Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides
Abstract
:1. Introduction
2. Methods
- “Glyphosate. Study summaries for genotoxicity studies” issued by OPP [143].
- Descriptions of Monsanto and other registrant-commissioned genotoxicity assays contained in expert reports, depositions and documents generated as a result of ongoing Roundup-NHL litigation.
3. Results
“The overall weight of evidence indicates that there is no convincing evidence that glyphosate induces mutations in vivo via the oral route.”
4. Discussion
- Proven carcinogen or oncogenic;
- Probable carcinogen or probably oncogenic;
- Possible or possibly carcinogenic or oncogenic;
- Not likely to be carcinogenic or oncogenic;
- Inadequate data to support or reach a classification decision.
- 3 studies were judged to be “High” quality;
- 21 were regarded as “Moderate” quality; and
- 34 were determined to be of “low” quality.
“Based on the weight-of-the-evidence, the agency cannot exclude chance or bias as an explanation for the observed associations in the database… A conclusion regarding the association between glyphosate exposure and risk of NHL cannot be determined based on available data”.
“ORD’s epidemiologists agree with IARC that there is ‘limited evidence’ of carcinogenicity in humans and understands IARC’s definition of ‘limited evidence’ as ‘a positive association has been observed’ for which a causal association is ‘credible, but chance, bias, or confounding could not be ruled out with reasonable confidence’” [43].
Starkly Divergent Assessments of the Genotoxicity Database
“… there is strong evidence that glyphosate can operate through two key [mechanistic] characteristics of known human carcinogens”. Specifically:
“There is strong evidence that exposure to glyphosate or glyphosate-based formulations is genotox based on studies in humans in vitro and studies in experimental animals…”; “There is strong evidence that glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid [AMPA] can act to induce oxidative stress…” [30].
- OPP focused on studies conducted testing technical glyphosate, while IARC placed considerable weight on in vivo GBH studies focused on biomarkers of genotoxicity in exposed human populations and experimental animals.
- The significant potentiation of GBH genotoxicity caused by the coformulants in GBHs, coupled with the enhancement of dermal penetration brought about by the most common GBH surfactants (POEAs).
- OPP/EPA relied predominantly on inappropriate bacterial genotoxicity assays conducted by or for GBH registrants, almost all of which were negative, while the IARC Working Group relied on a larger body of mostly published genotoxicity assays, of which over 70% reported one or more positive response.
5. Conclusions
- In accord with US federal law, the OPP focused its review on dietary exposures to technical glyphosate (i.e., the “oral route” of exposure), and largely ignored dermal exposures to GBHs and the ways that the surfactants in GBHs increase applicator exposures and, consequently, increase cancer risk.
- The IARC Working Group placed heavy weight on published epidemiology and genotoxicity studies in human populations exposed to formulated GBHs, and especially studies involving people exposed to GBHs over a span of years. Conversely, OPP placed little or no weight on these key studies and/or raised questions over the conclusions articulated by study authors.
- GBH applicators are exposed to far more glyphosate in a day of spraying GBHs than from glyphosate residues in their diet. This is especially the case among applicators who apply a GBH with small-scale, handheld spray equipment.
- The OPP relied mostly on purportedly negative studies done by GBH registrants, while IARC relied primarily on published studies not commissioned or sponsored by manufacturers, of which more than 70% reported positive results.
- (1)
- The identity and concentrations of all inert ingredients should be disclosed and listed on pesticide labels;
- (2)
- Applicator and farmworker dermal-exposure risk assessments should be markedly improved and new risk-mitigation measures and requirements codified in law;
- (3)
- The majority of the toxicological and exposure studies required by EPA prior to approval of new pesticide uses, or reregistration of existing uses, should be carried out on both active ingredients and selected, widely-sold formulated products; and
- (4)
- Most foundational pesticide toxicity and risk assessment studies should be conducted by scientists independent of the pesticide industry.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benbrook, C. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atwood, D.; Paisley-Jones, C. EPA Pesticides Industry Sales and Usage: 2008–2012 Market Estimates. 2017. Available online: https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2008-2012-market-estimates (accessed on 10 October 2022).
- Environmental Protection Agency (US). Revised Glyphosate Issue Paper: Evaluation of Carcinogenic Potential. 2017. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2009-0361-0073 (accessed on 10 October 2022).
- Macfarlane, E.; Carey, R.; Keegel, T.; El-Zaemay, S.; Fritschi, L. Dermal exposure associated with occupational end use of pesticides and the role of protective measures. Saf. Health Work 2013, 4, 136–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldi, I.; Lebailly, P.; Jean, S.; Rougetet, L.; Dulaurent, S.; Marquet, P. Pesticide contamination of workers in vineyards in France. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Lebailly, P.; Bouchart, V.; Baldi, I.; Lecluse, Y.; Heutte, N.; Gislard, A.; Malas, J.P. Exposure to pesticides in open-field farming in France. Ann. Occup. Hyg. 2009, 53, 69–81. [Google Scholar] [CrossRef]
- Connolly, A.; Coggins, M.A.; Galea, K.S.; Jones, K.; Kenny, L.; McGowan, P.; Basinas, I. Evaluating Glyphosate Exposure Routes and Their Contribution to Total Body Burden: A Study Among Amenity Horticulturalists. Ann. Work Expo. Health. 2019, 63, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Dosemeci, M.; Alavanja, M.C.; Rowland, A.S.; Mage, D.; Zahm, S.H.; Rothman, N.; Lubin, J.H.; Hoppin, J.A.; Sandler, D.P.; Blair, A. A quantitative approach for estimating exposure to pesticides in the Agricultural Health Study. Ann. Occup. Hyg. 2002, 46, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Machado-Neto, J.G.; Bassini, A.J.; Aguiar, L.C. Safety of working conditions of glyphosate applicators on Eucalyptus forests using knapsack and tractor powered sprayers. Bull. Environ. Contam. Toxicol. 2000, 64, 309–315. [Google Scholar] [CrossRef]
- Stephenson, C.L.; Harris, C.A. An assessment of dietary exposure to glyphosate using refined deterministic and probabilistic methods. Food Chem. Toxicol. 2016, 95, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Vicini, J.L.; Jensen, P.K.; Young, B.M.; Swarthout, J.T. Residues of glyphosate in food and dietary exposure. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5226–5257. [Google Scholar] [CrossRef]
- Benbrook, C. Tracking pesticide residues and risk levels in individual samples—Insights and applications. Environ. Sci. Eur. 2022, 34. [Google Scholar] [CrossRef]
- Centers for Disease Control (US). Urinary Glyphosate (N-(Phosphonomethyl)glycine) Data Tables Published. 2022. Available online: https://www.cdc.gov/exposurereport/whats_new_071922_1.html (accessed on 25 October 2022).
- Centers for Disease Control (US). National Health and Nutrition Examination Survey, 2013–2014 Data Documentation, Codebook, and Frequencies: Glyphosate (GLYP)—Urine (SSGLYP_H). 2022. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSGLYP_H.htm (accessed on 25 October 2022).
- Mills, P.K.; Kania-Korwle, I.; Fagan, J.; McEvoy, L.K.; Laughlin, G.A.; Barett-Connor, E. Excretion of the Herbicide Glyphosate in Older Adults Between 1993 and 2016. JAMA 2017, 318, 1610–1611. [Google Scholar] [CrossRef]
- Conrad, A.; Schroter-Kermani, C.; Hoppe, H.W.; Ruther, M.; Pieper, S.; Kolossa-Gehring, M. Glyphosate in German adults—Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health 2017, 220, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Grau, D.; Grau, N.; Gascuel, Q.; Paroissin, C.; Stratonovitch, C.; Lairon, D.; Devault, D.A.; Di Cristofaro, J. Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ. Sci. Pollut. Res. Int. 2022, 29, 32882–32893. [Google Scholar] [CrossRef]
- Duke, S.O. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Manag. Sci. 2015, 71, 652–657. [Google Scholar] [CrossRef]
- Benbrook, C. Impacts of genetically engineered crops on pesticide use in the U.S.—The first sixteen years. Environ. Sci. Eur. 2012, 24. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture Economic Research Service. Adoption of Genetically Engineered Crops in the U.S. n.d. Available online: https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-u-s/ (accessed on 15 November 2022).
- Eaton, J.L.; Cathey, A.L.; Fernandez, J.A.; Watkins, D.J.; Silver, M.K.; Milne, G.L.; Velez-Vega, C.; Rosario, Z.; Cordero, J.; Alshawabkeh, A.; et al. The association between urinary glyphosate and aminomethyl phosphonic acid with biomarkers of oxidative stress among pregnant women in the PROTECT birth cohort study. Ecotoxicol. Environ. Saf. 2022, 233, 113300. [Google Scholar] [CrossRef]
- Silver, M.K.; Fernandez, J.; Tang, J.; McDade, A.; Sabino, J.; Rosario, Z.; Velez Vega, C.; Alshawabkeh, A.; Cordero, J.F.; Meeker, J.D. Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case-Control Study in the PROTECT Cohort (Puerto Rico). Environ. Health Perspect. 2021, 129, 57011. [Google Scholar] [CrossRef]
- Parvez, S.; Gerona, R.R.; Proctor, C.; Friesen, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health 2018, 17, 23. [Google Scholar] [CrossRef]
- Arbuckle, T.E.; Lin, Z.; Mery, L.S. An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population. Environ. Health Perspect. 2001, 109, 851–857. [Google Scholar] [CrossRef]
- Garry, V.F.; Harkins, M.E.; Erickson, L.L.; Long-Simpson, L.K.; Holland, S.E.; Burroughs, B.L. Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ. Health Perspect. 2002, 110, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesseur, C.; Pirrotte, P.; Pathak, K.V.; Manservisi, F.; Mandrioli, D.; Belpoggi, F.; Panzacchi, S.; Li, Q.; Barrett, E.S.; Nguyen, R.H.N.; et al. Maternal urinary levels of glyphosate during pregnancy and anogenital distance in newborns in a US multicenter pregnancy cohort. Environ. Pollut. 2021, 280, 117002. [Google Scholar] [CrossRef] [PubMed]
- Lesseur, C.; Pathak, K.V.; Pirrotte, P.; Martinez, M.N.; Ferguson, K.K.; Barrett, E.S.; Nguyen, R.H.N.; Sathyanarayana, S.; Mandrioli, D.; Swan, S.H.; et al. Urinary glyphosate concentration in pregnant women in relation to length of gestation. Environ. Res. 2021, 203, 111811. [Google Scholar] [CrossRef] [PubMed]
- Kongtip, P.; Nankongnab, N.; Phupancharoensuk, R.; Palarach, C.; Sujirarat, D.; Sangprasert, S.; Sermsuk, M.; Sawattrakool, N.; Woskie, S.R. Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women. J. Agromedicine 2017, 22, 282–289. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans—Volume 112: Some Organophosphate Insecticides and Herbicides. 2017. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/07/mono112.pdf (accessed on 10 October 2022).
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Meta-Analysis and Supporting Evidence. Mutat. Res./Rev. Mutat. Res. 2019, 781. [Google Scholar] [CrossRef]
- Portier, C.J.; Armstrong, B.K.; Baguley, B.C.; Baur, X.; Belyaev, I.; Belle, R.; Belpoggi, F.; Biggeri, A.; Bosland, M.C.; Bruzzi, P.; et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). J. Epidemiol. Community Health 2016, 70, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, G.; Koutros, S.; Hofmann, J.N.; Sandler, D.P.; Lubin, J.H.; Lynch, C.F.; Lerro, C.C.; De Roos, A.J.; Parks, C.G.; Alavanja, M.C.; et al. Glyphosate Use and Cancer Incidence in the Agricultural Health Study. J. Natl. Cancer Inst. 2018, 110, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.T.; Delzell, E. Systematic review and meta-analysis of glyphosate exposure and risk of lymphohematopoietic cancers. J. Environ. Sci. Health B 2016, 51, 402–434. [Google Scholar] [CrossRef] [Green Version]
- De Roos, A.J.; Blair, A.; Rusiecki, J.A.; Hoppin, J.A.; Svec, M.; Dosemeci, M.; Sandler, D.P.; Alavanja, M.C. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environ. Health Perspect. 2005, 113, 49–54. [Google Scholar] [CrossRef]
- Hardell, L.; Eriksson, M.; Nordstrom, M. Exposure to pesticides as risk factor for non-Hodgkin’s lymphoma and hairy cell leukemia: Pooled analysis of two Swedish case-control studies. Leuk. Lymphoma 2002, 43, 1043–1049. [Google Scholar] [CrossRef]
- Leon, M.E.; Schinasi, L.H.; Lebailly, P.; Beane Freeman, L.E.; Nordby, K.C.; Ferro, G.; Monnereau, A.; Brouwer, M.; Tual, S.; Baldi, I.; et al. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: A pooled analysis from the AGRICOH consortium. Int. J. Epidemiol. 2019, 48, 1519–1535. [Google Scholar] [CrossRef]
- Rana, I.; Taioli, E.; Zhang, L. Weeding out inaccurate information on glyphosate-based herbicides and risk of non-Hodgkin lymphoma. Environ. Res. 2020, 191, 110140. [Google Scholar] [CrossRef]
- Sheppard, L.; Shaffer, R.M. Re: Glyphosate Use and Cancer Incidence in the Agricultural Health Study. J. Natl. Cancer Inst. 2019, 111, 214–215. [Google Scholar] [CrossRef]
- Stur, E.; Aristizabal-Pachon, A.F.; Peronni, K.C.; Agostini, L.P.; Waigel, S.; Chariker, J.; Miller, D.M.; Thomas, S.D.; Rezzoug, F.; Detogni, R.S.; et al. Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS ONE 2019, 14, e0219610. [Google Scholar] [CrossRef] [Green Version]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef]
- Avila-Vazquez, M.; Maturano, E.; Etchegoyen, A.; Difilippo, F.S.; Maclean, B. Association between Cancer and Environmental Exposure to Glyphosate. Int. J. Clin. Med. 2017, 8, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency (US). Epidemiological Evidence. 2016. Available online: https://www.documentcloud.org/documents/20786671-doc101719 (accessed on 10 October 2022).
- Gerona, R.R.; Reiter, J.L.; Zakharevich, I.; Proctor, C.; Ying, J.; Mesnage, R.; Antoniou, M.; Winchester, P.D. Glyphosate exposure in early pregnancy and reduced fetal growth: A prospective observational study of high-risk pregnancies. Environ. Health 2022, 21, 95. [Google Scholar] [CrossRef]
- Benbrook, C. Shining a Light on Glyphosate-Based Herbicide Hazard, Exposures and Risk: Role of Non-Hodgkin Lymphoma Litigation in the USA. Eur. J. Risk Regul. 2020, 11, 498–519. [Google Scholar] [CrossRef] [Green Version]
- Baum Hedland. Monsanto Papers. n.d. Available online: https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/monsanto-papers/ (accessed on 15 November 2022).
- Environmental Protection Agency (US). Memo: Transmission of Meeting Minutes and Final Report of the December 13-16, 2016 FIFRA SAP Meeting Held to Consider and Review Scientific Issues Associated with EPA’s Evaluation of the Carcinogenic Potential of Glyphosate. 2017. Available online: https://www.epa.gov/sites/default/files/2017-03/documents/december_13-16_2016_final_report_03162017.pdf (accessed on 10 October 2022).
- Environmental Protection Agency (US). Glyphosate: Interim Registration Review Decision Case Number 0178. 2020. Available online: https://www.epa.gov/sites/default/files/2020-01/documents/glyphosate-interim-reg-review-decision-case-num-0178.pdf (accessed on 10 October 2022).
- Ninth Circuit Court of Appeals (US). Order No. 20-70787, NRDC and Pesticide Action Network vs. Environmental Protection Agency. 2022. Available online: https://cdn.ca9.uscourts.gov/datastore/opinions/2022/06/17/20-70787.pdf (accessed on 10 October 2022).
- Environmental Protection Agency (US). EPA Withdraws Glyphosate Interim Decision. 2022. Available online: https://www.epa.gov/pesticides/epa-withdraws-glyphosate-interim-decision (accessed on 28 October 2022).
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015, 16, 490–491. [Google Scholar] [CrossRef]
- Environmental Protection Agency (US). Summary of ORD comments on OPP’s Glyphosate Cancer Assessment. 2015. Available online: https://usrtk.org/wp-content/uploads/2017/03/ORDcommentsonOPPglyphosate.pdf (accessed on 10 October 2022).
- Cogliano, V.J. Email “Subject: Re: Glyphosate follow up”, December 7, 2015, to Birchfield, N. 2015. Available online: https://www.thenewlede.org/wp-content/uploads/2022/10/Glyphosate-RUP-EPA-ORD-OPP-2015-12-7-ORD-email-re-evaluation-Cogliano-Memo-2.pdf (accessed on 10 October 2022).
- Benbrook, C. How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides? Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef]
- Davoren, M.J.; Schiestl, R.H. Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendlin, Y.; Arcuri, A. Assessing the Safety of Glyphosate. Environ. Epidemiol. 2019, 3. [Google Scholar] [CrossRef]
- Environmental Protection Agency (US). Guidelines for Carcinogen Risk Assessment. 2005. Available online: https://www3.epa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf (accessed on 10 October 2022).
- Chang, V.C.; Andreotti, G.; Ospina, M.; Parks, C.G.; Liu, D.; Shearer, J.J.; Rothman, N.; Silverman, D.T.; Sandler, D.P.; Calafat, A.M.; et al. Glyphosate Exposure and Urinary Oxidative Stress Biomarkers in the Agricultural Health Study. J. Natl. Cancer Inst. 2023. [Google Scholar] [CrossRef] [PubMed]
- Kasuba, V.; Milic, M.; Rozgaj, R.; Kopjar, N.; Mladinic, M.; Zunec, S.; Vrdoljak, A.L.; Pavicic, I.; Cermak, A.M.M.; Pizent, A.; et al. Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. Environ. Sci. Pollut. Res. 2017, 24, 19267–19281. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Christensen, T.B.; Hojberg, O.; Sorensen, M.T. Exposure of pigs to glyphosate affects gene-specific DNA methylation and gene expression. Toxicol. Rep. 2022, 9, 298–310. [Google Scholar] [CrossRef]
- Mesnage, R.; Ibragim, M.; Mandrioli, D.; Falcioni, L.; Tibaldi, E.; Belpoggi, F.; Brandsma, I.; Bourne, E.; Savage, E.; Mein, C.A.; et al. Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats. Toxicol. Sci. 2022, 186, 83–101. [Google Scholar] [CrossRef]
- Milic, M.; Zunec, S.; Micek, V.; Kasuba, V.; Mikolic, A.; Lovakovic, B.T.; Semren, T.Z.; Pavicic, I.; Cermak, A.M.M.; Pizent, A.; et al. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arch. Ind. Hyg. Toxicol. 2018, 69, 154–168. [Google Scholar] [CrossRef] [Green Version]
- Tarboush, N.A.; Almomani, D.H.; Khabour, O.F.; Azzam, M.I. Genotoxicity of Glyphosate on Cultured Human Lymphocytes. Int. J. Toxicol. 2022, 41, 126–131. [Google Scholar] [CrossRef]
- Avdatek, F.; Birdane, Y.O.; Turkmen, R.; Demirel, H.H. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia 2018, 50, e13036. [Google Scholar] [CrossRef]
- De Maria Serra, F.; Parizi, J.L.S.; Odorizzi, G.; Sato, G.; Patrão, I.B.; Chagas, P.H.N.; de Azevedo Mello, F.; Nai, G.A.-O. Subchronic exposure to a glyphosate-based herbicide causes dysplasia in the digestive tract of Wistar rats. Environ. Sci. Pollut. Res. 2021, 28, 61477–61496. [Google Scholar] [CrossRef]
- Hutter, H.P.; Khan, A.W.; Lemmerer, K.; Wallner, P.; Kundi, M.; Moshammer, H. Cytotoxic and Genotoxic Effects of Pesticide Exposure in Male Coffee Farmworkers of the Jarabacoa Region, Dominican Republic. Int. J. Environ. Res. Public Health 2018, 15, 81641. [Google Scholar] [CrossRef] [Green Version]
- Kupske, C.; Baroni, S.; Zamin, L.L. Cellular Changes in Buccal Mucosa from Farmers Exposed to Glyphosate/Alterações Celulares na Mucosa Bucal de Agricultores Expostos ao Glifosato. Braz. J. Dev. 2021, 7, 105242–105257. [Google Scholar] [CrossRef]
- Leite, S.B.; Franco de Diana, D.M.; Segovia Abreu, J.A.; Avalos, D.S.; Denis, M.A.; Ovelar, C.C.; Samaniego Royg, M.J.; Thielmann Arbo, B.A.; Corvalan, R. DNA damage induced by exposure to pesticides in children of rural areas in Paraguay. Indian J. Med. Res. 2019, 150, 290–296. [Google Scholar] [CrossRef]
- Lucia, R.M.; Huang, W.L.; Pathak, K.V.; McGilvrey, M.; David-Dirgo, V.; Alvarez, A.; Goodman, D.; Masunaka, I.; Odegaard, A.O.; Ziogas, A.; et al. Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. Environ. Health Perspect. 2022, 130, 47001. [Google Scholar] [CrossRef]
- Makris, K.C.; Efthymiou, N.; Konstantinou, C.; Anastasi, E.; Schoeters, G.; Kolossa-Gehring, M.; Katsonouri, A. Oxidative stress of glyphosate, AMPA and metabolites of pyrethroids and chlorpyrifos pesticides among primary school children in Cyprus. Environ. Res. 2022, 212, 113316. [Google Scholar] [CrossRef]
- Rossi, L.F.; Luaces, J.P.; Palermo, A.M.; Merani, M.S.; Mudry, M.D. Cytogenetic damage in peripheral blood cultures of Chaetophractus villosus exposed in vivo to a glyphosate formulation (Roundup). Ecotoxicol. Environ. Saf. 2018, 157, 121–127. [Google Scholar] [CrossRef]
- Schnabel, K.; Schmitz, R.; Frahm, J.; Meyer, U.; Breves, G.; Danicke, S. Functionality and DNA-damage properties of blood cells in lactating cows exposed to glyphosate contaminated feed at different feed energy levels. Arch. Anim. Nutr. 2020, 74, 87–106. [Google Scholar] [CrossRef]
- Soudani, N.; Chaabane, M.; Ghorbel, I.; Elwej, A.; Boudawara, T.; Zeghal, N. Glyphosate disrupts redox status and up-regulates metallothionein I and II genes expression in the liver of adult rats. Alleviation by quercetin. Gen. Physiol. Biophys. 2019. [Google Scholar] [CrossRef]
- Alvarez-Moya, C.; Samano-Leon, A.G.; Reynoso-Silva, M.; Ramirez-Velasco, R.; Ruiz-Lopez, M.A.; Villalobos-Arambula, A.R. Antigenotoxic Effect of Ascorbic Acid and Resveratrol in Erythrocytes of Ambystoma mexicanum, Oreochromis niloticus and Human Lymphocytes Exposed to Glyphosate. Curr. Issues Mol. Biol. 2022, 44, 2230–2242. [Google Scholar] [CrossRef]
- Anifandis, G.; Katsanaki, K.; Lagodonti, G.; Messini, C.; Simopoulou, M.; Dafopoulos, K.; Daponte, A. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation. Int. J. Environ. Res. Public Health 2018, 15, 61117. [Google Scholar] [CrossRef]
- Barron Cuenca, J.; de Oliveira Galvao, M.F.; Unlu Endirlik, B.; Tirado, N.; Dreij, K. In vitro cytotoxicity and genotoxicity of single and combined pesticides used by Bolivian farmers. Environ. Mol. Mutagen 2022, 63, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhang, Y.; Cheng, J.; Xu, W.; Xu, Z.; Gao, J.; Tao, L. Adjuvant contributes Roundup’s unexpected effects on A549 cells. Environ. Res. 2020, 184, 109306. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, M.; Reszka, E.; Wozniak, K.; Jablonska, E.; Michalowicz, J.; Bukowska, B. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 2017, 105, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Ferguson, S.; Brandsma, I.; Moelijker, N.; Zhang, G.; Mazzacuva, F.; Caldwell, A.; Halket, J.; Antoniou, M.N. The surfactant co-formulant POEA in the glyphosate-based herbicide RangerPro but not glyphosate alone causes necrosis in Caco-2 and HepG2 human cell lines and ER stress in the ToxTracker assay. Food Chem. Toxicol. 2022, 168, 113380. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Argaw Tessema, R.; Szasz, I.; Smeirat, T.; Al Rajo, A.; Adam, B. Micronucleus Formation Induced by Glyphosate and Glyphosate-Based Herbicides in Human Peripheral White Blood Cells. Front. Public Health 2021, 9, 639143. [Google Scholar] [CrossRef]
- Olah, M.; Farkas, E.; Szekacs, I.; Horvath, R.; Szekacs, A. Cytotoxic effects of Roundup Classic and its components on NE-4C and MC3T3-E1 cell lines determined by biochemical and flow cytometric assays. Toxicol. Rep. 2022, 9, 914–926. [Google Scholar] [CrossRef]
- Rice, J.R.; Dunlap, P.; Ramaiahgari, S.; Ferguson, S.; Smith-Roe, S.L.; DeVito, M. Poster: Effects of Glyphosate and its Formulations on Markers of Oxidative Stress and Cell Viability in HepaRG and HaCaT Cell Lines. 2018. Available online: https://ntp.niehs.nih.gov/ntp/results/pubs/posters/rice_sot20190300.pdf (accessed on 10 October 2022).
- Santovito, A.; Ruberto, S.; Gendusa, C.; Cervella, P. In vitro evaluation of genomic damage induced by glyphosate on human lymphocytes. Environ. Sci. Pollut. Res. Int. 2018, 25, 34693–34700. [Google Scholar] [CrossRef]
- Suarez-Larios, K.; Salazar-Martinez, A.M.; Montero-Montoya, R. Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair. J. Toxicol. 2017, 2017, 3574840. [Google Scholar] [CrossRef]
- Szepanowski, F.; Szepanowski, L.P.; Mausberg, A.K.; Albrecht, P.; Kleinschnitz, C.; Kieseier, B.C.; Stettner, M. Differential impact of pure glyphosate and glyphosate-based herbicide in a model of peripheral nervous system myelination. Acta Neuropatholologica 2018, 136, 979–982. [Google Scholar] [CrossRef]
- Townsend, M.; Peck, C.; Meng, W.; Heaton, M.; Robison, R.; O’Neill, K. Evaluation of various glyphosate concentrations on DNA damage in human Raji cells and its impact on cytotoxicity. Regul. Toxicol. Pharmacol. 2017, 85, 79–85. [Google Scholar] [CrossRef]
- Wozniak, E.; Reszka, E.; Jablonska, E.; Michalowicz, J.; Huras, B.; Bukowska, B. Glyphosate and AMPA Induce Alterations in Expression of Genes Involved in Chromatin Architecture in Human Peripheral Blood Mononuclear Cells (In Vitro). Int. J. Mol. Sci. 2021, 22, 62966. [Google Scholar] [CrossRef]
- Wozniak, E.; Sicinska, P.; Michalowicz, J.; Wozniak, K.; Reszka, E.; Huras, B.; Zakrzewski, J.; Bukowska, B. The mechanism of DNA damage induced by Roundup 360 PLUS, glyphosate and AMPA in human peripheral blood mononuclear cells — genotoxic risk assessement. Food Chem. Toxicol. 2018, 120, 510–522. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Xu, D.-Q.; Feng, X.-Z. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. Chemosphere 2019, 237, 124435. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Mittal, M.; Saraf, P. Effective attenuation of glyphosate-induced oxidative stress and granulosa cell apoptosis by vitamins C and E in caprines. Mol. Reprod. Dev. 2019, 86, 42–52. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, L.K.S.; Pletschke, B.I.; Frost, C.L. Moderate levels of glyphosate and its formulations vary in their cytotoxicity and genotoxicity in a whole blood model and in human cell lines with different estrogen receptor status. 3 Biotech 2018, 8, 438. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, W.; Gao, J.; Zhang, Y.; Yang, Y.; Tao, L. Roundup-Induced AMPK/mTOR-Mediated Autophagy in Human A549 Cells. J. Agric. Food Chem. 2019, 67, 11364–11372. [Google Scholar] [CrossRef]
- Luaces, J.P.; Rossi, L.F.; Chirino, M.G.; Browne, M.; Merani, M.S.; Mudry, M.D. Genotoxic effects of Roundup Full II® on lymphocytes of Chaetophractus villosus (Xenarthra, Mammalia): In vitro studies. PLoS ONE 2017, 12, e0182911. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, F.; Zhang, Y.; Zeng, M.; Zhong, C.; Xiao, F. In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. J. Environ. Sci. Health Part B 2017, 52, 410–417. [Google Scholar] [CrossRef]
- De Brito Rodrigues, L.; Gonçalves Costa, G.; Lundgren Thá, E.; da Silva, L.R.; de Oliveira, R.; Morais Leme, D.; Cestari, M.M.; Koppe Grisolia, C.; Campos Valadares, M.; de Oliveira, G.A.R. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2019, 842, 94–101. [Google Scholar] [CrossRef]
- Giommi, C.; Ladisa, C.; Carnevali, O.; Maradonna, F.; Habibi, H.R. Metabolomic and Transcript Analysis Revealed a Sex-Specific Effect of Glyphosate in Zebrafish Liver. Int. J. Mol. Sci. 2022, 23, 52724. [Google Scholar] [CrossRef]
- Hong, Y.; Yang, X.; Yan, G.; Huang, Y.; Zuo, F.; Shen, Y.; Ding, Y.; Cheng, Y. Effects of glyphosate on immune responses and haemocyte DNA damage of Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2017, 71, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Benvindo-Souza, M.; Carvalho, W.F.; Nunes, H.F.; de Lima, P.N.; Costa, M.S.; Benetti, E.J.; Guerra, V.; Saboia-Morais, S.M.T.; Santos, C.E.; et al. Evaluation of the genotoxic, mutagenic, and histopathological hepatic effects of polyoxyethylene amine (POEA) and glyphosate on Dendropsophus minutus tadpoles. Environ. Pollut. 2021, 289, 117911. [Google Scholar] [CrossRef] [PubMed]
- Marçal, R.; Pacheco, M.; Guilherme, S. DNA of crayfish spermatozoa as a target of waterborne pesticides—An ex vivo approach as a tool to short-term spermiotoxicity screening. J. Hazard. Mater. 2020, 400, 123300. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Jia, R.; Cao, L.; Du, J.; Gu, Z.; He, Q.; Xu, P.; Yin, G. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 239, 108878. [Google Scholar] [CrossRef] [PubMed]
- Acar, Ü.; İnanan, B.E.; Navruz, F.Z.; Yılmaz, S. Alterations in blood parameters, DNA damage, oxidative stress and antioxidant enzymes and immune-related genes expression in Nile tilapia (Oreochromis niloticus) exposed to glyphosate-based herbicide. Comp. Biochem. Physiol. C Toxicol. Pharmacol 2021, 249, 109147. [Google Scholar] [CrossRef]
- Akça, A.; Kocabaş, M.; Kutluyer, F. Glyphosate disrupts sperm quality and induced DNA damage of rainbow trout (Oncorhynchus mykiss) sperm. J. Environ. Sci. Health C Toxicol. Carcinog. 2021, 39, 413–422. [Google Scholar] [CrossRef]
- Aribisala, O.A.; Sogbanmu, T.O.; Kemabonta, K.A. Genotoxic, biochemical and histological biomarkers of subacute concentrations of paraquat and glyphosate in Nile Tilapia. Environ. Anal. Health Toxicol. 2022, 37, e2022012. [Google Scholar] [CrossRef]
- Ayanda, O.I.; Tolulope, A.; Oniye, S.J. Mutagenicity and genotoxicity in juvenile African catfish, Clarias gariepinus exposed to formulations of glyphosate and paraquat. Sci. Prog. 2021, 104, 1–15. [Google Scholar] [CrossRef]
- Baurand, P.E.; Capelli, N.; de Vaufleury, A. Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles. J. Hazard. Mat. 2015, 298, 320–327. [Google Scholar] [CrossRef]
- Braz-Mota, S.; Sadauskas-Henrique, H.; Duarte, R.M.; Val, A.L.; Almeida-Val, V.M. Roundup(R) exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere 2015, 135, 53–60. [Google Scholar] [CrossRef]
- Burella, P.M.; Simoniello, M.F.; Poletta, G.L. Evaluation of Stage-Dependent Genotoxic Effect of Roundup((R)) (Glyphosate) on Caiman latirostris Embryos. Arch. Environ. Contam. Toxicol. 2017, 72, 50–57. [Google Scholar] [CrossRef]
- Burella, P.M.; Odetti, L.M.; Simoniello, M.F.; Poletta, G.L. Oxidative damage and antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to pesticide formulations. Ecotoxicol. Environ. Saf. 2018, 161, 437–443. [Google Scholar] [CrossRef]
- Carvalho, W.F.; Ruiz de Arcaute, C.; Perez-Iglesias, J.M.; Laborde, M.R.R.; Soloneski, S.; Larramendy, M.L. DNA damage exerted by mixtures of commercial formulations of glyphosate and imazethapyr herbicides in Rhinella arenarum (Anura, Bufonidae) tadpoles. Ecotoxicology 2019, 28, 367–377. [Google Scholar] [CrossRef]
- Carvalho, W.F.; Ruiz de Arcaute, C.; Torres, L.; de Melo, E.S.D.; Soloneski, S.; Larramendy, M.L. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ. Sci. Pollut. Res. Int. 2020, 27, 6515–6525. [Google Scholar] [CrossRef]
- Silva, G.S.d.; Matos, L.V.d.; Freitas, J.O.d.S.; Campos, D.F.d.; Almeida e Val, V.M.F.d. Gene expression, genotoxicity, and physiological responses in an Amazonian fish, Colossoma macropomum (CUVIER 1818), exposed to Roundup® and subsequent acute hypoxia. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 222, 49–58. [Google Scholar] [CrossRef]
- Santo, G.D.; Grotto, A.; Boligon, A.A.; Da Costa, B.; Rambo, C.L.; Fantini, E.A.; Sauer, E.; Lazzarotto, L.M.V.; Bertoncello, K.T.; Junior, O.T.; et al. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosate-Roundup(R) using zebrafish (Danio rerio) as a model. Environ. Sci. Pollut. Res. Int. 2018, 25, 11703–11715. [Google Scholar] [CrossRef]
- De Melo, M.S.; Nazari, E.M.; Müller, Y.M.R.; Gismondi, E. Modulation of antioxidant gene expressions by Roundup® exposure in the decapod Macrobrachium potiuna. Ecotoxicol. Environ. Saf. 2020, 190, 110086. [Google Scholar] [CrossRef]
- De Moura, F.R.; da Silva Lima, R.R.; da Cunha, A.P.S.; da Costa Marisco, P.; Aguiar, D.H.; Sugui, M.M.; Sinhorin, A.P.; Sinhorin, V.D.G. Effects of glyphosate-based herbicide on pintado da Amazonia: Hematology, histological aspects, metabolic parameters and genotoxic potential. Environ. Toxicol. Pharmacol. 2017, 56, 241–248. [Google Scholar] [CrossRef]
- De Oliveira, F.G.; Lirola, J.R.; Salgado, L.D.; de Marchi, G.H.; Mela, M.; Padial, A.A.; Guimarães, A.T.B.; Cestari, M.M.; Silva de Assis, H.C. Toxicological effects of anthropogenic activities in Geophagus brasiliensis from a coastal river of southern Brazil: A biomarker approach. Sci. Total Environ. 2019, 667, 371–383. [Google Scholar] [CrossRef]
- De Oliveira, J.S.P.; Vieira, L.G.; Carvalho, W.F.; de Souza, M.B.; de Lima Rodrigues, A.S.; Simões, K.; de Melo De Silva, D.; dos Santos Mendonça, J.; Hirano, L.Q.L.; Santos, A.L.Q.; et al. Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Sci. Total Environ. 2020, 737, 140304. [Google Scholar] [CrossRef]
- Herek, J.S.; Vargas, L.; Trindade, S.A.R.; Rutkoski, C.F.; Macagnan, N.; Hartmann, P.A.; Hartmann, M.T. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 2020, 27, 22619–22630. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Yang, X.; Huang, Y.; Yan, G.; Cheng, Y. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide Roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere 2018, 210, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Kumar, V.; Srivastava, A.; Saxena, G.; Verma, P.C. Biomarker-based evaluation of cytogenotoxic potential of glyphosate in Vigna mungo (L.) Hepper genotypes. Environ. Monit. Assess. 2021, 193, 73. [Google Scholar] [CrossRef] [PubMed]
- Lajmanovich, R.C.; Peltzer, P.M.; Attademo, A.M.; Martinuzzi, C.S.; Simoniello, M.F.; Colussi, C.L.; Cuzziol Boccioni, A.P.; Sigrist, M. First evaluation of novel potential synergistic effects of glyphosate and arsenic mixture on Rhinella arenarum (Anura: Bufonidae) tadpoles. Heliyon 2019, 5, e02601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez Gonzalez, E.C.; Larriera, A.; Siroski, P.A.; Poletta, G.L. Micronuclei and other nuclear abnormalities on Caiman latirostris (Broad-snouted caiman) hatchlings after embryonic exposure to different pesticide formulations. Ecotoxicol. Environ. Saf. 2017, 136, 84–91. [Google Scholar] [CrossRef]
- López González, E.C.; Siroski, P.A.; Poletta, G.L. Genotoxicity induced by widely used pesticide binary mixtures on Caiman latirostris (broad-snouted caiman). Chemosphere 2019, 232, 337–344. [Google Scholar] [CrossRef]
- Lopez Gonzalez, E.C.; Odetti, L.M.; Latorre, M.A.; Avila, O.B.; Contini, L.E.; Siroski, P.A.; Poletta, G.L. A comprehensive approach using multiple biomarkers to detect damage induced by pesticides in broad-snouted caiman (Caiman latirostris) under ex-situ conditions. Heliyon 2022, 8, e08667. [Google Scholar] [CrossRef]
- Martins, A.W.S.; Silveira, T.L.R.; Remião, M.H.; Domingues, W.B.; Dellagostin, E.N.; Junior, A.S.V.; Corcini, C.D.; Costa, P.G.; Bianchini, A.; Somoza, G.M.; et al. Acute exposition to Roundup Transorb® induces systemic oxidative stress and alterations in the expression of newly sequenced genes in silverside fish (Odontesthes humensis). Environ. Sci. Pollut. Res. Int. 2021, 28, 65127–65139. [Google Scholar] [CrossRef]
- Odetti, L.M.; Lopez Gonzalez, E.C.; Romito, M.L.; Simoniello, M.F.; Poletta, G.L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 2020, 193, 110312. [Google Scholar] [CrossRef]
- Pavan, F.A.; Samojeden, C.G.; Rutkoski, C.F.; Folador, A.; Da Fré, S.P.; Müller, C.; Hartmann, P.A.; Hartmann, M.T. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 2021, 85, 103637. [Google Scholar] [CrossRef]
- Pereira, A.G.; Jaramillo, M.L.; Remor, A.P.; Latini, A.; Davico, C.E.; da Silva, M.L.; Muller, Y.M.R.; Ammar, D.; Nazari, E.M. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain. Chemosphere 2018, 209, 353–362. [Google Scholar] [CrossRef]
- Santovito, A.; Audisio, M.; Bonelli, S. A micronucleus assay detects genotoxic effects of herbicide exposure in a protected butterfly species. Ecotoxicology 2020, 29, 1390–1398. [Google Scholar] [CrossRef]
- Schaumburg, L.G.; Siroski, P.A.; Poletta, G.L.; Mudry, M.D. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos. Pestic. Biochem. Physiol. 2016, 130, 71–78. [Google Scholar] [CrossRef]
- Soloneski, S.; Ruiz de Arcaute, C.; Larramendy, M.L. Genotoxic effect of a binary mixture of dicamba- and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ. Sci. Pollut. Res. 2016, 23, 17811–17821. [Google Scholar] [CrossRef]
- Trigueiro, N.S.S.; Gonçalves, B.B.; Dias, F.C.; de Oliveira Lima, E.C.; Rocha, T.L.; Sabóia-Morais, S.M.T. Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). Environ. Toxicol. Pharmacol. 2021, 81, 103521. [Google Scholar] [CrossRef]
- Vieira, C.E.; Costa, P.G.; Lunardelli, B.; de Oliveira, L.F.; Cabrera Lda, C.; Risso, W.E.; Primel, E.G.; Meletti, P.C.; Fillmann, G.; Martinez, C.B. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil. Sci. Total Environ. 2016, 542, 44–56. [Google Scholar] [CrossRef]
- Congur, G. Electrochemical investigation of the interaction of 2,4-D and double stranded DNA using pencil graphite electrodes. Turk. J. Chem. 2021, 45, 600–615. [Google Scholar] [CrossRef]
- Da Silva, N.D.G.; Carneiro, C.E.A.; Campos, E.V.R.; de Oliveira, J.L.; Risso, W.E.; Fraceto, L.F.; Zaia, D.A.M.; Martinez, C.B.R. Interference of goethite in the effects of glyphosate and Roundup® on ZFL cell line. Toxicol. Vitro 2020, 65, 104755. [Google Scholar] [CrossRef]
- Perez-Iglesias, J.M.; Franco-Belussi, L.; Moreno, L.; Tripole, S.; de Oliveira, C.; Natale, G.S. Effects of glyphosate on hepatic tissue evaluating melanomacrophages and erythrocytes responses in neotropical anuran Leptodactylus latinasus. Environ. Sci. Pollut. Res. Int. 2016, 23, 9852–9861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.C.; Todt, C.E.; Burchfield, S.L.; Pressley, A.S.; Denney, R.D.; Snapp, I.B.; Negga, R.; Traynor, W.L.; Fitsanakis, V.A. Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2018, 57, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Bollani, S.; de Cabo, L.; Chagas, C.; Moretton, J.; Weigandt, C.; de Iorio, A.F.; Magdaleno, A. Genotoxicity of water samples from an area of the Pampean region (Argentina) impacted by agricultural and livestock activities. Environ. Sci. Pollut. Res. Int. 2018. [Google Scholar] [CrossRef] [PubMed]
- De Brito Rodrigues, L.; de Oliveira, R.; Abe, F.R.; Brito, L.B.; Moura, D.S.; Valadares, M.C.; Grisolia, C.K.; de Oliveira, D.P.; de Oliveira, G.A.R. Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. Environ. Toxicol. Chem. 2017, 36, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 2000, 31, 117–165. [Google Scholar] [CrossRef] [Green Version]
- Kier, L.D.; Kirkland, D.J. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit. Rev. Toxicol. 2013, 43, 283–315. [Google Scholar] [CrossRef]
- McClellan, R.O. Evaluating the potential carcinogenic hazard of glyphosate. Crit. Rev. Toxicol. 2016, 46, 1–2. [Google Scholar] [CrossRef]
- Brusick, D.; Aardema, M.; Kier, L.; Kirkland, D.; Williams, G. Genotoxicity Expert Panel review: Weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid. Crit. Rev. Toxicol. 2016, 46, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency (US). Memo: Glyphosate. Study Summaries for Genotoxicity Studies. 2016. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2016-0385-0098 (accessed on 10 October 2022).
- Bolognesi, C.; Carrasquilla, G.; Volpi, S.; Solomon, K.R.; Marshall, E.J. Biomonitoring of genotoxic risk in agricultural workers from five Colombian regions: Association to occupational exposure to glyphosate. J. Toxicol. Environ. Health Part A 2009, 72, 986–997. [Google Scholar] [CrossRef]
- Paz-y-Miño, C.; Sánchez, M.E.; Arévalo, M.; Muñoz, M.J.; Witte, T.; De-la-Carrera, G.O.; Leone, P.E. Evaluation of DNA damage in an Ecuadorian population exposed to glyphosate. Genet. Mol. Biol. 2007, 30, 456–460. [Google Scholar] [CrossRef]
- Olorunsogo, O.O. Modification of the transport of protons and Ca2+ ions across mitochondrial coupling membrane by N-(phosphonomethyl)glycine. Toxicology 1990, 61, 205–209. [Google Scholar] [CrossRef]
- Olorunsogo, O.O.; Bababunmi, E.A.; Bassir, O. Effect of glyphosate on rat liver mitochondria in vivo. Bull. Environ. Contam. Toxicol. 1979, 22, 357–364. [Google Scholar] [CrossRef]
- European Commission. Regulations: Commission Implementing Regulation (EU) 2016/1313 of 1 August 2016 amending Implementation Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance glyphosate. Off. J. Eur. Union 2016, 208, 1–3. [Google Scholar]
- Ingaramo, P.; Alarcon, R.; Munoz-de-Toro, M.; Luque, E.H. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol. Cell. Endocrinol. 2020, 518, 110934. [Google Scholar] [CrossRef] [PubMed]
- Navarro, C.D.C.; Martinez, C.B.R. Effects of the surfactant polyoxyethylene amine (POEA) on genotoxic, biochemical and physiological parameters of the freshwater teleost Prochilodus lineatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014, 165, 83–90. [Google Scholar] [CrossRef]
- Environmental Protection Agency (US). Memo: Review of the Office of Pesticide Programs (OPP) Draft Glyphosate Risk Assessment and the Cancer Assessment Review Committee (CARe) Final Report on the Carcinogenic Potential of Glyphosate. 2015. Available online: https://hh-ra.org/wp-content/uploads/2022/10/ehegy-review-of-OPP-report.pdf (accessed on 10 October 2022).
- Portier, C.J. A comprehensive analysis of the animal carcinogenicity data for glyphosate from chronic exposure rodent carcinogenicity studies. Environ. Health 2020, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.V.; DeMarini, D.M.; Stankowski, L.F.; Escobar, P.A.; Zeiger, E.; Howe, J.; Elespuru, R.; Cross, K.P. Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed? Mutat. Res. Genet. Toxicol. Environ. Mutagen 2019, 848, 503081. [Google Scholar] [CrossRef]
- Walmsley, R.M.; Billinton, N. How accurate is in vitro prediction of carcinogenicity? Br. J. Pharmacol. 2011, 162, 1250–1258. [Google Scholar] [CrossRef]
- Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ducarmon, Q.R.; Zwittink, R.D.; Mazzacuva, F.; Caldwell, A.; Halket, J.; Amiel, C.; et al. Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. Environ. Health Perspect. 2021, 129, 17005. [Google Scholar] [CrossRef]
- Lowe, D. The Ames Test and the Real World. 2022. Available online: https://www.science.org/content/blog-post/ames-test-and-real-world (accessed on 10 October 2022).
- Benbrook, C.; Perry, M.J.; Belpoggi, F.; Landrigan, P.J.; Perro, M.; Mandrioli, D.; Antoniou, M.N.; Winchester, P.; Mesnage, R. Commentary: Novel strategies and new tools to curtail the health effects of pesticides. Environ. Health 2021, 20. [Google Scholar] [CrossRef]
Glyphosate Technical | Number of Assays | 5 |
Positive | 4 | |
Percent Positive | 80% | |
Formulated GBHs | Number of Assays | 11 |
Positive | 9 | |
Percent Positive | 82% | |
All New Studies | Number of Assays | 16 |
Positive | 13 | |
Percent Positive | 81% |
Author & Date | Study Design | Methodology | Reported Results | Result |
---|---|---|---|---|
Bolognesi et al., 2009 [144] | Before v. after exposure | MN * frequency in peripheral leukocytes | There were significant increases in MN frequency after glyphosate exposure. | Positive |
Hutter, 2018 [66] | Exposed v. unexposed pesticide workers | Buccal micronucleus cytome assay (MN frequency and nuclear anomalies) | There were statistically significant nuclear anomalies in pesticide-exposed (primarily glyphosate) workers. | Positive |
Kupske, 2021 [67] | Before v. after exposure | MN frequency and other cellular alterations in buccal cells | There were significant increases in MN frequency, broken egg cells, binucleation, and karyolysis after glyphosate exposure. | Positive |
Leite, 2019 [68] | Exposed v. unexposed children | Buccal micronucleus Comet assay | The study found higher frequency of all damages analyzed (MN, binucleation, broken egg, karyorrhexis, karyolysis, pyknosis, and condensed chromatin). | Positive |
Lucia, 2022 [69] | Post-menopausal women | Differentially methylated probes (DNA methylation was measured at over 850,000 CpG sites) Biomonitoring methodology | The study identified 17 CpG sites (probes) at which a decrease in methylation was associated with increasing levels of urinary glyphosate. Four genomic regions, all located within gene promoters, were significantly associated with glyphosate levels in >90% of subsamples. | Positive |
Makris, 2020 [70] | Children 10–11 years old | Oxidative stress was assessed with immunoassay measurements of marker 8-iso-PGF2a for lipid damage and 8-OHdG as a DNA oxidative damage marker. Biomonitoring methodology | The DNA oxidative damage marker (8-OHdG) was positively associated with AMPA (beta = 0.17; 95% CI: 0.02, 0.31, p = 0.03 cr2, and beta = 0.12; 95% CI: 0.0, 0.24, p = 0.06, cr1), but not with GLY (p > 0.05). | Positive |
Paz-y-Miño, 2007 [145] | Exposed v. unexposed | Comet assay | The results showed a higher degree of DNA damage in the exposed group (comet length = 35.5 pm) compared to the control group (comet length = 25.9 4 pm), suggesting that the formulation used during aerial spraying glyphosate had a genotoxic effect on the exposed individuals. | Positive |
Glyphosate Technical | Number of Assays | 19 |
Positive | 13 | |
Percent Positive | 68% | |
Formulated GBHs | Number of Assays | 12 |
Positive | 12 | |
Percent Positive | 100% | |
All New Studies | Number of Assays | 31 |
Positive | 25 | |
Percent Positive | 81% |
Glyphosate Technical | Number of Assays | 6 |
Positive | 6 | |
Percent Positive | 100% | |
Formulated GBHs | Number of Assays | 33 |
Positive | 33 | |
Percent Positive | 100% | |
All New Studies | Number of Assays | 39 |
Positive | 39 | |
Percent Positive | 100% |
Glyphosate Technical | Number of Assays | 3 |
Positive | 1 | |
Percent Positive | 33% | |
Formulated GBHs | Number of Assays | 5 |
Positive | 4 | |
Percent Positive | 80% | |
All New Studies | Number of Assays | 8 |
Positive | 5 | |
Percent Positive | 63% |
Glyphosate Technical | Number of Assays | 33 |
Positive | 24 | |
Percent Positive | 73% | |
Formulated GBHs | Number of Assays | 61 |
Positive | 58 | |
Percent Positive | 95% | |
All New Studies | Number of Assays | 94 |
Positive | 82 | |
Percent Positive | 87% |
Registrant Studies | Type | Number of Assays | Number Positive |
BRM | 14 | 0 | |
MN | 9 | 1 | |
Gene mutations and other | 9 | 0 | |
Chrom aberration | 5 | 0 | |
Totals | 37 | 1 | |
Percent Positive | 2.7% | ||
BRM as % All | 37.8% | ||
% Since 2000 | 21.6% | ||
Published Studies | Type | Number of Assays | Number Positive |
BRM | 4 | 0 | |
MN | 8 | 7 | |
SCE | 4 | 4 | |
Comet | 5 | 5 | |
Chrom aberration | 4 | 2 | |
Oxidative stress & other | 3 | 2 | |
Totals | 28 | 20 | |
Percent Positive | 71.4% | ||
BRM as % All | 14.3% | ||
% Since 2000 | 35.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benbrook, C.; Mesnage, R.; Sawyer, W. Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides. Agrochemicals 2023, 2, 47-68. https://doi.org/10.3390/agrochemicals2010005
Benbrook C, Mesnage R, Sawyer W. Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides. Agrochemicals. 2023; 2(1):47-68. https://doi.org/10.3390/agrochemicals2010005
Chicago/Turabian StyleBenbrook, Charles, Robin Mesnage, and William Sawyer. 2023. "Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides" Agrochemicals 2, no. 1: 47-68. https://doi.org/10.3390/agrochemicals2010005
APA StyleBenbrook, C., Mesnage, R., & Sawyer, W. (2023). Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides. Agrochemicals, 2(1), 47-68. https://doi.org/10.3390/agrochemicals2010005