.Y. Evaluation of the topographic sheltering effects on the spatial pattern of Taiwan fir using aerial photography and GIS. Int. J. Remote Sens. 2002, 23, 2051–2069. [Google Scholar] [CrossRef]
- Bezuidenhout, H.; Brown, L.R. Mountain Zebra National Park phytosociological classification: A case study of scale and management in the Eastern Cape, South Africa. S. Afr. J. Bot. 2021, 138, 227–241. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffman, M.T. A fence line in time demonstrates grazing-induced vegetation shifts and dynamics in the semiarid Succulent Karoo. Ecol. Appl. 2009, 19, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Hanke, W.; Böhner, J.; Dreber, N.; Jürgens, N.; Schmiedel, U.; Wesuls, D.; Dengler, J. The impact of livestock grazing on plant diversity: An analysis across dryland ecosystems and scales in southern Africa. Ecol. Appl. 2014, 24, 1188–1203. [Google Scholar] [CrossRef]
- Brown, L.R.; Bezuidenhout, H. Ecosystem description and diversity of the Jurisdam–Seekoegat sections of the mountain zebra national park, South Africa. S. Afr. J. Bot. 2018, 118, 166–178. [Google Scholar] [CrossRef]
- Bezuidenhout, H.; Brown, L.R. Vegetation description of the Doornhoek section of the Mountain Zebra National Park (MZNP), South Africa. Koedoe 2018, 50, 82–92. [Google Scholar] [CrossRef]
- Dean, W.; Richard, J.; Milton, S. (Eds.) The Karoo: Ecological Patterns and Processes; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Mucina, L.; Rutherford, M.C. (Eds.) The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Palmer, A.R.; Hoffman, M.T. Nama-karoo. In Vegetation of Southern Africa; Cowling, R.M., Richardson, D.M., Pierce, S.M., Eds.; Pierce: Houston, TX, USA; Cambridge University Press: Cambridge, UK, 1997; pp. 167–188. [Google Scholar]
- Hoffman, M.T. Rationale for karoo grazing systems: Criticisms and research implications. S. Afr. J. Sci. 1988, 84, 556–559. [Google Scholar]
- Lloyd, J.W.; Nama, K. The Magnificent Natural Heritage of South Africa; Knobel, J., Ed.; Sunbird Publishing: Cape Town, South Africa, 1999; pp. 84–93. [Google Scholar]
- Milton, S.J.; Zimmermann, H.G.; Hoffmann, J.H. Alien plants. In The Karoo, Ecological Patterns and Processes; Dean, W.R.J., Milton, S.J., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 274–287. [Google Scholar]
- Lovegrove, B. The Living Deserts of Southern Africa; Fernwood Press: Cape Town, South Africa, 1993. [Google Scholar]
- Comley, J. Population Assessment and Feeding Ecology of Brown Hyenas (Hyaena brunnea) in Mountain Zebra National Park, Eastern Cape, South Africa. Master’s Thesis, Rhodes University, Grahamstown, South Africa, 2016. [Google Scholar]
- Gaylard, A.; Mjadu, M.; De Klerk, J.; Spies, A.; Mathumba, W.; Holness, S.; Novellie, P.; Knight, M.; Bradshaw, P.; Ferreira, S.; et al. Mountain Zebra National Park: Park Management Plan; South African National Parks: Cradock, South African, 2006; Available online: https://www.sanparks.org/assets/docs/conservation/park_man/mznp-plan.pdf (accessed on 15 June 2023).
- Novellie, P.; Gaylard, A. Long-term stability of grazing lawns in a small protected area, the Mountain Zebra National Park. Koedoe 2013, 55, a1108. [Google Scholar] [CrossRef]
- Pond, U.; Beesley, B.B.; Brown, L.R.; Bezuidenhout, H. Floristic analysis of the Mountain Zebra National Park, Eastern Cape. Koedoe 2002, 45, 35–58. [Google Scholar] [CrossRef]
- Mentis, M.T. Evaluation of the wheel-point and step-point methods of veld condition assessment. Proc. Annu. Congr. Grassl. Soc. S. Afr. 1981, 16, 89–94. [Google Scholar] [CrossRef]
- Bothma, J.D.P.; Van Rooyen, N.; Van Rooyen, M.W. Using diet and plant resources to set wildlife stocking densities in African savannas. Wildl. Soc. Bullet. 2004, 32, 840–851. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011; Available online: http://www.R-project.org (accessed on 15 June 2023).
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Techn. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 1973, 60, 255–265. [Google Scholar] [CrossRef]
- Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Harpole, W.S.; Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 2007, 446, 791–793. [Google Scholar] [CrossRef]
- Dybzinski, R.; Fargione, J.E.; Zak, D.R.; Fornara, D.; Tilman, D. Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 2008, 158, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Duprè, C.; Stevens, C.J.; Ranke, T.; Bleeker, A.; Peppler-Lisbach, C.; Gowing, D.J.G.; Dise, N.B.; Dorland, E.; Bobbink, R.; Diekmann, M. Changes in species richness and composition in European acidic grasslands over the past 70 years: The contribution of cumulative atmospheric nitrogen deposition. Glob. Chang. Biol. 2010, 16, 344–357. [Google Scholar] [CrossRef]
- Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness of grasslands. Science 2004, 303, 1876–1879. [Google Scholar] [CrossRef]
- Stark, N. The nutrient content of plants and soils from Brazil and Surinam. Biotropica 1970, 2, 51–60. [Google Scholar] [CrossRef]
- Gentry, A.H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef]
- Silva, D.M.; Batalha, M.A.; Cianciaruso, M.V. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna. Acta Bot. Brasilica 2013, 27, 490–497. [Google Scholar] [CrossRef]
- Kulmatiski, A.; Beard, K.H.; Stevens, J.R.; Cobbold, S.M. Plant–soil feedbacks: A meta-analytical review. Ecol. Lett. 2008, 11, 980–992. [Google Scholar] [CrossRef]
- Abbasi-Kesbi, M.; Tataian, M.R.; Tamartash, R.; Fattahi, B. Relationships between soil properties and plant diversity indices (Case study: Lashgardar protected rangeland, Malyer, Iran). J. Rangel. Sci. 2016, 7, 79–89. [Google Scholar]
- Shimono, A.; Zhou, H.; Shen, H.; Hirota, M.; Ohtsuka, T.; Tang, Y. Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau. J. Plant Ecol. 2010, 3, 1–7. [Google Scholar] [CrossRef]
Class | Variables | Source | Scale/Resolution |
---|---|---|---|
Topography | Digital elevation model (DEM) | SRTM | 30 m |
Slope | Derived from DEM | 30 m | |
Aspect | Derived from DEM | ||
Soil chemical properties | Nitrogen (cg/kg) | Soil grids | 250 m |
pH | Soil grids | 250 m | |
Organic carbon (g/kg) | Soil grids | 250 m | |
Cation exchange capacity (mmol/kg) | Soil grids | 250 m | |
Soil texture and physical properties | Silt (g/kg) | Soil grids | 250 m |
Coarse fragments (cm3/dm3) | Soil grids | 250 m | |
Organic content (g/kg) | Soil grids | 250 m | |
Bulk density (cg/cm3) | Soil grids | 250 m | |
Sandy (g/kg) | Soil grids | 250 m | |
Clay (g/kg) | Soil grids | 250 m |
Vegetation Unit | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | ||
Species richness | 34 | 30 | 12 | 29 | 23 | 15 | 15 | 21 | 6 | 0.0003 |
NSDI | 0.363 | 0.325 | 0.623 | 0.412 | 0.334 | 0.614 | 0.469 | 0.536 | 0.722 | 0.0003 |
Coefficient | Estimate | Std. Error | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
−1528.7705 | 816.4972 | 0.0674 | −3171.3511 | 113.8101 | |
−0.2045 | 0.0778 | 0.0116 | −0.3611 | −0.0479 | |
53.3856 | 25.5911 | 0.0424 | 1.9030 | 104.8682 | |
−0.0715 | 0.0411 | 0.0885 | −0.1541 | 0.0112 | |
−0.1786 | 0.0891 | 0.0507 | −0.3578 | 0.0006 | |
Adjusted correlation coefficient: |
Coefficient | Estimate | Std. Error | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
26.1353 | 13.1958 | 0.0053 | −0.4113 | 52.6819 | |
0.0026 | 0.0012 | 0.0279 | 0.0003 | 0.0049 | |
−0.8593 | 0.4119 | 0.0424 | −1.6880 | −0.0306 | |
0.0027 | 0.0013 | 0.0416 | 0.0001 | 0.0053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyai, N.; Ramoelo, A.; Adelabu, S.; Bezuidenhout, H.; Sadiq, H. Influence of Environmental Factors on Species Richness and Diversity in a Semi-Arid Environment, South Africa. Grasses 2023, 2, 218-229. https://doi.org/10.3390/grasses2040017
Munyai N, Ramoelo A, Adelabu S, Bezuidenhout H, Sadiq H. Influence of Environmental Factors on Species Richness and Diversity in a Semi-Arid Environment, South Africa. Grasses. 2023; 2(4):218-229. https://doi.org/10.3390/grasses2040017
Chicago/Turabian StyleMunyai, Nthabeliseni, Abel Ramoelo, Samuel Adelabu, Hugo Bezuidenhout, and Hassan Sadiq. 2023. "Influence of Environmental Factors on Species Richness and Diversity in a Semi-Arid Environment, South Africa" Grasses 2, no. 4: 218-229. https://doi.org/10.3390/grasses2040017