Phosphorus and Glyphosate Adsorption and Desorption Trends across Different Depths in Sandy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Phosphorus Adsorption and Desorption
2.3. Glyphosate Adsorption and Desorption
2.4. Adsorption and Desorption Analysis
3. Results and Discussion
3.1. Ortho-Phosphorus Sorption Studies
3.2. Total Phosphorus Sorption Studies
3.3. Glyphosate Adsorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995. [Google Scholar] [CrossRef]
- Parry, R. Agricultural Phosphorus and Water Quality: A U.S. Environmental Protection Agency Perspective. J. Envinon. Qual. 1998, 27, 258–261. [Google Scholar] [CrossRef]
- Dolan, D.M.; Bierman, V.J.; Dipert, M.H.; Geist, R.D. Statistical analysis of the spatial and temporal variability of the ratio chlorophyll A to phytoplankton cell volume in Saginaw Bay, Lake Huron. J. Great Lakes Res. 1978, 4, 75–83. [Google Scholar] [CrossRef]
- Rolle Longley, K.; Huang, W.; Clark, C.; Johnson, E. Effects of nutrient load from St. Jones River on water quality and eutrophication in Lake George, Florida. Limnologica. 2019, 77, 125687. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Smith, S.; Jones, O.; Berg, W.; Coleman, G. The Transport of bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 1992, 21, 30–35. [Google Scholar] [CrossRef]
- Daniel, T.C.; Sharpley, A.N.; Lemunyon, J.L. Agricultural Phosphorus and Eutrophication: A Symposium Overview. J. Environ. Qual. 1998, 27, 251–257. [Google Scholar] [CrossRef]
- Heil, C.A.; Muni-Morgan, A.L. Florida’s Harmful Algal Bloom (HAB) Problem: Escalating risks to human, environmental and economic health with climate change. Front. Ecol. Environ. 2021, 9, 646080. [Google Scholar] [CrossRef]
- McCabe, E.J.B.; Wells, R.S.; Toms, C.N.; Barleycorn, A.A.; Wilkinson, K.A.; Palubok, V.I. Effects of multiple karenia brevis red tide blooms on a common bottlenose dolphin (Tursiops truncatus) Prey fish assemblage: Patterns of resistance and resilience in Sarasota Bay, Florida. Front. Mar. Sci. 2021, 8, 1068. [Google Scholar] [CrossRef]
- Gunter, G.; Williams, R.H.; Davis, C.C.; Smith, F.G.W. Catastrophic Mass Mortality of marine animals and coincident phytoplankton bloom on the west coast of Florida, November 1946 to August 1947. Ecol. Monogr. 1948, 18, 310–324. [Google Scholar] [CrossRef]
- Forrester, D.J.; Gaskin, J.M.; White, F.H.; Thompson, N.P.; Quick, J.A., Jr.; Henderson, G.E.; Woodard, J.C.; Robertson, W.D. An epizootic of waterfowl associated with a red tide episode in Florida. J. Wildl. Dis. 1977, 13, 160–167. [Google Scholar] [CrossRef]
- Plakas, S.M.; Dickey, R.W. Advances in monitoring and toxicity assessment of brevetoxins in molluscan shellfish. Toxicon 2010, 56, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Pierce, R.H.; Henry, M.S.; Proffitt, L.S.; Hasbrouck, P.A. Red Tide Toxin (Brevetoxin) Enrichment in Marine Aerosol. In Toxic Marine Phytoplankton; Graneli, E., Sundstrim, B., Elder, L., Anderson, D., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 128–131. [Google Scholar]
- Backer, L.C.; Fleming, L.E.; Rowan, A.; Cheng, Y.; Benson, J.; Pierce, R.H.; Zaias, J.; Bean, J.; Bossart, G.D.; Johnson, D.; et al. Recreational exposure to aerosolized brevetoxins during Florida red tide events. Harmful Algae 2003, 2, 19–28. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Grandcoin, A.; Piel, S.; Baurès, E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017, 117, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Chaufan, G.; Coalova, I.; de Molina Mdel, C.R. Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: Differences with its active ingredient. Int. J. Toxicol. 2014, 33, 29–38. [Google Scholar] [CrossRef]
- De María, M.; Silva-Sanchez, C.; Kroll, K.J.; Walsh, M.T.; Nouri, M.-Z.; Hunter, M.E.; Ross, M.; Clauss, T.M.; Denslow, N.D. Chronic exposure to glyphosate in Florida manatee. Environ. Int. 2021, 152, 106493. [Google Scholar] [CrossRef]
- Lushchak, O.; Kubrak, O.I.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Low toxic herbicide roundup induces mild oxidative stress in goldfish tissues. Chemosphere 2009, 76, 932–937. [Google Scholar] [CrossRef]
- Glusczak, L.; Loro, V.L.; Pretto, A.; Moraes, B.S.; Raabe, A.; Duarte, M.F.; da Fonseca, M.B.; de Menezes, C.C.; Valladão, D.M.D.S. Acute exposure to glyphosate herbicide affects oxidative parameters in Piava (Leporinus obtusidens). Arch. Environ. Contam. Toxicol. 2011, 61, 624–630. [Google Scholar] [CrossRef]
- Sheals, J.; Sjöberg, S.; Persson, P. Adsorption of glyphosate on Goethite: Molecular characterization of surface complexes. Environ. Sci. Technol. 2002, 36, 3090–3095. [Google Scholar] [CrossRef]
- Gimsing, A.L.; Borggaard, O.K. Effect of KCl and CaCl2 as background electrolytes on the competitive adsorption of glyphosate and phosphate on Goethite. Clay Clay Min. 2001, 49, 270–275. [Google Scholar] [CrossRef]
- Gimsing, A.L.; Borggaard, O.K.; Bang, M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur. J. Soil Sci. 2004, 55, 183–191. [Google Scholar] [CrossRef]
- Gimsing, A.L.; Borggaard, O.K. Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Min. 2002, 37, 509–515. [Google Scholar] [CrossRef]
- Gimsing, A.L.; Borggaard, O.K.; Sestoft, P. Modeling the kinetics of the competitive adsorption and desorption of glyphosate and phosphate on goethite and gibbsite and in soils. Environ. Sci. Technol. 2004, 38, 1718–1722. [Google Scholar] [CrossRef]
- Bohn, H.L.; OConner, G.A.; Strawn, D.G. Soil Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ogata, A. Mathematics of Dispersion with Linear Adsorption Isotherm; Geological Survey Professional Paper 411-H; United States Government Printing Office: Washington, DC, USA, 1964. [Google Scholar]
- Subramanyam, B.; Das, A. Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil. Int. J. Envion Sci. Technol. 2009, 6, 633–640. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online: https://www.nrcs.usda.gov/resources/data-and-reports/web-soil-survey (accessed on 20 March 2020).
- Kadyampakeni, D.M.; Morgan, K.T.; Mahmoud, K.; Schumann, A.; Nkedi-Kizza, P. Phosphorus and potassium distribution and adsorption on two Florida sandy soils. Soil. Sci. Soc. Am. J. 2014, 78, 325–334. [Google Scholar] [CrossRef]
- Winfield, T.W.; Bashe, W.J.; Baker, T.V. US Environmental Protection Agency Method 547, Determination of Glyphosate in Drinking Water by Direct-Aqueous Injection HPLC, Post-Column Derivatization, and Fluorescence Detection; US Environmental Protection Agency: Cincinnati, OH, USA, 1990. [Google Scholar]
- Environmental Protection Agency. Fate, Transport, and Transformation Test Guidelines: Adsorption/Desorption (Batch Equilibrium); Government Printing Office: Washington, DC, USA, 2008. [Google Scholar]
- Harris, W.G.; Rhue, R.D.; Kidder, G.; Brown, R.B.; Littell, R. Phosphorus retention as related to morphology of sandy coastal plain soil materials. Soil. Sci. Soc. Am. J. 1996, 60, 1513–1521. [Google Scholar] [CrossRef]
- Essington, M. Surface Chemistry and Adsorption Reactions. In Soil and Water Chemistry: An Integrative Approach; CRC Press: Boca Raton, FL, USA, 2015; pp. 383–486. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Havlin, J.; Tisdale, S.; Nelson, W.; Beaton, J. Phosphorus. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson: London, UK, 2016; pp. 185–221. [Google Scholar]
- Zhou, M.; Li, Y. Phosphorus-sorption characteristics of calcareous soils and limestone from the southern everglades and adjacent farmlands. Soil. Sci. Soc. Am. J. 2001, 65, 1404–1412. [Google Scholar] [CrossRef]
- Zhang, M.K.; Calvert He, Z.L.; Stoffella, D.V.; Li, Y.C.; Lamb, E.M. Release potential of phosphorus in Florida sandy soils in relation to phosphorus fractions and adsorption capacity. J. Environ. Sci. Health Part A 2002, 37, 793–809. [Google Scholar] [CrossRef]
- Dari, B.; Nair, V.D.; Harris, W.G.; Nair, P.; Sollenberger, L.; Mylavarapu, R. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 2016, 280, 82–87. [Google Scholar] [CrossRef]
- Torrent, J.; Delgado, A. Using phosphorus concentration in the soil solution to predict phosphorus desorption to water. J. Environ. Qual. 2001, 30, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, T.; Gundale, M.; MacKenzie, D.; Jones, D. Biochar Effects on Soil Nutrient Transformations. In Biochar for Environ-Mental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: London, UK, 2015; pp. 421–454. [Google Scholar]
- Ramulu, U.S.S.; Pratt, P.F.; Page, A.L. Phosphorus fixation by soils in relation to extractable iron oxides and mineralogical composition. Soil. Sci. Soc. Am. J. 1967, 31, 193–196. [Google Scholar] [CrossRef]
- Udo, E.J.; Uzu, F.O. Characteristics of phosphorus adsorption by some Nigerian soils. Soil. Sci. Soc. Am. J. 1972, 36, 879–883. [Google Scholar] [CrossRef]
- Reddy, R.; DeLaune, R. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest. Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Munira, S.; Farenhorst, A.; Akinremi, W. Phosphate and glyphosate sorption in soils following long-term phosphate applications. Geoderma 2018, 313, 146–153. [Google Scholar] [CrossRef]
- Kanissery, R.G.; Welsh, A.; Sims, G.K. Effect of soil aeration and phosphate addition on the microbial bioavailability of carbon-14-glyphosate. J. Environ. Qual. 2015, 44, 137–144. [Google Scholar] [CrossRef]
- Sprankle, P.; Meggitt, W.F.; Penner, D. Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci. 1975, 23, 229–234. [Google Scholar] [CrossRef]
- Sprankle, P.; Meggitt, W.F.; Penner, D. Rapid inactivation of glyphosate in the soil. Weed Sci. 1975, 23, 224–228. [Google Scholar] [CrossRef]
- Uthman, Q.O.; Kadyampakeni, D.M.; Nkedi-Kizza, P. Manganese adsorption, availability, and uptake in citrus under microsprinkler irrigation. Age 2020, 3, e20061. [Google Scholar] [CrossRef]
- Veiga, F.; Zapata, J.M.; Fernandez Marcos, M.L.; Alvarez, E. Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain. Sci. Total Environ. 2001, 271, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Landry, D.; Dousset, S.; Fournier, J.C.; Andreux, F. Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environ. Pollut. 2005, 138, 191–200. [Google Scholar] [CrossRef] [PubMed]
Sorption | Depth (cm) | Linear Equations | R2 | Average Kd | Standard Deviation | Confidence Interval | Lower Limit | Upper Limit | Statistical Significance a |
---|---|---|---|---|---|---|---|---|---|
Adsorption | 0–15 | Y = 0.316x | 0.78 | 0.318 | 0.07 | 0.034 | 0.284 | 0.352 | A |
15–30 | Y = 0.335x | 0.67 | 0.384 | 0.139 | 0.067 | 0.317 | 0.451 | A | |
30–45 | Y = 0.516x | 0.89 | 0.518 | 0.084 | 0.039 | 0.480 | 0.558 | B | |
Desorption | 0–15 | Y = 60.87x | 0.98 | 60.885 | 4.948 | 2.042 | 58.843 | 62.928 | A |
15–30 | Y = 51.45x | 0.92 | 54.491 | 9.832 | 4.058 | 50.432 | 58.549 | A | |
30–45 | Y = 74.25x | 0.99 | 74.321 | 5.083 | 2.098 | 72.223 | 76.419 | B |
Soil Depth (cm) | Organic Matter (%) a | pH b | Iron (mg/kg) c | Aluminum (mg/kg) |
---|---|---|---|---|
0–15 | 0.28 | 5.97 | 21.79 | 49.88 |
15–30 | 0.18 | 5.84 | 33.04 | 76.45 |
30–45 | 0.11 | 5.60 | 36.08 | 86.09 |
Sorption | Depth (cm) | Linear Equations | R2 | Average Kd | Standard Deviation | Confidence Interval | Lower Limit | Upper Limit | Statistical Significance a |
---|---|---|---|---|---|---|---|---|---|
Adsorption | 0–15 | Y = 0.579x | 0.64 | 0.732 | 0.409 | 0.197 | 0.535 | 0.929 | a |
15–30 | Y = 0.565x | 0.69 | 0.741 | 0.457 | 0.208 | 0.533 | 0.949 | a | |
30–45 | Y = 0.931x | 0.75 | 0.948 | 0.241 | 0.113 | 0.835 | 1.061 | a | |
Desorption | 0–15 | Y = 52.653x | 0.96 | 52.24 | 4.31 | 1.71 | 50.53 | 53.94 | a |
15–30 | Y = 51.076x | 0.93 | 53.83 | 9.48 | 4.20 | 49.63 | 58.03 | a | |
30–45 | Y = 59.955x | 0.99 | 60.34 | 4.76 | 2.06 | 58.28 | 62.39 | b |
Sorption | Depth (cm) | Linear Equations | R2 | Kl | Sorption Capacity (mg/kg) | Average Sorption Maxima (mg/kg) | Standard Deviation | Confidence Interval | Lower Limit | Upper Limit | Statistical Significance a |
---|---|---|---|---|---|---|---|---|---|---|---|
Adsorption | 0–15 | Y = 0.023x | 0.48 | 1.46 | 4.94 | 117.18 | 73.29 | 35.33 | 81.85 | 152.51 | ab |
15–30 | Y = 0.014x | 0.71 | 0.24 | 71.42 | 88.92 | 54.35 | 24.74 | 64.18 | 113.66 | a | |
30–45 | Y = 0.007x | 0.92 | 0.07 | 140.85 | 148.73 | 36.42 | 17.04 | 131.69 | 165.77 | b |
Sorption | Depth (cm) | Linear Equations | R2 | Average Kd | Standard Deviation | Confidence Interval | Lower Limit | Upper Limit | Statistical Significance a |
---|---|---|---|---|---|---|---|---|---|
Adsorption | 0–15 | Y = 2.010x | 0.85 | 2.137 | 0.734 | 0.343 | 1.793 | 2.480 | a |
15–30 | Y = 1.676x | 0.90 | 1.212 | 0.714 | 0.412 | 0.800 | 1.625 | b | |
30–45 | Y = 3.472x | 0.83 | 4.971 | 2.520 | 1.343 | 3.629 | 6.314 | c | |
Desorption | 0–15 | Y = 15.308x | 0.97 | 14.202 | 5.495 | 3.173 | 11.030 | 17.375 | a |
15–30 | Y = 50.685x | 0.60 | 47.052 | 36.920 | 17.795 | 29.257 | 64.846 | b | |
30–45 | Y = 51.153x | 0.93 | 43.527 | 16.373 | 7.663 | 35.864 | 51.190 | b |
Sorption | Depth (cm) | Linear Equations | R2 | Kf | n | Average Kf | Standard Deviation | Confidence Interval | Lower Limit | Upper Limit | Statistical Significance a |
---|---|---|---|---|---|---|---|---|---|---|---|
Desorption | 0–15 | Y = 1.197x + 0.829 | 0.97 | 6.75 | 0.83 | 0.794 | 0.134 | 0.081 | 0.713 | 0.875 | a |
15–30 | Y = 2.093x + 0.152 | 0.87 | 1.42 | 0.48 | 0.186 | 0.530 | 0.293 | −0.108 | 0.479 | b | |
30–45 | Y = 0.830x + 1.699 | 0.71 | 50.01 | 1.21 | 1.415 | 0.219 | 0.109 | 1.306 | 1.524 | c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenn, R.A.; Kadyampakeni, D.M.; Kanissery, R.G.; Judy, J.; Bashyal, M. Phosphorus and Glyphosate Adsorption and Desorption Trends across Different Depths in Sandy Soil. Agrochemicals 2023, 2, 503-516. https://doi.org/10.3390/agrochemicals2040028
Fenn RA, Kadyampakeni DM, Kanissery RG, Judy J, Bashyal M. Phosphorus and Glyphosate Adsorption and Desorption Trends across Different Depths in Sandy Soil. Agrochemicals. 2023; 2(4):503-516. https://doi.org/10.3390/agrochemicals2040028
Chicago/Turabian StyleFenn, Rachel A., Davie M. Kadyampakeni, Ramdas G. Kanissery, Jonathan Judy, and Mahesh Bashyal. 2023. "Phosphorus and Glyphosate Adsorption and Desorption Trends across Different Depths in Sandy Soil" Agrochemicals 2, no. 4: 503-516. https://doi.org/10.3390/agrochemicals2040028
APA StyleFenn, R. A., Kadyampakeni, D. M., Kanissery, R. G., Judy, J., & Bashyal, M. (2023). Phosphorus and Glyphosate Adsorption and Desorption Trends across Different Depths in Sandy Soil. Agrochemicals, 2(4), 503-516. https://doi.org/10.3390/agrochemicals2040028