Minimising Toxicity and Maximising Response: T-Cell Engagers for Elderly Patients with Multiple Myeloma
Abstract
:1. The Real and Growing Challenge of Elderly Patients with MM
2. The Burden of Frailty and Treatment-Related Challenges
Assessment Tool | Assessment Domains | Scoring Criteria | Risk Categories | Clinical Relevance in MM | Strengths/ Limitations |
---|---|---|---|---|---|
IMWG Frailty Score [9] | Age, CCI, ADL, IADL | 0–5 points | Fit (0), Intermediate (1), Frail (≥2) | Predicts OS, PFS, and treatment toxicity | MM-specific, widely cited but time-consuming to calculate |
Revised Myeloma Comorbidity Index [10] | Age, lung/kidney function, Karnofsky PS, frailty, cytogenetics | 0–9 score | Low (0–3), Intermediate (4–6), High (7–9) | Associated with OS, early mortality, and guides treatment intensity | Incorporates organ function and disease biology, complex to apply routinely |
Simplified Frailty Scale [11] | Age, ECOG performance status, CCI | 0–3 score | Fit (0), Intermediate (1), Frail (≥2) | Correlates with outcomes, suitable for real-world use | Easier than IMWG, but may miss physical/cognitive nuance |
Freiburg Frailty Score [12] | Timed Up and Go test, MMSE, nutrition (albumin) | 0–3 score | Fit (0), Intermediate (1), Frail (≥2–3) | Identifies frailty-related toxicity risk | Good for cognitive/physical domains, less MM-specific |
Geriatric Assessment in Haematology Tool [13] | Geriatric domains: ADL, IADL, cognition, nutrition, mood | Not always scored numerically | Risk-adapted | Broad geriatric tool used in haematology | Time-intensive, not MM-specific, may need trained staff |
Mayo Frailty Risk Score [15] | Age, ECOG, ISS stage, LDH, cytogenetics | 0–5 risk factors | Low (0–1), Intermediate (2–3), High (4–5) | Predicts early mortality and treatment intolerance | Easy to calculate, includes disease biology, not geriatric-specific |
3. Mechanism of Action and Key Targets of T-Cell Engagers
4. Immunotherapies Compared to the Current Landscape for Elderly MM Patients
Trial/Regimen | Population Details | Arm | Grade ≥ 3 Infections | Other AEs (Fatigue/Diarrhoea/ Constipation) | Peripheral Neuropathy | PFS (Months) | OS Outcome | Steroid Use |
---|---|---|---|---|---|---|---|---|
MAIA [33] | Median age 73 (44% ≥75) | D-Rd | 41% | 36% (9%)/57% (9%)/41% (1%) | 28% (2% Grade 3) | ~62 | 66% 5-yr | Dexamethasone included |
Rd | 29% | 27% (5%)/45% (6%)/37% (1%) | 18% (<1% Grade 3) | 34 | 53% 5-yr | |||
IMROZ [34] | Median age 72 (26% ≥75) | Isa-VRd | 45% | 35% (8%)/55% (8%)/36% (2%) | 54% (7% grade 3) | Not reached | 72% 5-yr | Dexamethasone included |
VRd | 38% | 26.5% (7%)/49% (8%)/41% (2%) | 61% (6% Grade 3) | 54 | 66% 5-yr | |||
CEPHEUS [35] | Median age 70 (55% ≥70) | D-VRd | 40% | 32% (9%)/57% (12%)/38% (2%) | 56% (8%) | Not reached | OS Immature | Dexamethasone included |
VRd | 32% | 31% (8%)/59% (9%)/42% (3%) | 61% (8%) | 53 | OS Immature | |||
BENEFIT [36] | Median age 73 (~31% ≥75) | Isa-Rd | 53% | 36% (14%)/48% (22%)/30% (14%) | 28% (10%) | Not reached | 91.5% 24 months | Dexamethasone included |
Isa-VRd | 47% | 30% (18%)/49% (29%)/39% (22%) | 52% (27%) | Not reached | 91.1% 24 months |
4.1. BsAbs: A Logistically Feasible and Effective Approach
Agent (Antigen Targeted) | Trial Name/ NCT/Phase | Population (n)/Age (Range/Median) | ORR | PFS (months) | Infection (Grade ≥ 3) | CRS | ICANS | |
---|---|---|---|---|---|---|---|---|
Teclistamab (BCMA) [38] | MAJESTEC-1 (NCT04557098) Phase II | n = 165 33–84 years (med: 64) ≥75 years: 14.5% | 63% | 11.3 | 76% (45%) | 72% (Grade ≥ 3: <1%) | ~3% (Grade ≥ 3: 0) | |
Elranatamab (BCMA) [42] | MagnetisMM-3 (NCT04649359) Phase II | n = 123 36–89 (med: 68) ≥75 years: 21% | 61% | Not Reached 15-month PFS rate: 51% | 70% (40%) | 58% (Grade ≥ 3: 0) | 3% (Grade ≥ 3: 0) | |
Linvoseltamab (BCMA) [40] | LINKER-MM1 (NCT03761108) Phase II | n = 179 37–90 (med: 66) ≥70 years: NR | 64% | NR | 200 mg cohort: 43% (26%) | 200 mg cohort: 37% (Grade ≥ 3: 1%) | 200 mg cohort: (Grade ≥ 3: 2%) | |
ABBV-383/ Etentamig (BCMA) [43] | - (NCT03933735) Phase I/II | n = 124 35–92 (med: 68) ≥70 years: NR | 57% | Not Reached 12-month PFS: 58% | ≥40 mg cohort 44% (~25%) | ≥40 mg cohort 73% (Grade ≥ 3: 4%) | ≥40 mg cohort ~2% (Grade ≥ 3: 2%) | |
Talquetamab (GPRC5D) [39] | MonumenTAL-1 (NCT03399799/NCT04634552) Phase 1/II | n = 375 NR (med: 68) ≥75: NR | QW | 74% | 7.5 | 54% (20%) | 62% (Grade ≥ 3: 2%) | 1% (Grade ≥ 3: 0%) |
Q 2W | 69% | 11.9 | 58% (23%) | 47% (Grade ≥ 3: 1%) | 1% (Grade ≥ 3: 0%) | |||
Cevostamab (FcRH5) [44] | - (NCT03275103) CAMMA-2 (NCT05535244) Phase 1/11 | n = 160 33–82 (med: 64) ≥75 years: NR | 160 mg cohort: 54% | NR | 42% (19%) | 80% (Grade ≥ 3: 1%) | 13% (Grade ≥3: 1%) |
4.2. CAR-T Therapy: Durable Responses with Logistical Barriers in the Elderly
5. Key Trial and Real-World Data in Elderly (≥75 Years) MM Patients
Study/Source | Population | ORR | PFS | OS | CRS | ICANS | Grade ≥ 3 Infections | |
---|---|---|---|---|---|---|---|---|
US Academic Centres (≥75 y) [6] | 83 patients, all ≥75 years | 62% | 10.7 months | Not Reached | 52%, 1 case Grade ≥ 3 | 19%, 3 cases Grade 3 | Not specified | |
US Community Oncology Practices [7] | 101 patients, median age 66 (range 56–84) | 74% | 79% at 6 months | Not specified | 37% (all Grade 1–2) | 11% (majority grade 1–2) | 26% (none discontinued) | |
IMF Real-World Frailty Dataset [8] | 81 patients, median age 76 (range 70–91), 73% frail, 27% fit | Frail | 66% | 42% 12 months | 61% 12-mo OS | 47% (29% Grade 2) | 14% (3 cases ≥ grade 3) | 59% (23% ≥ grade 3) |
Fit | 50% | 48% 12 months | 65% 12-mo OS | 55% (8% Grade 2) | 9% (mostly grade 1) | 45% (9% ≥ grade 3) | ||
MajesTEC-7 (Tec-DR Arm) Phase 3 Safety Run-In [48] | 26 patients, transplant-ineligible | 92% | NR | NR | 61.5% (mostly Grade 1) | Not specified | ~30% One treatment-related death |
6. Comparative Effectiveness of Different Immunotherapies in the Elderly (≥75 Years) MM Population
7. Optimising Treatment Outcomes: Managing Safety and Toxicity in Elderly MM Patients
8. New Horizons: Novel Constructs and Combination Strategies
9. Overcoming Ageism and Expanding Access to TCE Therapies
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APRIL | A Proliferation-Inducing Ligand |
ADL | Activities of Daily Living |
ADCC | Antibody-dependent cellular cytotoxicity |
ASCT | Autologous stem cell transplantation |
BAFF | B-Cell Activating Factor |
BCMA | B-Cell maturation antigen |
BiTE | Bispecific T-cell engager |
BsAbs | Bispecific antibodies |
VRd | Bortezomib, lenalidomide, and dexamethasone |
CELMoDs | Cereblon E3 ligase modulator |
CCI | Charlson Comorbidity Index |
CAR-T | Chimeric antigen receptor T-cells |
cilta-cel | Ciltacabtagene autoleucel |
CR | Complete response |
CRS | Cytokine release syndrome |
Dara-Rd | Daratumumab, lenalidomide, and dexamethasone |
ECOG | Eastern Cooperative Oncology Group |
Isa-VRd | Isatuximab, bortezomib, lenalidomide, and dexamethasone |
Dara-VRd | Daratumumab, bortezomib, lenalidomide, and dexamethasone |
FcRH5 | Fc Receptor Homolog 5 |
R-MCI | Frailty Score and the Revised Myeloma Comorbidity Index |
GPRC5D | G-protein Coupled Receptor Family C Group 5 Member D |
G-CSF | Granulocyte colony-stimulating factor |
ide-cel | Idecabtagene vicleucel |
ICANS | Immune Effector Cell-Associated Neurotoxicity Syndrome |
IADL | Instrumental Activities of Daily Living |
IMF | International Myeloma Foundation |
IMWG | International Myeloma Working Group |
ISS | International Staging System |
IVIG | Intravenous immunoglobulin |
ImiD | Immunomodulatory drugs |
Isa-Rd | Isatuximab, lenalidomide, and dexamethasone |
LDH | Lactate Dehydrogenase |
Rd | Lenalidomide-dexamethasone |
MMSE | Mini Mental State Examination |
MRD | Minimal residual disease |
mAbs | Monoclonal antibodies |
MM | Multiple myeloma |
MDSC | Myeloid-derived suppressor cell |
FcRn | Neonatal Fc receptor |
ORR | Overall Response Rate |
OS | Overall Survival |
PFS | Progression-Free Survival |
PI | Proteasome inhibitor |
Treg | Regulatory T-cell |
scFv | Single-chain variable fragment |
sBCMA | Soluble BCMA |
SC | Subcutaneous |
TCE | T-cell engagers |
Tec-DR | Teclistamab with daratumumab and lenalidomide |
Fv | Variable fragment |
VGPR | Very Good Partial Response |
References
- Rajkumar, S.V. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef] [PubMed]
- Facon, T.; Leleu, X.; Manier, S. How I treat multiple myeloma in geriatric patients. Blood 2024, 143, 224–232. [Google Scholar] [CrossRef]
- National Cancer Institute. SEER Cancer Statistics Review (CSR) 1975–2018. 2021. Available online: https://seer.cancer.gov/archive/csr/1975_2018/index.html (accessed on 4 April 2025).
- Pawlyn, C.; Cairns, D.; Kaiser, M.; Striha, A.; Jones, J.; Shah, V.; Jenner, M.; Drayson, M.; Owen, R.; Gregory, W. The relative importance of factors predicting outcome for myeloma patients at different ages: Results from 3894 patients in the Myeloma XI trial. Leukemia 2020, 34, 604–612. [Google Scholar] [CrossRef]
- Abdallah, N.; Rees, M.; Gupta, S.; Elhaj, M.; Bansal, R.; Menser, T.; Schaeferle, G.; Cook, J.; Kourelis, T.; Warsame, R.M. Frailty-Based Outcomes with Bispecific Antibodies in Older Patients with Multiple Myeloma. Blood 2024, 144, 4695. [Google Scholar] [CrossRef]
- Pasvolsky, O.; Dima, D.; Feng, L.; Dong, W.; Richards, T.; Davis, J.A.; Afrough, A.; Vazquez-Martinez, M.A.; Sannareddy, A.; Goel, U.; et al. Outcomes of Elderly Patients with Relapsed Refractory Multiple Myeloma (RRMM) Treated with Teclistamab: A Multicenter Study from the U.S. Multiple Myeloma Immunotherapy Consortium. Blood 2024, 144 (Suppl. S1), 934. [Google Scholar] [CrossRef]
- Dhakal, B.; Kim, N.; John, W.; Wu, B.; Lucht, S.; Lin, D.; Bland, E.; Paner-Straseviciute, A.; Van Doren, B.; Hester, L. Real-World Patient Characteristics and Outcomes in Patients with Relapsed or Refractory Multiple Myeloma Receiving Teclistamab across Community Oncology Practices in the US. Blood 2024, 144, 7843. [Google Scholar] [CrossRef]
- Mian, H.; Tan, C.R.; Asoori, S.; Popat, R.; Abdallah, N.; Chhabra, S.; Parrondo, R.D.; Pond, G.R.; Martin, T.; Durie, B.G. Outcomes of Frailty Subgroups Treated with Teclistamab in the Real-World: An International Myeloma Foundation Study Database Analysis. Blood 2024, 144, 704. [Google Scholar] [CrossRef]
- D’Agostino, M.; Larocca, A.; Offidani, M.; Liberati, A.M.; Gaidano, G.; Petrucci, M.T.; Derudas, D.; Capra, A.; Zambello, R.; Cascavilla, N. Octogenarian newly diagnosed multiple myeloma patients without geriatric impairments: The role of age > 80 in the IMWG frailty score. Blood Cancer J. 2021, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, M.; Ihorst, G.; Duque-Afonso, J.; Wedding, U.; Spät-Schwalbe, E.; Goede, V.; Kolb, G.; Stauder, R.; Wäsch, R. Structured assessment of frailty in multiple myeloma as a paradigm of individualized treatment algorithms in cancer patients at advanced age. Haematologica 2020, 105, 1183. [Google Scholar] [CrossRef]
- Facon, T.; Dimopoulos, M.A.; Meuleman, N.; Belch, A.; Mohty, M.; Chen, W.-M.; Kim, K.; Zamagni, E.; Rodriguez-Otero, P.; Renwick, W. A simplified frailty scale predicts outcomes in transplant-ineligible patients with newly diagnosed multiple myeloma treated in the FIRST (MM-020) trial. Leukemia 2020, 34, 224–233. [Google Scholar] [CrossRef]
- Möller, M.-D.; Gengenbach, L.; Graziani, G.; Greil, C.; Wäsch, R.; Engelhardt, M. Geriatric assessments and frailty scores in multiple myeloma patients: A needed tool for individualized treatment? Curr. Opin. Oncol. 2021, 33, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Caserta, S.; Cancemi, G.; Loreta, S.; Allegra, A.; Stagno, F. Hematological malignancies in older patients: Focus on the potential role of a geriatric assessment management. Diagnostics 2024, 14, 1390. [Google Scholar] [CrossRef] [PubMed]
- Stege, C.A.; Nasserinejad, K.; Van der Spek, E.; Bilgin, Y.M.; Kentos, A.; Sohne, M.; van Kampen, R.J.; Ludwig, I.; Thielen, N.; Durdu-Rayman, N. Ixazomib, daratumumab, and low-dose dexamethasone in frail patients with newly diagnosed multiple myeloma: The Hovon 143 study. J. Clin. Oncol. 2021, 39, 2758–2767. [Google Scholar] [CrossRef]
- Sim, S.; Kalff, A.; Tuch, G.; Mollee, P.; Ho, P.J.; Harrison, S.; Gibbs, S.; Prince, H.M.; Spencer, A.; Joshua, D. The importance of frailty assessment in multiple myeloma: A position statement from the Myeloma Scientific Advisory Group to Myeloma Australia. Intern. Med. J. 2023, 53, 819–824. [Google Scholar] [CrossRef]
- Pawlyn, C.; Cairns, D.A.; Menzies, T.; Jones, J.R.; Jenner, M.W.; Cook, G.; Boyd, K.D.; Drayson, M.T.; Kaiser, M.F.; Owen, R.G. Autologous stem cell transplantation is safe and effective for fit, older myeloma patients: Exploratory results from the Myeloma XI trial. Haematologica 2020, 107, 231. [Google Scholar] [CrossRef]
- Pfizer Inc. ELREXFIO (Elranatamab-Bcmm) Prescribing Information; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761345s000lbl.pdf (accessed on 10 April 2025).
- Asoori, S.; Popat, R.; Martínez-Lopez, J.; Kastritis, E.; Brunaldi, L.; Bansal, R.; Corraes, A.D.M.S.; Yong, K.; Mactier, C.; Corona, M. Real-world evaluation of teclistamab for the treatment of relapsed/refractory multiple myeloma (RRMM). Blood 2023, 142, 3347. [Google Scholar] [CrossRef]
- Cipkar, C.; Chen, C.; Trudel, S. Antibodies and bispecifics for multiple myeloma: Effective effector therapy. Hematology 2022, 2022, 163–172. [Google Scholar] [CrossRef]
- Cho, S.-F.; Yeh, T.-J.; Anderson, K.C.; Tai, Y.-T. Bispecific antibodies in multiple myeloma treatment: A journey in progress. Front. Oncol. 2022, 12, 1032775. [Google Scholar] [CrossRef]
- Lipof, J.J.; Abdallah, N.; Lipe, B. Personalized Treatment of Multiple Myeloma in Frail Patients. Curr. Oncol. Rep. 2024, 26, 744–753. [Google Scholar] [CrossRef]
- Devasia, A.J.; Chari, A.; Lancman, G. Bispecific antibodies in the treatment of multiple myeloma. Blood Cancer J. 2024, 14, 158. [Google Scholar] [CrossRef]
- Rees, M.; Abdallah, N.; Yohannan, B.; Gonsalves, W.I. Bispecific antibody targets and therapies in multiple myeloma. Front. Immunol. 2024, 15, 1424925. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.J.; Kumar, S. BCMA-directed therapy, new treatments in the myeloma toolbox, and how to use them. Leuk. Lymphoma 2024, 65, 287–300. [Google Scholar] [CrossRef]
- Xu, Y.; Mao, X.; Que, Y.; Xu, M.; Li, C.; Almeida, V.D.F.; Wang, D.; Li, C. The exploration of B cell maturation antigen expression in plasma cell dyscrasias beyond multiple myeloma. BMC Cancer 2023, 23, 123. [Google Scholar] [CrossRef] [PubMed]
- Girgis, S.; Wang Lin, S.X.; Pillarisetti, K.; Verona, R.; Vieyra, D.; Casneuf, T.; Fink, D.; Miao, X.; Chen, Y.; Stephenson, T. Effects of teclistamab and talquetamab on soluble BCMA levels in patients with relapsed/refractory multiple myeloma. Blood Adv. 2023, 7, 644–648. [Google Scholar] [CrossRef]
- Bhutani, M.; Usmani, S.Z. GPRC5D: The next frontier for immunotherapy in multiple myeloma. Hematologist 2023, 20. [Google Scholar] [CrossRef]
- Liu, L.; Krishnan, A. Talquetamab in multiple myeloma. Haematologica 2023, 109, 718. [Google Scholar] [CrossRef]
- Richter, J.; Thomas, S.K.; Krishnan, A.Y.; Laubach, J.P.; Cohen, A.D.; Trudel, S.; Costa, L.J.; Bahlis, N.J.; Forsberg, P.A.; Kaedbey, R. Cevostamab in Patients with Heavily Pretreated Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from an Ongoing Phase I Study Demonstrate Clinically Meaningful Activity and Manageable Safety and Inform the Doses and Regimen for Combination Studies. Blood 2024, 144, 1021. [Google Scholar]
- Quach, H.; Augustson, B.; Sia, H.; Shah, N.; Lichtman, E.I.; Liedtke, M.; Martinet, C.; Menon, V.; Garton, A.; Pihlgren, M. First Results of a Phase 1, First-in-Human, Dose Escalation Study of ISB 2001, a BCMAxCD38xCD3 Targeting Trispecific Antibody in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2024, 144, 1026. [Google Scholar] [CrossRef]
- Rodríguez-Otero, P.; D’Souza, A.; Reece, D.E.; van de Donk, N.W.; Chari, A.; Krishnan, A.Y.; Martin, T.G.; Mateos, M.-V.; Morillo, D.; Hurd, D.D. A novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma (RRMM): Updated phase 1b results for daratumumab in combination with teclistamab (a BCMA x CD3 bispecific antibody). J. Clin. Oncol. 2022, 40, 8032. [Google Scholar] [CrossRef]
- Dholaria, B.; Weisel, K.; Mateos, M.-V.; Goldschmidt, H.; Martin, T.; Morillo, D.; Reece, D.; Rodriguez-Otero, P.; Bhutani, M.; D’Souza, A. MM-161 Talquetamab+ Daratumumab in Patients With Relapsed/Refractory Multiple Myeloma (RRMM): Updated TRIMM-2 Results. Clin. Lymphoma Myeloma Leuk. 2023, 23, S476–S477. [Google Scholar] [CrossRef]
- Kumar, S.K.; Moreau, P.; Bahlis, N.J.; Facon, T.; Plesner, T.; Orlowski, R.Z.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H. Daratumumab plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) alone in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM): Updated analysis of the phase 3 Maia study. Blood 2022, 140 (Suppl. S1), 10150–10153. [Google Scholar] [CrossRef]
- Facon, T.; Dimopoulos, M.-A.; Leleu, X.P.; Beksac, M.; Pour, L.; Hájek, R.; Liu, Z.; Minarik, J.; Moreau, P.; Romejko-Jarosinska, J. Isatuximab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2024, 391, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Facon, T.; Hungria, V.; Bahlis, N.J.; Venner, C.P.; Braunstein, M.; Pour, L.; Martí, J.M.; Basu, S.; Cohen, Y.C. Daratumumab plus bortezomib, lenalidomide and dexamethasone for transplant-ineligible or transplant-deferred newly diagnosed multiple myeloma: The randomized phase 3 CEPHEUS study. Nat. Med. 2025, 31, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Leleu, X.; Hulin, C.; Lambert, J.; Bobin, A.; Perrot, A.; Karlin, L.; Roussel, M.; Montes, L.; Cherel, B.; Chalopin, T. Isatuximab, lenalidomide, dexamethasone and bortezomib in transplant-ineligible multiple myeloma: The randomized phase 3 BENEFIT trial. Nat. Med. 2024, 30, 2235–2241. [Google Scholar] [CrossRef]
- Manier, S.; Lambert, J.; Hulin, C.; Laribi, K.; Araujo, C.; Pica, G.M.; Touzeau, C.; Godmer, P.; Slama, B.; Karlin, L. The IFM2017-03 Phase 3 Trial: A Dexamethasone Sparing-Regimen with Daratumumab and Lenalidomide for Frail Patients with Newly-Diagnosed Multiple Myeloma. Blood 2024, 144, 774. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Chari, A.; Touzeau, C.; Schinke, C.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.; Rodríguez-Otero, P.; Morillo, D.; Martinez-Chamorro, C.; et al. Safety and activity of talquetamab in patients with relapsed or refractory multiple myeloma (MonumenTAL-1): A multicentre, open-label, phase 1–2 study. Lancet Haematol. 2025, 12, e269–e281. [Google Scholar] [CrossRef]
- Lee, H.C.; Bumma, N.; Richter, J.R.; Dhodapkar, M.V.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Maly, J.J. LINKER-MM1 study: Linvoseltamab (REGN5458) in patients with relapsed/refractory multiple myeloma. J. Clin. Oncol. 2023, 41, 8006. [Google Scholar] [CrossRef]
- Jakubowiak, A.J.; Anguille, S.; Karlin, L.; Chari, A.; Schinke, C.; Rasche, L.; San-Miguel, J.; Campagna, M.; Hilder, B.W.; Masterson, T.J. Updated results of talquetamab, a GPRC5D× CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma with prior exposure to t-cell redirecting therapies: Results of the phase 1/2 MonumenTAL-1 study. Blood 2023, 142, 3377. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C. Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Rodriguez Valdes, C.; Voorhees, P.M.; D’Souza, A.; Chung, A.; Tuchman, S.; Safah, H.; McKay, J.T.; Weisel, K.C.; Teipel, R.; Korde, N. Efficacy, safety, and determination of RP2D of ABBV-383, a BCMA bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2024, 42, 7531. [Google Scholar] [CrossRef]
- Trudel, S.; Cohen, A.D.; Krishnan, A.Y.; Fonseca, R.; Spencer, A.; Berdeja, J.G.; Lesokhin, A.; Forsberg, P.A.; Laubach, J.P.; Costa, L.J.; et al. Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): Updated results from an ongoing phase I study. Blood 2021, 138, 157. [Google Scholar] [CrossRef]
- Anderson, L.D., Jr.; Munshi, N.C.; Shah, N.; Jagannath, S.; Berdeja, J.G.; Lonial, S.; Raje, N.S.; Siegel, D.S.D.; Lin, Y.; Oriol, A.; et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in relapsed and refractory multiple myeloma: Updated KarMMa results. J. Clin. Oncol. 2021, 39, 8016. [Google Scholar] [CrossRef]
- Sidana, S.; Patel, K.K.; Peres, L.C.; Bansal, R.; Kocoglu, M.H.; Shune, L.; Atrash, S.; Smith, K.; Midha, S.; Ferreri, C. Safety and efficacy of standard-of-care ciltacabtagene autoleucel for relapsed/refractory multiple myeloma. Blood 2025, 145, 85–97. [Google Scholar] [CrossRef]
- Davis, J.A.; Dima, D.; Ahmed, N.; DeJarnette, S.; McGuirk, J.; Jia, X.; Raza, S.; Khouri, J.; Valent, J.; Anwer, F. Impact of frailty on outcomes after chimeric antigen receptor T cell therapy for patients with relapsed/refractory multiple myeloma. Transplant. Cell. Ther. 2024, 30, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.Y.; Manier, S.; Terpos, E.; Usmani, S.; Khan, J.; Pearson, R.; Girgis, S.; Guo, Y.; McAleer, D.; Olyslager, Y. MajesTEC-7: A Phase 3, Randomized Study of Teclistamab+ Daratumumab+ Lenalidomide (Tec-DR) versus daratumumab+ lenalidomide+ dexamethasone (DRd) in patients with newly diagnosed multiple myeloma who are either ineligible or not intended for autologous stem cell transplant. Blood 2022, 140 (Suppl. S1), 10148–10149. [Google Scholar]
- Martin, T.; Usmani, S.Z.; Schecter, J.M.; Vogel, M.; Jackson, C.C.; Deraedt, W.; Tian, H.; Yeh, T.-m.; Banerjee, A.; Pacaud, L. Matching-adjusted indirect comparison of efficacy outcomes for ciltacabtagene autoleucel in CARTITUDE-1 versus idecabtagene vicleucel in KarMMa for the treatment of patients with relapsed or refractory multiple myeloma. Curr. Med. Res. Opin. 2021, 37, 1779–1788. [Google Scholar] [CrossRef]
- Facon, T.; Cook, G.; Usmani, S.Z.; Hulin, C.; Kumar, S.; Plesner, T.; Touzeau, C.; Bahlis, N.J.; Basu, S.; Nahi, H. Daratumumab plus lenalidomide and dexamethasone in transplant-ineligible newly diagnosed multiple myeloma: Frailty subgroup analysis of MAIA. Leukemia 2022, 36, 1066–1077. [Google Scholar] [CrossRef]
- Beksac, M.; Mohty, M. What Does the Phase III ‘IMROZ’Study Mean for Patients with Multiple Myeloma? An Interview with the Co-authors. Hematology 2024, 12, 2–8. [Google Scholar]
- Raje, N.S.; Anaissie, E.; Kumar, S.K.; Lonial, S.; Martin, T.; Gertz, M.A.; Krishnan, A.; Hari, P.; Ludwig, H.; O’Donnell, E. Consensus guidelines and recommendations for infection prevention in multiple myeloma: A report from the International Myeloma Working Group. Lancet Haematol. 2022, 9, e143–e161. [Google Scholar] [CrossRef]
- Raje, N.; Anderson, K.; Einsele, H.; Efebera, Y.; Gay, F.; Hammond, S.P.; Lesokhin, A.M.; Lonial, S.; Ludwig, H.; Moreau, P. Monitoring, prophylaxis, and treatment of infections in patients with MM receiving bispecific antibody therapy: Consensus recommendations from an expert panel. Blood Cancer J. 2023, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Grosicki, S.; Yeh, S.-P.; Huang, S.-Y.; Byun, J.M.; Dirienzo, C.; Viqueira, A. PB2130: MagnetisMM-6: A phase 3 study of elranatamab + daratumumab + lenalidomide vs. daratumumab + lenalidomide + dexamethasone in transplant ineligible patients with newly diagnosed multiple myeloma. HemaSphere 2023, 7, e039274c. [Google Scholar] [CrossRef]
- Touzeau, C.; Beksac, M.; Terpos, E.; Usmani, S.Z.; Krishnan, A.Y.; Nijhof, I.S.; Janowski, W.; Hulin, C.; Grosicki, S.; Delforge, M. Safety results from the phase 3 MajesTEC-7 study in patients (pts) with transplant ineligible/not intended newly diagnosed multiple myeloma (NDMM). J. Clin. Oncol. 2024, 42, 7506. [Google Scholar] [CrossRef]
- Quach, H.; Pour, L.; Grosicki, S.; Sia, H.; Minarik, J.; Byun, J.M.; Touzeau, C.; Liberatore, C.; Sullivan, S.T.; Leip, E.; et al. Elranatamab in combination with daratumumab and lenalidomide (EDR) in patients with newly diagnosed multiple myeloma (NDMM) not eligible for transplant: Initial results from MagnetisMM-6 part 1. In Proceedings of the ASCO Annual Meeting, Chicago, IL, USA, 30 May–8 June 2025; p. 7504. [Google Scholar]
- Rees, M.J.; Mammadzadeh, A.; Bolarinwa, A.; Elhaj, M.E.; Bohra, A.; Bansal, R.; Ailawadhi, S.; Parrondo, R.; Chhabra, S.; Khot, A. Clinical features associated with poor response and early relapse following BCMA-directed therapies in multiple myeloma. Blood Cancer J. 2024, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Parrondo, R.D.; Ailawadhi, S.; Cerchione, C. Bispecific antibodies for the treatment of relapsed/refractory multiple myeloma: Updates and future perspectives. Front. Oncol. 2024, 14, 1394048. [Google Scholar] [CrossRef]
- Seiki, Y.; Ikezawa, K.; Watsuji, K.; Urabe, M.; Kai, Y.; Takada, R.; Yamai, T.; Mukai, K.; Nakabori, T.; Uehara, H. Zinc supplementation for dysgeusia in patients with unresectable pancreatic cancer. Int. J. Clin. Oncol. 2024, 29, 1173–1181. [Google Scholar] [CrossRef]
- Mazzoleni, B.; Ferrari, G.; Savioni, F.; Gravante, F.; Lopane, D.; Dacomi, A.; Coldani, C.; Tomaiuolo, G.; Cattani, D.; Anastasi, G. Non-pharmacological strategies to alleviate dysgeusia in patients undergoing chemotherapy: A systematic review. Eur. J. Oncol. Nurs. 2024, 70, 102569. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Pozzo, C.; Strippoli, A.; Bria, E.; Tortora, G.; Gasbarrini, A.; Mele, M.C. Effects of nutritional interventions on nutritional status in patients with gastric cancer: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2020, 38, 28–42. [Google Scholar] [CrossRef]
- Letouzé, E.; Moreau, P.; Munshi, N.; Samur, M.; Minvielle, S.; Touzeau, C. Mechanisms of resistance to bispecific T cell engagers in multiple myeloma and their clinical implications. Blood Adv. 2024, 8, 2952–2959. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, Q.; Liu, X.; Guo, X.; Song, Y. Bispecific antibodies targeting BCMA, GPRC5D, and FcRH5 for multiple myeloma therapy: Latest updates from ASCO 2023 annual meeting. J. Hematol. Oncol. 2023, 16, 92. [Google Scholar] [CrossRef]
- Otero, P.R.; D’Souza, A.; Reece, D.; van de Donk, N.; Chari, A.; Krishnan, A.; Martin, T.; Mateos, M.-V.; Morillo, D.; Hurd, D. S188: Teclistamab in combination with daratumumab, a novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma: Updated phase 1b results. HemaSphere 2022, 6, 89–90. [Google Scholar] [CrossRef]
- Matous, J.; Biran, N.; Perrot, A.; Berdeja, J.G.; Dorritie, K.; Van Elssen, J.; Searle, E.; Touzeau, C.; Anguille, S.; Vishwamitra, D. Talquetamab+ pomalidomide in patients with relapsed/refractory multiple myeloma: Safety and preliminary efficacy results from the phase 1b MonumenTAL-2 study. Blood 2023, 142, 1014. [Google Scholar] [CrossRef]
- Grant, S.J.; Freeman, C.L.; Rosko, A.E. Treatment of older adult or frail patients with multiple myeloma. Hematology 2021, 2021, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.D.; Baljevic, M.; Baz, R.; Campagnaro, E.; Castillo, J.J.; Costello, C.; D’Angelo, C. Multiple myeloma, version 2.2024, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 1281–1301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLoughlin, A.; Rees, M.J. Minimising Toxicity and Maximising Response: T-Cell Engagers for Elderly Patients with Multiple Myeloma. Lymphatics 2025, 3, 14. https://doi.org/10.3390/lymphatics3020014
McLoughlin A, Rees MJ. Minimising Toxicity and Maximising Response: T-Cell Engagers for Elderly Patients with Multiple Myeloma. Lymphatics. 2025; 3(2):14. https://doi.org/10.3390/lymphatics3020014
Chicago/Turabian StyleMcLoughlin, Anthony, and Matthew J. Rees. 2025. "Minimising Toxicity and Maximising Response: T-Cell Engagers for Elderly Patients with Multiple Myeloma" Lymphatics 3, no. 2: 14. https://doi.org/10.3390/lymphatics3020014
APA StyleMcLoughlin, A., & Rees, M. J. (2025). Minimising Toxicity and Maximising Response: T-Cell Engagers for Elderly Patients with Multiple Myeloma. Lymphatics, 3(2), 14. https://doi.org/10.3390/lymphatics3020014