Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oil Analysis
2.2. Fungicide Preparation
2.3. Fungal Pathogen Isolation, Inoculation, & Identification
2.4. Fungicidal Activity and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gikas, G.D.; Parlakidis, P.; Mavropoulos, T.; Vryzas, Z. Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. Sustainability 2022, 14, 4056. [Google Scholar] [CrossRef]
- Ahmad, Z.; Abbas, H.; Murtaza, T.; Khan, A.U.R.; Ali, A.; Zahid, K.; Tahir, Z.; Mahmood, T.; Habib, A. Assessment of responses of peach cultivars to postharvest pathogen Botrytis cinerea and its mitigation using plant essential oils. Plant Prot. 2023, 7, 2. [Google Scholar] [CrossRef]
- Antuhu, Y.L.; Muanpuii, C.V.; Maisnam, R.; Kumari, A.; López-Menchero, J.R.; Coloma, A.G.; Andrés, M.F.; Kaushik, N. Assessing the efficacy of essential oil fumigation in mitigating Botrytis cinerea infection in cherry tomato. BIO Web Conf. 2024, 110, 02008. [Google Scholar] [CrossRef]
- Karakus, S.; Atıcı, O.; Turan, M.; Azizi, S.; Hajizadeh, H.S.; Kaya, O. Volatile organic compounds produced by some synthetic essential oils as biological fumigants against Botrytis cinerea on apples. Chem. Biol. Technol. Agric. 2023, 10, 136. [Google Scholar] [CrossRef]
- Nofia, N.; Martosudiro, M.; Muhibuddin, A. Growth Inhibition of Botrytis cinerea Fungus on Strawberry (Fragaria sp.) Using Kaffir Lime (Citrus hystrix) Leaf Essential Oil Emulsion. Agro. Bali. Agric. J. 2024, 7, 1. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, J.; Liu, H.; Lian, H.; Liu, J. In vitro antifungal activity of essential oils against Botrytis cinerea of postharvest grapes. IOP Conf. Ser. Earth Environ. Sci. 2022, 1035, 012008. [Google Scholar] [CrossRef]
- Gomes, H.D.O.; Menezes, J.M.C.; da Costa, J.G.M.; Coutinho, H.D.M.; Teixeira, R.N.P.; do Nascimento, R.F. A socio-environmental perspective on pesticide use and food production. Ecotoxicol. Environ. Saf. 2020, 197, 110627. [Google Scholar] [CrossRef]
- Neuwirthová, N.; Trojan, M.; Svobodová, M.; Vašíčková, J.; Šimek, Z.; Hofman, J.; Bielská, L. Pesticide residues remaining in soils from previous growing season (s)-Can they accumulate in non-target organisms and contaminate the food web? Sci. Total Environ. 2019, 646, 1056–1062. [Google Scholar] [CrossRef]
- Bi, Y.; Jiang, H.; Hausbeck, M.K.; Hao, J.J. Inhibitory effects of essential oils for controlling Phytophthora capsica. Plant Dis. 2012, 96, 6. [Google Scholar] [CrossRef]
- Christova, P.K.; Dobreva, A.M.; Dzhurmanski, A.G.; Dincheva, I.N.; Dimkova, S.D.; Zapryanova, N.G. The Impact of Plant Essential Oils on the Growth of the Pathogens Botrytis cinerea, Fusarium solani, and Phytophthora pseudocryptogea. Life 2024, 14, 817. [Google Scholar] [CrossRef]
- Donnarumma, L.; Milano, F.; Trotta, S.; Annesi, T. Use of essential oils in control strategies against zucchini powdery mildew. J. Phytopathol. 2015, 163, 877–885. [Google Scholar] [CrossRef]
- Hegazi, M.A.; El-Kot, G.A.N. Efficacy of Some Essential Oils on Controlling Powdery Mildew on Zinnia (Zinnia elegans, L.). J. Agric. Sci. 2010, 2, 4. [Google Scholar] [CrossRef]
- La Torre, A.; Mandalà, C.; Pezza, L.; Caradonia, F.; Battaglia, V. Evaluation of essential plant oils for the control of Plasmopara viticola. J. Essent. Oil Res. 2014, 26, 4. [Google Scholar] [CrossRef]
- Lu, M.; Han, Z.; Yao, L. In vitro and in vivo antimicrobial efficacy of essential oils and individual compounds against Phytophthora parasitica var. nicotianae. J. Appl. Microbiol. 2013, 115, 1. [Google Scholar] [CrossRef]
- Muchembled, J.; Deweer, C.; Sahmer, K.; Halama, P. Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole. Environ. Sci. Pollut. Res. 2018, 25, 29921–29928. [Google Scholar] [CrossRef]
- Nagy, G.; Hochbaum, T.; Sárosi, S.; Ladányi, M. In Vitro and in Planta Activity of Some Essential Oils against Venturia inaequalis (Cooke) G. Winter. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 1. [Google Scholar] [CrossRef]
- Nana, W.L.; Eke, P.; Fokom, R.; Bakanrga-Via, I.; Begoude, D.; Tchana, T.; Tchameni, N.S.; Kuate, J.; Menut, C.; Fekam Boyom, F. Antimicrobial activity of Syzygium aromaticum and Zanthoxylum xanthoxyloides essential oils against Phytophthora megakarya. J. Phytopathol. 2015, 163, 7–8. [Google Scholar] [CrossRef]
- Rienth, M.; Crovadore, J.; Ghaffari, S.; Lefort, F. Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis vinifera) and primes plant immunity mechanisms. PLoS ONE 2019, 14, 9. [Google Scholar] [CrossRef]
- Sturchio, E.; Donnarumma, L.; Annesi, T.; Milano, F.; Casorri, L.; Masciarelli, E.; Zanellato, M.; Meconi, C.; Boccia, P. Essential oils: An alternative approach to management of powdery mildew diseases. Phytopathol. Mediterr. 2014, 53, 3. [Google Scholar] [CrossRef]
- Maia, A.J.; Oliveira, J.S.B.; Schwan-Estrada, K.R.F.; Faria, C.M.R.; Batista, A.F.; Costa, W.F.; Batista, B.N. The control of isariopsis leaf spot and downy mildew in grapevine cv. Isabel with the essential oil of lemon grass and the activity of defensive enzymes in response to the essential oil. Crop Prot. 2014, 63, 57–67. [Google Scholar] [CrossRef]
- Sameza, M.L.; Bedine Boat, M.A.; Tchameni Nguemezi, S.; Nguemnang Mabou, L.C.; Jazet Dongmo, P.M.; Boyom, F.F.; Menut, C. Potential use of Eucalyptus globulus essential oil against Phytophthora colocasiae the causal agent of taro leaf blight. Eur. J. Plant Pathol. 2014, 140, 243–250. [Google Scholar] [CrossRef]
- Carlson, R.E.; Wilson, T.M. Fungicidal compositions comprising essential oils. US Patent 2025/0176562 A1, 5 June 2025. [Google Scholar]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Leyronas, C.; Duffaud, M.; Nicot, P.C. Compared efficiency of the isolation methods for Botrytis cinerea. Mycology 2012, 3, 4. [Google Scholar] [CrossRef]
- Asemaninejad, A.; Weerasuriya, N.; Gloor, G.B.; Lindo, Z.; Thorn, R.G. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA. PLoS ONE 2016, 11, e0159043. [Google Scholar] [CrossRef]
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Tang, X.; Yangjing, G.; Zhuoma, G.; Guo, X.; Cao, P.; Yi, B.; Wang, W.; Ji, D.; Pasquali, M.; Baccelli, I.; et al. Biological characterization and in vitro fungicide screenings of a new causal agent of wheat Fusarium head blight in Tibet, China. Front. Microbiol. 2022, 13, 941734. [Google Scholar] [CrossRef]
- Howyzeh, M.S.; Noori, S.A.S.; Shariati, V. Essential oil profiling of Ajowan (Trachyspermum ammi) industrial medicinal plant. Ind. Crop. Prod. 2018, 119, 255–259. [Google Scholar] [CrossRef]
- Li, Y.Q.; Kong, D.X.; Huang, R.S.; Liang, H.L.; Xu, C.G.; Wu, H. Variations in essential oil yields and compositions of Cinnamomum cassia leaves at different developmental stages. Ind. Crop. Prod. 2013, 47, 92–101. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 2006, 54, 6303–6307. [Google Scholar] [CrossRef]
Compound | KI | Ajowan | Cassia | Clove | Eucalyptus | Lemongr. | Oregano |
---|---|---|---|---|---|---|---|
α-Pinene | 932 | 1.3 | 0.2 | nd | 3.6 | 0.2 | 1.0 |
Camphene | 946 | 0.1 | 0.1 | nd | tr | 1.0 | 0.2 |
Benzaldehyde | 952 | nd | 1.2 | nd | nd | nd | nd |
β-Pinene | 974 | 2.9 | tr | nd | 0.2 | tr | 1.2 |
6-Methyl-5-hepten-2-one | 981 | nd | nd | nd | nd | 1.2 | nd |
Myrcene | 988 | 0.6 | nd | nd | 0.3 | nd | 1.0 |
p-Cymene | 1020 | 26.2 | tr | tr | 5.9 | 0.1 | 7.6 |
Limonene | 1024 | 0.4 | tr | nd | 8.4 | 0.4 | 0.6 |
1,8-Cineole | 1026 | 0.2 | nd | tr | 80.1 | tr | 1.1 |
γ-Terpinene | 1054 | 43.2 | nd | nd | 0.7 | nd | 3.5 |
Linalool | 1095 | nd | nd | nd | nd | 1.0 | 2.7 |
Borneol | 1165 | nd | 0.1 | nd | nd | 0.2 | 1.0 |
Neral | 1235 | nd | nd | nd | nd | 30.5 | nd |
Geraniol | 1249 | nd | nd | nd | nd | 6.5 | nd |
Geranial | 1264 | nd | nd | nd | nd | 42.2 | nd |
(E)-Cinnamaldehyde | 1267 | nd | 80.8 | nd | nd | nd | nd |
Thymol | 1289 | 21.0 | nd | nd | nd | nd | 2.2 |
Carvacrol | 1298 | 0.6 | nd | nd | nd | nd | 69.6 |
Eugenol | 1356 | nd | tr | 87.1 | nd | nd | 0.1 |
Geranyl acetate | 1379 | nd | nd | nd | nd | 3.4 | nd |
(E)-Caryophyllene | 1417 | tr | 0.1 | 7.4 | nd | 1.7 | 1.9 |
Coumarin | 1432 | nd | 2.2 | nd | nd | nd | nd |
(E)-Cinnamyl acetate | 1443 | nd | 2.3 | nd | nd | nd | nd |
α-Humulene | 1452 | nd | nd | 1.8 | nd | 0.2 | 0.3 |
γ-Cadinene | 1513 | nd | tr | nd | nd | 1.4 | nd |
(E)-o-Methoxy cinnamaldehyde | 1527 | nd | 8.3 | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, T.M.; Laney, A.; Ruggles, Z.; Carlson, R.E. Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea). Agrochemicals 2025, 4, 11. https://doi.org/10.3390/agrochemicals4030011
Wilson TM, Laney A, Ruggles Z, Carlson RE. Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea). Agrochemicals. 2025; 4(3):11. https://doi.org/10.3390/agrochemicals4030011
Chicago/Turabian StyleWilson, Tyler M., Alma Laney, Zabrina Ruggles, and Richard E. Carlson. 2025. "Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)" Agrochemicals 4, no. 3: 11. https://doi.org/10.3390/agrochemicals4030011
APA StyleWilson, T. M., Laney, A., Ruggles, Z., & Carlson, R. E. (2025). Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea). Agrochemicals, 4(3), 11. https://doi.org/10.3390/agrochemicals4030011